Добірка наукової літератури з теми "Питома електропровідність"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Питома електропровідність".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Питома електропровідність"

1

Новосад О. В., Божко В. В., Федосов С. А. та Шигорін П. П. "ТЕРМОЕЛЕКТРИЧНІ ВЛАСТИВОСТІ КРИСТАЛІВ AgSbSe2–PbSe". Перспективні технології та прилади, № 17 (27 січня 2021): 183–89. http://dx.doi.org/10.36910/6775-2313-5352-2020-17-27.

Повний текст джерела
Анотація:
В роботі дослідженні термоелектричні властивості твердих розчинів AgSbSe2–PbSe. Показано, що електричні та термоелектричні властивості залежать від складу твердого розчину AgSbSe2–PbSe. Змінюючи склад твердих розчинів AgSbSe2–PbSe можна плавно змінювати їх електричні та термоелектричні властивості. Більшість досліджуваних сполук виявились напівпровідниками p-типу провідності. Питома електропровідність кристалів на основі AgSbSe2 із збільшенням PbSe зменшувалась від 1,4 Ом-1∙см-1, для монокристалів AgSbSe2, до 10-2 Ом-1∙см-1, для монокристалів AgSbSe2–PbSe з вмістом 40 мол. % PbSe. Також зменшення питомої електропровідності спостерігалось і для монокристалів на основі PbSe із збільшенням вмісту AgSbSe2. В AgSbSe2–PbSe на основі AgSbSe2 збільшенням вмісту PbSe призводить до зростання коефіцієнта Зеебека від 530 мкВ/К до 1100 мкВ/К для AgSbSe2 та монокристалів складу 60% AgSbSe2–40% PbSe. Досліджувані в роботі монокристали, маючи високе значення α, можуть використовуватися як матеріали чутливих термодатчикiв.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tarasenko, N. L., N. O. Savina, V. M. Britsun та N. V. Оstanina. "ВИЗНАЧЕННЯ ЗАЛИШКОВИХ КІЛЬКОСТЕЙ МИЙНОГО ЗАСОБУ NEODISHER LABOCLEAN PLM НА ЛАБОРАТОРНОМУ ПОСУДІ". Фармацевтичний часопис, № 1 (28 лютого 2020): 42–50. http://dx.doi.org/10.11603/2312-0967.2020.1.10903.

Повний текст джерела
Анотація:
Мета роботи. Опрацювання простих експрес-підходів для визначення залишкової кількості мийного засобу Neodisher LaboСlean PLM в лабораторному посуді, заснованих на використанні фармакопейних методів (перевірки питомої електропровідності і теста «речовин, що окиснюються»), і оцінювання якості миття посуду дезінфекційно-мийним автоматом. Матеріали і методи. Воду дистильовану і дейонізовану отримано, відповідно, з аквадистилятора GFL2008 і системи Millipore Direct-Q 3 UV. Використовували розчини мийного засобу Neodisher LaboСlean PLM. Кондуктометричні дослідження проводили на кондуктометрі Hanna HI 2300. Миття лабораторного посуду здійснювали в дезінфекційно-миючому автоматі G7883. Результати й обговорення. Визначено питому електропровідність розчинів різної концентрації Neodisher Laboclean PLM. Отримані дані оброблені Excel з метою побудови калібрувальних графіків та створення математичних рівнянь. Ці підходи, хоча не є селективними, проте дозволяють ідентифікувати остаточні забруднення посуду мийним засобом Neodisher LaboСlean PLM в концентраціях, відповідно, 10-5 % і 10-2 %, в тому числі – і кількісно (за питомою електропровідністю, з використанням калібрувального графіка). Подібним чином отримано калібровочний графік для однієї з солей жорсткості водопровідної води – CaCO3. На основі отриманих даних були проведені дослідження чистоти лабораторного посуду після відмивання у дезінфекційно-мийному автоматі. Висновки. Отримані дані (0,8–3,2 і 2,3–10,0 мкг/одиницю на посуду, відповідно, для мийного засобу Neodisher LaboClean PLM і для CaCO3) свідчать, що чистота лабораторного посуду після мийки в дезінфекційно-мийному автоматі G7883 є задовільною для вирішення більшості завдань, які стоять перед аналітичною та фармацевтичною хімією.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Britsun, V. M., N. L. Tarasenko, N. O. Savina та N. V. Оstanina. "КОНТРОЛЬ ЗАЛИШКОВИХ КІЛЬКОСТЕЙ ПЕРОКСИДУ ВОДНЮ ПІСЛЯ ДЕЗІНФЕКЦІЇ ЛАБОРАТОРНОГО ПОСУДУ ТА ОБЛАДНАННЯ". Фармацевтичний часопис, № 2 (14 липня 2021): 21–27. http://dx.doi.org/10.11603/2312-0967.2021.2.12145.

Повний текст джерела
Анотація:
Мета роботи. Визначення залишкової концентрації пероксиду водню у дистильованій воді, яка відповідає вимогам ДФУ, і обгрунтування кількості промивної води, потрібної для повного видалення Н2О2 після дезінфекції лабораторного посуду і обладнання. Матеріали і методи. Вода деоінізована була отримана з системи Millipore Direct-Q 3 UV, вода дистильована – з аквадистилятора GFL2008. Використовувались розчини пероксиду водню 30% виробництва "Carlo Erba Reagents S.A.S" чистоти "For analysis ACS-Reag.Ph.Eur.-Reag.USP-Stabilized" і 35% кваліфікації "медичний" виробництва "УкрХім". Досліди здійснювались з використанням фармакопейного теста "речовини, що окиснюються" і кондуктометричних вимірювань. Кондуктометричні дослідження проводили на кондуктометрі Hanna HI 2300. Результати і обговорення. З'ясовано, що фармакопейне випробовування "речовини, що окиснюються" (перманганатометричний метод) дозволяє ідентифікувати перекис водню при концентрації приблизно ≥ 10-4%. Була також виміряна питома електропровідність (ПЕ) розведених (3.5х10-5…3.5%) "фармакопейного" і "медичного" розчинів пероксиду водню. З'ясовано, що ПЕ розведених розчинів Н2О2 "фармакопейної" і "медичної" кваліфікації суттєво відрізняється. Вірогідно, це обумовлено наявністю стабілізаторів різної природи (органічних і неорганічних) і в різних концентраціях (в "фармакопейній" Н2О2 – в мінімальній, в "медичній" – в значній концентрації). Висновки. Встановлено, що при кожному ополіскуванні лабораторного посуду дистильованою водою, концентрація пероксиду водню зменшується приблизно в 50-100 разів. Тому для повного видалення пероксиду водню з лабораторного посуду та обладнання (досягнення концентрації <10-4%) - потрібна 3-4-кратна промивка дистильованою водою. Теоретичні розрахунки підтверджені експериментальними даними. Знайдено, що пероксид водню має низьку ПЕ, яка менша за ПЕ розчинів стабілізаторів в ньому, і кондуктометричний метод непридатний для контролю залишкових кількостей Н2О2 в лабораторному посуді і обладнанні.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Сєрова, Тамара Олександрівна, Володимир Григорович Федотов та Олександр Іванович Міхеєв. "ФЕНОМЕН МОРСЬКОЇ ВОДИ". Vodnij transport, № 3(31) (10 грудня 2020): 134–43. http://dx.doi.org/10.33298/2226-8553.2020.3.31.15.

Повний текст джерела
Анотація:
У статті наведені маловідомі дані про воду звичайну, але більше про морську, про цю дивовижну субстанцію, без якої людина перетворюється в порожнє місце, та й сама планета наша без води - це вже не царство життя, але царство смерті. Останнім часом людина навіть перестала звертати увагу на воду лише тому, що вона до неї банально звикла, вона її як би не помічає. А насправді вона її просто недооцінила. В реальності ж її існування вода є чи не головною складовою частиною людського життя, і вона, людина, не просто повинна, але зобов'язана про це завжди пам'ятати. Виявляється, що морська та океанська вода також має дуже велике принципове значення для життя людини як і звичайна питна вода тому, що вона не просто солона, а містить в себе саме від 34 до 39‰. Чому це так? Особливо зараз встає і друге питання – яка властивість морської води є головною для людства серед її інших фізичних характеристик? Таким чином, мета теперішній статті – знайти відповіді на ці та інші питання, що в неї поставлені. Ключові слова: морська вода, електропровідність, корозія, пам'ять
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vishnyakov, L. R., V. P. Krasovskyy, I. N. Kokhana, I. I. Chernyavsky, V. A. Kokhanyi, O. P. Yaremenko та N. A. Krasovskyа. "РОЗРОБКА В’ЯЗАНО-ПАЯНИХ СІТОК-БЛИСКАВКОВІДВОДІВ З БЕЗСВИНЦЕВИМ ПРИПОЄМ ДЛЯ ЗАХИСТУ ПОЛІМЕРНИХ КОМПОЗИТІВ ВІД ДІЇ ПРЯМОГО УДАРУ БЛИСКАВКИ". Технологические системы, № 81/4 (29 березня 2018). http://dx.doi.org/10.29010/081.5.

Повний текст джерела
Анотація:
Розглянуто механізм дисипації енергії блискавки при прямому влученні у вуглецьпластикову конструкцію, що захищена сіткою-блискавковідводом. Запропонована геометрична модель струмовідводної структури в’язано-паяної сітки з електричними структурними ланцюгами, що визначають електропровідність сітчастого полотна, розроблена методика розрахунку питомого поверхневого електроопору. Розроблено методичний підхід для дослідження кутів змочування міді безсвинцевими припоями, вивчені їх питомі електричні опори. Як припій сітчастого блискавковідводу рекомендовано застосовувати безсвинцевий сплав типу SAC (Sn-3,8%Ag-0,7%Cu).
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Питома електропровідність"

1

Шібан, Тамер. "Електромагнітний багатопараметровий перетворювач з просторово-періодичним полем для контролю циліндричних виробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41998.

Повний текст джерела
Анотація:
У дисертаційній роботі представлені науково-технічні результати дослідження електромагнітного багатопараметрового перетворювача для визначення параметрів циліндричних металевих виробів, принцип роботи якого ґрунтується на виділенні амплітуди та фази просторових гармонік неоднорідного магнітного поля, представленого у вигляді ряду Фур'є. Об'єкт дослідження достатньо повно описаний в науковій літературі. Показано, що подальше збільшення інформаційних параметрів, які контролюються одним перетворювачем може здійснюватися декількома шляхами. Наприклад, використання для живлення перетворювача струмом різних частот з подальшою фільтрацією і виділенням амплітуди і фази на кожній частоті. Така реалізація багатопараметрових датчиків досить складна і не завжди відображає справжню картину процесів, що відбуваються в об'єкті контролю через різну глибину проникнення поля (скін-ефект). Показано, що застосування результатів дослідження дає можливість отримати більш повну інформацію про об'єкт контролю, яка не могла бути отримана при використанні традиційних методів. Тому, застосування розробленого методу, є перспективним. В роботі розроблена фізико-математична модель електромагнітного перетворювача з неоднорідним розподілом електромагнітного поля для провідника зі струмом, розташованого уздовж бічної поверхні циліндричного виробу на деякій відстані d від центра металевого циліндра радіуса a. Вирішена просторова задача розподілу змінного в часі магнітного поля і отримані вирази, за якими можна обчислити функції для будь-якої просторової гармоніки, за якими можна скласти картину розподілу поля в будь-який області (всередині виробу, між виробом і провідником зі струмом, а також поза цим провідником). Отримано математичні вирази для визначення напруженості магнітного поля для r-ї і φ-ї складової, створюваного струмом одного провідника (або полюса з кінцевими кутовими розмірами). Проведено облік товщини стрічки полюса з сумарним струмом, який призводить до заміни в формулах для напруженості поля значення r на деякий ефективний радіус. Отримано математичні вирази для амплітуди і фази n-ї просторової гармоніки сигналу перетворювача, що наводиться в вимірювальних обмотках, розташованих уздовж поверхні циліндричного об'єкту контролю з кутовою координатою φ на окружності радіуса d. Для підтвердження адекватності запропонованої моделі перетворювача проведені експерименти, які показали відмінність між розрахунковими і експериментально отриманими значеннями ЕРС вихідного сигналу перетворювача. Так, наприклад, для вимірювальних обмоток, з кутовими координатами φ = 0° і φ = 180° розбіжність значень напруг склала не більше 5%, а для обмоток з розташуванням по φ = 30°, 60°, 300° і 330° розбіжність склала не більше 10%. Запропоновано також прийоми і способи виділення необхідних просторових гармонік і приглушення гармонік з високими номерами. Останнє дозволяє знизити вплив вищих просторових гармонік до 1%. Для виключення з картини просторового розподілу поля парних або непарних гармонік запропоновано використовувати систему провідників з однаковими і протилежними напрямками струмів в них. Отримано універсальні функції перетворення для амплітуди і фази n-ї складової гармоніки для перетворювача. Розроблено метод спільного контролю електричних (σ), магнітних (μr) і геометричних (а) параметрів циліндричних виробів, на основі перетворювача з одним намагнічувальним полюсом при використанні 1-ї і 2-ї просторових гармонік, який дозволяє однозначно вирішувати задачу багатопараметрового контролю для широкого сортименту виробів, різних конструкцій і режимів роботи перетворювачів. Розроблено метод на основі електромагнітного перетворювача з двома намагнічувальними полюсами і різним напрямком струму. Отримано універсальні функції перетворення з використанням 1-ї і 3-ї просторових гармонік, а також запропонований алгоритм реалізації багатопараметрового контролю параметрів циліндричних виробів. Визначено чутливості методу і знайдено раціональні режими роботи перетворювача. Виконано розрахунок і показано вплив вищих гармонік поля на вихідні сигнали перетворювача. Так, наприклад, для перетворювача з одним збуджувальним провідником, відкидання 3-ї гармоніки призведе до похибки розрахунку результуючої ЕРС, яка дорівнює 5%, а для перетворювача з двома збуджувальними провідниками, при відкиданні 5-ї гармоніки, становить 1,5%. Розроблено макет лабораторної установки з електромагнітним перетворювачем з просторово-періодичною структурою поля і проведені експериментальні дослідження по визначенню μr σ, і а з імітаційними зразками різного сортаменту для підтвердження адекватності розробленого методу. Наведена конструкція електромагнітного перетворювача з двома збуджувальними полюсами і різним напрямком намагнічувального струму з використанням амплітуди 1-ї і 3-ї просторових гармонік і фази 1-ї гармоніки. Оскільки безпосередньо оцінити похибки контролю μr, σ і а для розробленого багатопараметрового перетворювача досить складно, в роботі проведено вимірювання цих же параметрів контрольними методами. Так для визначення а досліджуваного зразка використовувався мікрометр з діапазоном вимірювання діаметра (50 ± 0,01) мм, для визначення σ циліндричного зразка використовувався контактний електричний метод на базі потенціометра постійного струму Р363-3, з класом точності 0,005, а для визначення μr використовувався метод амперметра - вольтметра для кільцевого зразка. Показано, що застосування розробленого перетворювача дозволяє отримувати найбільш повну інформацію про стан повітряних ліній електропередач, тобто визначати μr, σ, і a циліндричних дротів, а також корельованих з ними механічним навантаженням, температурою, величиною струму, що протікає в лінії та визначення питомих електричних втрат при діагностиці стану повітряних ліній електропередач, що підтверджується актом впровадження від 18.12.2015р (договір № 377551 від 27.07.2015р між НТУ «ХПІ» та ПАТ «Укргідропроект» м. Харків).
The dissertation presents the scientific and technical results of the study of the electromagnetic multi-parameter transducer for the cylindrical metal products parameters determining, which principle is based on the allocation of the amplitude and phase of the spatial harmonics of a nonuniform magnetic field presented in the form of a Fourier series. The object of the study is in the full extent described in the scientific literature. It is shown that further increase of information parameters controlled by one transducer can be carried out in several ways. For example, the use of different frequency to power the transducers, signal filtering and separation of amplitude and phase at each frequency. Such implementation of multiparameter sensors is quite complicated and does not always give the true picture of the processes taking place in the controlled object due to the different depth of field penetration (skin effect). It has been shown that the application of the study results provides an opportunity to obtain more information about the studied object that could not be obtained by using traditional methods. Therefore, the application of the developed method is promising. The physic-mathematical model of an electromagnetic transducer with non-uniform distribution of an electromagnetic field for a conductor with a current located along the lateral surface of a cylindrical product at a distance d from the center of a metallic cylinder of radius a. The spatial problem of the distribution of a magnetic field variable in time is solved and expressions allowing calculating the functions for any spatial harmonic are obtained and it is possible to make a picture of the distribution of the field in any area (inside the product, between the product and conductor with current, as well as beyond this conductor). Mathematical expressions are obtained to determine the intensity of the magnetic field for r-th and φ-th components, generated by the current of one conductor (or pole with finite angular dimensions). The thickness of the pole with a total current is taken into account, which leads to the replacement of r quantity in the formulas for field strength by effective radius. Mathematical expressions are obtained to determine amplitude and phase of transducer’s signal n-th spatial harmonics, which are generated in the measuring windings located along the surface of the cylindrical object with the angular coordinate φ on a circle of radius d. Experiments have been carried out to confirm the adequacy of the transducer’ proposed model, which showed the difference between the calculated and experimentally obtained values of the EMF of the transducer’ output signal. For instance, for measuring windings with angular coordinates φ = 0° і φ = 180° difference of voltage values is less than 5% and for measuring windings with angular coordinates φ = 30°, 60°, 300° і 330° difference is less than 10%. Methods and algorithms of allocating the necessary spatial harmonics and eliminating harmonics with high numbers are offered also. The latter allows us to reduce the influence of the higher spatial harmonics down to 1%. To exclude from the spatial distribution of the field odd or even harmonics it is suggested to use a system of conductors with the same and opposite directions of currents in them. The universal transformation functions for the amplitude and phase of the n-th harmonic component for the transducer are obtained. Method is developed for simultaneous testing electrical (σ), magnet (μr) and geometrical (а) parameters of cylindrical objects, by the use of transducer with on magnetizing pole considering 1-st and 2-nd spatial harmonics, which allows unambiguously solve the task of multi-parameter testing for a wide variety of products, various designs and modes of operation of transducers. The method based on the electromagnetic transducer with two magnetized poles and a different direction of current is developed. The universal functions of conversion with use of 1-st and 3-rd spatial harmonics are obtained, also the algorithm of realization of cylindrical wares’ parameters multi-parameter control is offered. The sensitivity of the method is determined and rational modes of transducer operation are found. The calculation is performed and the effect of the higher harmonics of the field on the output signals of the transducer is shown. For example, for a transducer with one excitation wire, the rejection of the 3-rd harmonic will result in an error of the resulting EMF calculation equal to 5%, and for a transducer with two excitatory wires, when the 5-th harmonic is rejected, it is 1.5%. A layout of a laboratory unit with an electromagnetic transducer with a spatial-periodic field structure was developed and experimental studies were carried out to determine μr σ, and а with simulation samples of different sorts to confirm the adequacy of the developed method. The construction of an electromagnetic transducer with two excitation poles and a different direction of the magnetizing current with the use of the amplitude of the 1-st and 3-rd spatial harmonics and the 1-st harmonic phase is presented. As soon as direct estimation of error of testing μr, σ and а for the developed multi-parameter transducer is quite complicated, in the work the measurements of these parameters were carried out by control methods. So, to estimate а of the studied sample micrometer with a diameter measuring range (50 ± 0,01) mm was used, to estimate σ of a cylindrical sample, a contact electric method was used based on the potentiometer of direct current Р363-3 (R363-3), having accuracy class of 0,005, to estimate μr the method of an ammeter – voltmeter for a ring sample was used. It is shown that implementation of the developed transducer allows to receive the most complete information about the condition of electric power lines, that is to define μr, σ, and a of cylindrical wires, as well as the mechanical load, temperature, magnitude of the current flowing in the line correlated with them and the determination of specific electrical losses during the diagnosis of the state of electric power lines, as evidenced by the implementation act dated 18.12.2015 (agreement № 377551 dated 27.07.2015 between NTU “KhPI” and PJSC “Ukrhydroproekt” city of Kharkiv).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Шібан, Тамер. "Електромагнітний багатопараметровий перетворювач з просторово-періодичним полем для контролю циліндричних виробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41997.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) зі спеціальності 05.11.13 – прилади і методи контролю та визначення складу речовин. Національний технічний університет "Харківський політехнічний інститут", Харків, 2019. В роботі розроблена фізико-математична модель електромагнітного перетворювача з неоднорідним розподілом електромагнітного поля провідника зі струмом, розташованого уздовж бічної поверхні циліндричного виробу на деякій відстані d від центра металевого циліндра радіуса a. Отримано математичні вирази для визначення напруженості магнітного поля для r-ї і φ-ї складової, створюваного струмом одного провідника або полюса. Проведено облік товщини стрічки полюса, який призводить до заміни в формулах для напруженості поля значення r на деякий ефективний радіус. Отримано математичні вирази для амплітуди і фази n-ї просторової гармоніки сигналу перетворювача, що наводиться в вимірювальних обмотках, розташованих уздовж поверхні циліндричного об'єкту контролю з кутовою координатою φ по колу радіуса d. Для підтвердження адекватності запропонованої моделі перетворювача проведені експерименти, які показали хороший збіг між розрахунковими і експериментальними значеннями ЕРС сигналу перетворювача. Так, наприклад, для вимірювальних обмоток, з кутовими координатами φ = 0° і φ = 180° розбіжність значень напруг склала не більше 5%, а для обмоток з розташуванням по φ = 30°, 60°, 300° і 330° розбіжність склала не більше 10%. Розроблено метод на основі електромагнітного перетворювача з двома полюсами і різним напрямком струму. Отримано універсальні функції перетворення з використанням 1-ї і 3-ї просторових гармонік, а також запропонований алгоритм реалізації багатопараметрового контролю параметрів циліндричних виробів.
Dissertation for the degree of candidate of technical sciences (doctor of philosophy) in specialty 05.11.13 – instruments and methods of substance composition control and determination. National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The physic-mathematical model of an electromagnetic transducer with non-uniform distribution of an electromagnetic field for a conductor with a current located along the lateral surface of a cylindrical product at a distance d from the center of a metallic cylinder of radius a. Mathematical expressions are obtained to determine the intensity of the magnetic field for r-th and φ-th components, generated by the current of one conductor (or pole with finite angular dimensions). The thickness of the pole with a total current is taken into account, which leads to the replacement of r quantity in the formulas for field strength by effective radius. Mathematical expressions are obtained to determine amplitude and phase of transducer’s signal n-th spatial harmonics, which are generated in the measuring windings located along the surface of the cylindrical object with the angular coordinate φ on a circle of radius d. Experiments have been carried out to confirm the adequacy of the transducer’ proposed model, which showed the difference between the calculated and experimentally obtained values of the EMF of the transducer’ output signal. For instance, for measuring windings with angular coordinates φ = 0° і φ = 180° difference of voltage values is less than 5% and for measuring windings with angular coordinates φ = 30°, 60°, 300° і 330° difference is less than 10%. The method based on the electromagnetic transducer with two magnetized poles and a different direction of current is developed. The universal functions of conversion with use of 1-st and 3-rd spatial harmonics are obtained, also the algorithm of realization of cylindrical wares’ parameters multi-parameter control is offered.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Пінчук, А. С. "Електропровідність композиційних плівкових функціональних матеріалів на основі Fe і SiO". Master's thesis, Сумський державний університет, 2021. https://essuir.sumdu.edu.ua/handle/123456789/85593.

Повний текст джерела
Анотація:
Мета роботи полягає у експериментальному дослідженні електропровідності шаруватих структур на основі Fe та SiО та встановленні взаємозв’язку структурно фазового стану та електрофізичних властивостей магніто-неоднорідних плівок. Для реалізації поставлених завдань використовувалися такі методи: почергова вакуумна конденсація компонент методом електронно-променевого випаровування; електронна мікроскопія та електронографія; методи теоретичного аналізу і узагальнення результатів. Показано, що для свіжо сконденсованих та відпалених при температурах 400, 500, 600, 700 К шаруватих структур [Fe/SiO]5із ефективними товщина ми dFe < 5 нм та dSiO = 5-6 нм реалізується тунельний режим провідності в температурному інтервалі 290–700 К. Приз більшенні ефективної товщини шарівFe до 5нм величина ТКО (залишаючись від’ємною) зменшується за абсолютною величиною, наближаючись до нуля. При ефективній товщині шарівFe понад 6 нм незалежно від товщини діелектричних шарів спостерігається лише характерний для металів хід кривої (Т) з додатним значенням ТКО. Після відпалювання за температури 800 К від’ємний знак ТКО зберігається лише для плівок з ефективною товщиною шарів Fe до 3 нм.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії