Добірка наукової літератури з теми "Оптико-електронна система"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Оптико-електронна система".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Оптико-електронна система"

1

Купченко, Л. Ф., Г. В. Худов, А. П. Гурін та А. С. Риб’як. "Активна оптико-електронна система виявлення затінених об’єктів, яка використовує принципи спектральної узгодженої динамічної обробки зображень". Наука і техніка Повітряних Сил Збройних Сил України, № 4(45) (25 листопада 2021): 49–57. http://dx.doi.org/10.30748/nitps.2021.45.06.

Повний текст джерела
Анотація:
В статті розглядаються принципи побудови бортової авіаційної системи виявлення затінених об’єктів на основі активної оптико-електронної системи з динамічною узгодженою спектральною обробкою оптичного випромінювання, у якій джерелом випромінювання є набір багатоспектральних лазерних випромінювачів. На підставі апріорних даних щодо спектральних характеристик об’єкту та фону розраховується управляючий сигнал для зміни яскравості випромінювання системи лазерних випромінювачів, таким чином, щоб зменшити величину спектральних складових сигналу відбитого від поверхні, що належить фону, з мінімальним ослабленням інтенсивності сигналу, відбитого від об’єкту. Розроблена математична модель, яка дозволяє оцінити ефективність активної оптико-електронної системи за величиною контрасту затінених об’єктів.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zlepko, S. M., A. Yu Klapouschak, Ya G. Skoryukova, V. S. Pavlov, Yu O. Bezsmertnyi, and O. S. Bezkrevnyi. "Optical-electronic system for evaluation of peripheral circulation of the lower extremities of the person." Optoelectronic Information-Power Technologies 37, no. 1 (November 2019): 77–83. http://dx.doi.org/10.31649/1681-7893-2019-37-1-77-83.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

БАРИЛО, Г. І., А. М. ЗАЗУЛЯК, О. Т. КОЖУХАР та Н. І. КУС. "ІНФОРМАЦІЙНА ОПТИКО-ЕЛЕКТРОННА СИСТЕМА ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕННЯ ЩОДО ЕФЕКТИВНОСТІ ЛІКУВАЛЬНОЇ ПРОЦЕДУРИ". Bulletin of the National Technical University "KhPI" A series of "Information and Modeling", № 38 (6 липня 2012). http://dx.doi.org/10.20998/2411-0558.2012.38.02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Оптико-електронна система"

1

Хуторовий, Іван Тарасович. "Оптико-електронна система контролю сонячних батарей". Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2021. https://ela.kpi.ua/handle/123456789/41930.

Повний текст джерела
Анотація:
Метою даної роботи являється неруйнівний метод контролю сонячних батарей при їх експлуатації. Все більше й більше набувають актуальності екологічні методи здобування електроенергії в нашому світі, такі як вітряки, сонячні батареї, тощо. Звичайно в нашому світі ніщо не вічне і абсолютно все може вийти з ладу і не просто перестати працювати, а і завдати серйозних збитків. Тому абсолютно всім потрібен періодичний контроль для забезпечення надійної і продуктивної роботи. Нашим об’єктом дослідження, як уже було наголошено раніше, буде сонячна електростанція. Актуальність даної роботи полягає в тому, що сонячні батареї, хоч і беруть енергію з сонця, але вони не дешеві і повертають свою вартість через роки, а якщо такий пристрій не просто вийде з ладу, а ще й нанесе збитки, то наслідки можуть бути не дуже приємні. Саме тому потрібен контроль.
The purpose of this work is a non-destructive method of controlling solar panels during their operation. Ecological methods of obtaining electricity in our world, such as windmills, solar panels, etc., are becoming more and more relevant. Of course, nothing in our world is eternal and absolutely everything can fail and not just stop working, but also cause serious damage. Therefore, absolutely everyone needs periodic monitoring to ensure reliable and productive work. Our object of study, as noted earlier, will be a solar power plant. The relevance of this work is that solar panels, although they take energy from the sun, but they are not cheap and return their value over the years, and if such a device not only fails, but also causes damage, the consequences may not be very nice. That is why control is needed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Тимко, Олександр Олександрович. "Оптико-електронна вимірювальна система класу шорсткості поверхні оптичних об’єктів". Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/34787.

Повний текст джерела
Анотація:
Дипломний проект на тему «Оптико-електронна вимірювальна система класу шорсткості поверхні оптичних об’єктів» складається з пояснювальної записка обсягом 64 сторінки, 14 рисунків, 8 таблиць, 17 джерел літератури. За технічним завдання до дипломного проекту було спроектувати оптико- електронну вимірювальну систему, щоб користувач міг автоматично з застосуванням програмного забезпечення та вимірювальної системи визначати клас шорсткості поверхні. У дипломі було проведено аналітичне дослідження методів визначення класу шорсткості. А саме, растровий метод, метод світлового та тіньового світіння, мікроінтерференційний метод та логарифмічний метод. Хочемо зазначити, що більшість методів визначення шорсткості об’єкту базується на методах оптичної мікроскопії. Тому для побудови вимірювальної системи визначення класу шорсткості поверхні ми обрали за основу оптичний метод. У роботі проведено аналітичний огляд приладів та систем аналогів для визначення шорсткості поверхні. А саме, ми розглянули пристрій для вимірювання оптичний прозорих об’єктів, пристрій для визначення шорсткості, станцію для контролю шорсткості і контуру поверхні Homm el Tester T8000 та вимірювач шорсткості поверхні MicroProf 200. Ми розглянули переваги та недоліки кожної з систем або приладів аналогів та визначились, що оберемо за основу для проектування власної вимірювальної системи. Проектування власної системи ми розпочали з побудови структурної схеми вимірювальної системи та визначення складових вузлів. Було вибрано та обґрунтовано наступні вузли: камери з ПЗЗ матрицею, оптична система або пристрій, світлові фільтри, джерело живлення, джерело освітлення, програма для захоплення відеозображення. На основі цих вузлів спроектовано лабораторний стенд оптико-електронної вимірювальної системи класу шорсткості поверхні. Перед початком вимірювання, нами виконано експериментальні дослідження характеристик вимірювального стенду (оптико- електронної системи), а саме, дослідження світлосигнальної характеристики та спектральної характеристики. У дипломному проекті проведено аналіз вимог для точності вимірювання оптико-електронною вимірювальною системою. Виконано розрахунок енергетичної освітленості поверхні об’єкту дослідження, тобто поверхні для якої визначаємо клас шорсткості. Експериментальним шляхом досліджено освітленість поверхні об’єкту вимірювання у два різні способи (з застосуванням фотометру та з застосування м люксметру). Фотометр ми спроектували та зібрали власноруч, а от люксметр ми обрали для вимірювання готовим до вимірювання. Після чого отримані експериментальним шляхом результати освітленості поверхні об’єкту дослідження ми порівняли. У дипломній роботі бакалавра ми виконали підбір та обґрунтування об’єктів, що будемо використовувати у якості тестових. Ми зазначили, що для забезпечення правильної роботи та підтвердження цього факту ми обрали еталонний тест -об’єкт мікрометричного розміру, а саме штрихову міру за ГОСТ. На спроектованому лабораторному варіанті оптико-електронної вимірювальної системи ми провели ряд досліджень з зразком (скло з шорохуватою поверхнею). Ми прописали методику дослідження та визначення класу шорсткості поверхі, що проробили експериментальним шляхом та навели результати цих досліджень у дипломні й роботі. До дипломного проекту було виконано пакет креслень згідно до технічного завдання дипломного проекту бакалавра.
Thesis project on "Optical-electronic measuring system of the surface roughness class of optical objects" consists of an explanatory note of 64 pages, 14 figures, 8 tables, 17 references. The technical task for the diploma project was to design an opto-electronic measuring system so that the user could automatically determine the class of surface roughness using software and measuring system. In the diploma the analytical research of methods of definition of a class of roughness was carried out. Namely, the raster method, the method of light and shadow glow, the microinterference method and the logarithmic method. It should be noted that most methods for determining the roughness of an object are based on optical microscopy. Therefore, to build a measuring system for determining the class of surface roughness, we chose the optical method as a basis. The analytical review of devices and systems of analogues for determination of surface roughness is carried out in the work. Namely, we considered a device for measuring optically transparent objects, a device for determining roughness, a station for monitoring the roughness and contour of the surface Homm el Tester T8000 and a surface roughness meter MicroProf 200. We considered the advantages and disadvantages of each system or device analogues and determined , which we choose as a basis for designing our own measuring system. We started designing our own system by building a block diagram of the measuring system and determining the components. The following components were selected and substantiated: CCD array cameras, optical system or device, light filters, power supply, lighting source, video capture program. On the basis of these units the laboratory stand of the optoelectronic measuring system of a class of roughness of a surface is designed. Before the start of the measurement, we performed experimental studies of the characteristics of the measuring stand (optoelectronic system), namely, the study of light signal characteristics and spectral characteristics. In the diploma project the analysis of requirements for accuracy of measurement by optoelectronic measuring system is carried out. The calculation of the energy illuminance of the surface of the object of study, ie the surface for which we determine the roughness class. The illuminance of the surface of the object of measurement was experimentally studied in two different ways (using a photometer and using a luxmeter). We designed and assembled the photometer ourselves, but we chose the luxmeter ready for measurement. Then we compared the experimental results of the illumination of the surface of the object of study. In the bachelor’s thesis, we selected and substantiated the objects that we will use as tests. We noted that to ensure proper operation and confirmation of this fact, we have chosen a reference test object of micrometric size, namely the dashed measure according to GOST. On the designed laboratory version of the optoelectronic measuring system, we conducted a series of studies with a sample (glass with a rough surface). We prescribed the method of research and determination of the class of floor roughness, which was done experimentally and presented the results of these studies in the thesis and work. A package of drawings was made for the diploma project in accordance with the technical task of the bachelor’s diploma project.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Драч, Юрій Олександрович. "Підвищення точності вимірювання геометричних розмірів мікрометричного діапазону шляхом вдосконалення вузла освітлення оптико-електронної системи". Master's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/38419.

Повний текст джерела
Анотація:
В даній магістерській дисертаційній роботі проведено аналітичне дослідження будови оптико-електронної вимірювальної системи, її складових вузлів та особливостей налаштування. З самої теми дисертації «Підвищення точності вимірювання геометричних розмірів мікрометричного діапазону шляхом вдосконалення вузла освітлення оптико-електронної системи» видно, що шляхом підвищення точності вимірювання геометричних розмірів у мікрометричному діапазону є вдосконалення джерела освітлення. Ми визначили основні відомі методи визначення світло-технічних характеристик джерел освітлення у другому розділі дисертації. В розділі нами проаналізовано методи «інтегруючої сфери» та «гоніофотометричний» для визначення світлового потоку освітлювальних систем з різним типом світлового розподілу. Звісно, ми розглядали методи світового досвіду визначення цих характеристик та вітчизняного досвіду, адже ми планували проведення експериментальних досліджень власного джерела випромінювання, що відповідало б світовому рівню. У третьому розділі ми навели приклади трьох джерел освітлення з зазначенням світлотехнічних характеристик. Ми зазначили спектральні характеристики для кожного джерела освітлення. У четвертому розділі ми навели матеріали, щодо побудови нами оптико- електронної вимірювальної системи. Свою вимірювальну систему для визначення геометричних розмірів мікрометричного діапазону, ми спроектували на базі оптичного мікроскопу, телевізійної камери, що закріплювалась до тіла оптичного мікроскопу з застосуванням перехідників (тубусів). Отримане, CCD матрицею телевізійної камери, випромінювання від об’єкту дослідження геометричних розмірів, надходило до персонального комп’ютеру з необхідним програмним забезпеченням, що дозволило нам за випромінюванням визначати розміри об’єкту або дефекту об’єкту. Хочемо зазначити, що програмне забезпечення ми в магістерській дисертації не розробляли, а користувались готовим програмним продуктом. Адже такого завдання перед нами не стояло. Більшість наших зусиль було спрямовано на дослідження джерела освітлення. Проте, хочемо зазначити, що після отриманих результатів щодо дослідження світло-технічних характеристик нового джерела освітлення, ми провели ряд вимірювань геометричних розмірів у мікрометричному діапазоні. Щоб порівняти точність вимірювання мікрометричних геометричних розмірів. Для цього ми проводили вимірювання на еталонному зразку лінійних геометричних розмірів ГОСТ 15114-78 Даний комплект мір використовують встановлення роздільної здатності телескопічних систем, кутові геометричні розміри ми не вимірювали. Хочемо зазначити, що ми обрали у якості нового джерела освітлення світлодіодну лампу та порівнювали отримані результати світлотехнічних характеристик з джерелом, що є стандартним (базовим) для моделі оптичного мікроскопу. Отже нами проведено ряд експериментальних досліджень світлотехнічних характеристик найпопулярнішого джерела освітлення - світлодіодної ламп. Аналіз результатів дослідження показав, що перед тим як застосовувати лампу масового виробництва виготовлену за будь-якою технологією у вимірювальній системі (оптико-електронна система) необхідно після спеціалізованого дослідження у центрах випробувань і діагностики надпровідникових джерел світла та освітлювальних систем. Адже зазначені світлотехнічні характеристики від виробників не відповідають тим, що визначено дослідним шляхом.
In this master's dissertation an analytical study of the structure of the optoelectronic measuring system, its components and features of the setting. From the topic of the dissertation "Improving the accuracy of measuring the geometric dimensions of the micrometric range by improving the lighting unit of the optoelectronic system" it is clear that by improving the accuracy of measuring geometric dimensions in the micrometric range is improving the light source. We have identified the main known methods for determining the lighting characteristics of light sources in the second section of the dissertation. In this section we analyze the methods of "integrating sphere" and "goniophometric" to determine the luminous flux of lighting systems with different types of light distribution. Of course, we considered the methods of world experience in determining these characteristics and domestic experience, because we planned to conduct experimental studies of our own radiation source, which would correspond to the world level. In the third section, we gave examples of three light sources with lighting characteristics. We noted the spectral characteristics for each light source. In the fourth section, we presented materials on the construction of our optoelectronic measuring system. We designed our measuring system to determine the geometric dimensions of the micrometric range on the basis of an optical microscope, a television camera, which was attached to the body of the optical microscope using adapters (tubes). The radiation received from the geometric dimensions object by the CCD matrix of the television camera was sent to a personal computer with the necessary software, which allowed us to determine the dimensions of the object or the defect of the object by the radiation. We would like to note that we did not develop the software in the master's dissertation, but used the finished software product. After all, we did not face such a task. Most of our efforts have been focused on researching the light source. However, we would like to note that after the results obtained on the study of lighting characteristics of the new light source, we conducted a series of measurements of geometric dimensions in the micrometric range. To compare the accuracy of measuring micrometric geometric dimensions. To do this, we performed measurements on a reference sample of linear geometric dimensions GOST 15114-78 This set of measures uses the establishment of the resolution of telescopic systems, we did not measure the angular geometric dimensions. We would like to note that we chose an LED lamp as a new light source and compared the obtained results of lighting characteristics with a source that is standard (basic) for the optical microscope model. Therefore, we conducted a number of experimental studies of the lighting characteristics of the most popular light source - LED lamps. Analysis of the results of the study showed that before using a mass-produced lamp made by any technology in a measuring system (optoelectronic system) it is necessary after a specialized study in the centers of testing and diagnostics of superconducting light sources and lighting systems. After all, these lighting characteristics from the manufacturers do not correspond to those determined experimentally. Although the characteristics of the LED lamp were not significantly different from the halogen lamp. The impact on the measurement accuracy of the optoelectronic measuring system of these light sources, we determined using a bar measure of absolute contrast and concluded that the efficiency of LED lighting is four times higher than halogen lighting when building a measuring system as described in dissertation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Микитенко, Володимир Іванович. "Підвищення ефективності функціонування оптико-електронних систем спостереження з комплексуванням зображень". Thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/31476.

Повний текст джерела
Анотація:
Дисертаційну роботу присвячено вирішенню важливої наукової проблеми підвищення ефективності функціонування багатоканальних оптико-електронних систем спостереження з комплексуванням зображень шляхом створення методів узгодження характеристик основних блоків, механізму оцінювання ефективності функціонування систем і адаптивного вибору найкращого методу злиття зображень спектральних каналів, засобів експериментального визначення основних характеристик систем, що дозволяє покращити якість виконання поточної задачі спостереження оператором, підвищити максимальну дальність виявлення об’єктів в двоканальних системах до 12%, забезпечує збільшення динамічного діапазону вимірювання енергетичних характеристик до 2,5 разів.
The dissertation is devoted to solving the scientific problem of increasing performance of optoelectronic surveillance systems (OESS) with image fusion by creating scientific bases and applied methods of analysis, synthesis and adjustment of information channels on a uniform methodological basis. The methodological bases for improving the OESS power consumption with image fusion are scientifically substantiated. They include the methods of constructive harmonization of the OESS’s main units characteristics, the mechanism of the adaptive selection of the best method of spectral images merging, the means of experimental determination of the OESS main characteristics and allow increase performance of the system. By information fusion from different channels, one can dramatically improve the quality of background status (BS) information. There is still no unified OESS design technology to analyze and synthesize the entire information system, to formulate technical requirements for individual blocks of spectral channels and algorithms for image fusion, taking into account the context of the observer's current task and type of BS. A number of problems remain to be solved with regard to improve the OESS performance by forming the image in operator’s field of view, which content provides best solution to the current surveillance task. An «object - OESS with image fusion – operator» mathematical model has been created. It allows analyze and design the OESS within a linear model. The formula for mod-ulation transfer function of the “lens - detector” system of the aerospace OESS was obtained at arbitrary angles of view. It can be used to calculate the values of the lens pupil diameter, focal length of the lens and threshold irradiance of detector, which is required to achieve the given image contrast. Unified algorithm for estimation of spatial and energy properties of OESS spectral channels based on the targeting task performance (TTP) metric is offered. It allows to determine the main information channel in the OESS as the base for further fusion, as well as to coordinate the parameters of the input blocks of two-chan-nel OESS. The method of performance estimation of OESS with information fusion on the basis of a posteriori TTP metric is developed. The metric is determined numerically for the method of merging images on the resulting spatial spectrum of images. This method allows to investigate the features of the image fusion process and its visual perception by the operator. It allows you to calculate the probability of detection, recognition and identification of an object, which is observed by the OESS with image fusion. A new method of reconciling the basic parameters of monoblock collimator and telescopic sights for small arms is proposed. Two variants of monoblock collimator sights with improved aiming accuracy are offered. The sight of two optical parts with different refractive index, glued on the plane, provides a linear aperture of the original pupil of the sight 0.276, with parallax 3 mrad. A monoblock collimator sight of two optical parts with different refractive index, glued on a spherical surface, at the same linear aperture of the original pupil and mass provides parallax of 1.25 mrad. A scheme of a decentralized tele-scopic monoblock is proposed, in which at a mismatch of 3 mrad the magnification can reach 1.6 times compared to 1.4 times for an axisymmetric scheme. A new method for measuring OESS spectral channels basic energy characteristics has been developed. This method, compared to its analogues, increases the dynamic range up to 2.5 times with a high uniformity of the brightness field. For the first time, the efficiency of the image fusion strategy, which allows to increase the maximum detection range of objects in dual-channel OESS by up to 12%, was developed and experimentally validated. New methods of increasing the speed of information processing in multichannel OESS with image fusion are proposed. The first method uses the information map based on the low spatial resolution channel and the second method uses a digital coherent optical processor. The amount of computation in the first case can be reduced up to 2 times.
Диссертационная работа посвящена решению важной научной проблемы повышения эффективности функционирования многоканальных оптико-электронных систем наблюдения с комплексированием изображений путем создания методов согласования характеристик основных блоков, механизма оценки эффективности функционирования систем и адаптивного выбора наилучшего метода слияния изображений спектральных каналов, средств экспериментального определения основных характеристик систем, что позволяет улучшить качество выполнения текущей задачи наблюдения оператором, повысить максимальную дальность обнаружения объектов в двухканальных системах до 12%, обеспечивает увеличение динамического диапазона измерения энергетических характеристик до 2,5 раз.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Тевяшев, А. Д., М. В. Неофітний, В. В. Семенець, А. В. Колядін та И. С. Шостко. "Лазерна оптико-електронна система високоточного супроводу повітряних об'єктів". Thesis, 2019. http://openarchive.nure.ua/handle/document/10166.

Повний текст джерела
Анотація:
З масовим розповсюдженням безпілотних літальних апаратів (БПЛ), дронів та малої цивільної авіації гостро стає проблема їх виявлення, супроводу, обчислення їх траєкторії та захисту повітряного простору від небажаних об'єктів.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Тевяшев, А. Д., И. С. Шостко, В. В. Семенець, А. В. Колядін та М. В. Неофітний. "Оптико-електронна система зовнішніх траєкторних вимірювань літальних апаратів". Thesis, 2019. http://openarchive.nure.ua/handle/document/10167.

Повний текст джерела
Анотація:
Підвищення ефективності використання сучасних засобів озброєння призводить до необхідності розширення динамічних і функціональних характеристик літальних апаратів (ЛА), крилатих і зенітних керованих ракет, зразків артилерійської техніки.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Турчанінов, Д. Ю. "Розробка структури стенду захисту лазерного випромінювання від оптико-електронної розвідки". Thesis, 2013. http://eir.nuos.edu.ua/xmlui/handle/123456789/1191.

Повний текст джерела
Анотація:
Турчанінов, Д. Ю. Розробка структури стенду захисту лазерного випромінювання від оптико-електронної розвідки / Д. Ю. Турчанінов // Матеріали ІІI Всеукр. наук.-техн. конф. з міжнар. участю "Сучасні проблеми інформаційної безпеки на транспорті". – Миколаїв : НУК, 2013.
Метою даної роботи є визначення впливових факторів для ефективного захисту лазерного випромінювання від сучасних засобів оптико-електронної розвідки.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії