Добірка наукової літератури з теми "Міцність контактна"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Міцність контактна".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Міцність контактна"

1

Плешкунов, С. А. "Структурно-енергетична модель прискореної оцінки показників контактної утомної міцності матеріалів". Системи озброєння і військова техніка, № 4 (68) (24 грудня 2021): 113–22. http://dx.doi.org/10.30748/soivt.2021.68.15.

Повний текст джерела
Анотація:
У статті представлені результати моделювання роботи поверхневого шару зразків зі сталі 20Х3МВФ, зміцнених традиційним цементуванням та новим іонно-плазмовим азотуванням по технології АВІНІТ N (АТ “ФЕД”, м. Харків, Україна). Розроблено модель поведінки цих трибоспряжень при прискорених експериментальних випробуваннях на контактну втомну міцність, проведених автором. Аналіз структурно-енергетичного балансу енергії поверхневого шару в умовах контактної взаємодії дозволив сформулювати критерії утомної міцності матеріалів: питома енергія руйнування за один цикл навантаження.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shapovalov, Oleg, Denis Kolesnik та Oleg Pilipenko. "НАВАНТАЖЕНІСТЬ ЗУБЧАСТИХ ПЕРЕДАЧ ВЕРТОЛЬОТНИХ РЕДУКТОРІВ ТА ЇХ НАПРУЖЕНО-ДЕФОРМОВАНИЙ СТАН". TECHNICAL SCIENCES AND TECHNOLOG IES, № 4 (14) (2018): 41–54. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-41-54.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Для обґрунтованого збільшення ресурсу вертольотних редукторів необхідно мати наявні дані по навантаженості їх зубчастих передач на основних режимах польоту, результати стендових випробувань, розрахунків на міцність, витривалість, напружено-деформівного стану і т. ін. Отримані результати будуть використані в перевірочних розрахунках, випробуваннях відповідних деталей редукторів за різними критеріями при підготовці висновків про доцільність продовження ресурсів трансмісій вертольотів Ми-8 та їх модифікацій. Постановка проблеми. Виявлення можливості збільшення ресурсів зубчастих передач головного, проміжного і хвостового редукторів вертольотів Ми-8 та їх модифікацій. Аналіз останніх досліджень і публікацій. У раніше проведених дослідженнях дана оцінка навантаженості та напружено-деформованого стану зубчастих передач в основному для однопарного зачеплення зубчастих коліс. Виділення недосліджених частин загальної проблеми. Специфіка роботи зубчастих передач вертольотних редукторів полягає в урахуванні реальної багатопарності зачеплення, характерної для авіаційних передач. Мета статті. Розглянути наявні дані по статичних та динамічних навантаженнях у зоні багатопарного зачеплення. Виклад основного матеріалу. Розглянуті навантаженість високошвидкісних зубчастих передач редукторів на злітному і крейсерському режимах експлуатації, статичний розподіл навантаження між зубцями в зоні багатопарного зачеплення, динамічні навантаження в зачепленні зубчастих коліс. Висновки відповідно до статті. Найбільш небезпечним для роботи зубчастого вінця є крайковий контакт на вході в зачеплення і виході з нього, де мають місце максимальні контактні напруження.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Джус, Р. М., М. Г. Стадніченко, В. М. Стадниченко та С. А. Плешкунов. "Мікроструктурні та фазові особливості поверхневого шару, зміцненого іонно-плазмовим азотуванням, як фактор підвищення втомної міцності". Збірник наукових праць Харківського національного університету Повітряних Сил, № 1(63), (7 квітня 2020): 89–95. http://dx.doi.org/10.30748/zhups.2020.63.12.

Повний текст джерела
Анотація:
У статті представлені результати дослідження мікроструктурних та фазових особливостей поверхневого шару зразків зі сталі 20Х3МВФ, зміцнених традиційним цементуванням та новим іонно-плазмовим азотуванням по технології АВІНІТ N (АТ “ФЕД”, м. Харків, Україна). Комплексні мікроструктурні та фазові дослідження особливостей поверхневого шару пар зразків було виконано фахівцями і на обладнанні АТ “Мотор Січ” (м. Запоріжжя, Україна) після довготривалих випробувань на контактну втомну міцність, проведених авторами. В ході цих випробувань було виявлену значну перевагу зміцнення іонно-плазмовим азотуванням перед традиційним цементуванням.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Кушта, А. О., С. М. Шувалов та Г. І. Криничних. "ЯЗИКОВО-ПІДНЕБІННИЙ РЕФЛЕКС ЯК СУТТЄВИЙ ФАКТОР УСПІШНОГО КОВТАННЯ В ЛЮДИНИ". Scientific and practical journal "Stomatological Bulletin" 115, № 2 (22 вересня 2021): 26–30. http://dx.doi.org/10.35220/2078-8916-2021-40-2.6.

Повний текст джерела
Анотація:
Акт ковтання – це швидка, складна нервово-м’язова дія, яка включає в себе кілька стадій. Процес ков- тання був класифікований на ротову, фарингеальну та стравохідну стадію залежно від розміщення болюсу. Ротова стадія є мимовільною і контрольова- ною корою головного мозку людини, тобто є можли- вість керування активністю жування або припинення його у разі виникнення проблем з неприємними фраг- ментами їжі (міцність, смак, стороннє тіло). Потім з’являється глоткова стадія ковтання, коли язик просувається до заду. Ця дія язика слугує для про- сування харчової грудки і створює підвищений тиск у верхній частині глотки. Таким чином, язик грає сут- тєву роль у ротовій і глотковій стадіях ковтання. Вивченню нейро-рефлекторних контактів язика і під- небіння присвячена невелика кількість робіт. Мета роботи – уточнити деякі ключові моменти пероральної початкової стадії ковтання в нормі та у пацієнтів з патологією передньої третини язика, надати можливе фізіологічне обґрунтування язиково- піднебінному контакту кінчика язика з піднебінними валиком як окремому необхідному рефлексу. Успішність акту ковтання залежить від можли- вості людини здійснити упор кінчика язика в різцевий валик слизової оболонки верхньої щелепи. Цей елемент початкового акту ковтання зазвичай не розгляда- ється і недооцінюється. Наукова новизна. Внаслідок клінічних спостережень була зроблена спроба представити цю нейро-рефлек- торну дугу у вигляді окремого рефлексу і його цикл прослідкований до ядер трійчастого нерву та кори головного мозку. Дугу цього рефлексу можна пред- ставити такою схемою: за різцями верхньої щелепи ділянка слизової оболонки інервується різцевим нервом від носопіднебінного нерва та носопіднебінного веге- тативного вузла, який пов’язаний з ІІ гілкою трійчас- того нерву. Кінчик язика інервується язичним нервом, який також з системи трійчастого. Висновки. Таким чином, нами було дано нейро-фізіоло- гічне обґрунтування необхідності контакту кінчика язика з піднебінними валиком слизової оболонки різцевого відділу верхньої щелепи як початкової фази акту ковтання, вкрай необхідної для успішності проведення наступної глот- кової фази. Цей новий нейро-рефлекторний зв’язок був названий «Різцево-язиковою рефлекторною дугою».
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Golovina, Ya O., R. V. Malyk, M. Yu Karpinsky та O. D. Karpinska. "Дослідження рентгенологічної кісткової щільності у пацієнтів з кістковими пухлинами у разі застосування сегментарних кісткових алоімплантатів". TRAUMA 23, № 1 (16 травня 2022): 43–50. http://dx.doi.org/10.22141/1608-1706.1.23.2022.881.

Повний текст джерела
Анотація:
Актуальність. Одними з ускладнень алопластики є порушення процесів консолідації кістки реципієнта та алоімплантата. На це ускладнення впливає низка факторів: якість алоімплантата, спосіб його стерилізації, методика фіксації у кістці реципієнта та алгоритм поліхіміотерапії після втручання. Мета: дослідити зміни щільності кісткової тканини у разі застосування сегментарної кісткової алопластики за різних умов у пацієнтів з пухлинами довгих кісток. Матеріали та методи. Проаналізовано рентгенограми 13 пацієнтів після алопластики дефектів довгих кісток з фіксацією пластинами або блокуючими інтрамедулярними стрижнями із застосуванням кісткових автотрансплантатів. Дослідження проводили: одразу після операції (І), через 1 міс. (ІІ) та через 1 рік (ІІІ). Досліджували оптичну щільність кортикального шару у 4 точках: 1 — кістка реципієнта на 10 см від зони остеотомії, 2 — кістка реципієнта на 2 см від зони остеотомії, 3 — зона контакту кісткового алоімплантата та кістки реципієнта, 4 — кортикальний шар алоімплантата. Результати. На І терміні виявлено, що у хворих з відсутністю зрощення оптична щільність зони контакту була значущо (р = 0,044) меншою, ніж у хворих з нормальною консолідацією. На ІІ та ІІІ термінах оптична щільність зони 3 у хворих із зрощенням залишалася практично незмінною, при незрощенні ця зона поступово набирає щільність від 99 ± 18 од. до 172 ± 7 од. Оптична щільність кортикального шару кістки у точці 1 у пацієнтів з відсутністю консолідації зони контакту зменшується з 171 ± 11 од. до 163 ± 14 од. (р = 0,042). У пацієнтів із нормальним зрощенням щільність у цій зоні залишається однаковою — у межах 200 од. Оптична щільність кісткової тканини алоімплантата у пацієнтів обох підгруп з часом зростає, але у пацієнтів із зрощенням цей процес відбувається більш стрімкими темпами. На І термін у пацієнтів, яким виконували фіксацію алоімплантата стрижнем, оптична щільність кортикального шару кістки у точці 1 (164 ± 15 од.) та у точці 4 (148 ± 23 од.) була меншою, ніж у тих, кому виконували фіксацію пластиною (250 ± 67 од. та 176 ± 17 од. відповідно). У хворих, яким застосовувалася фіксація алоімплантата пластиною, на ІІ та ІІІ термінах спостерігали зменшення щільності кортикального шару кістки у точці 1 до 202 ± 40 од. та збільшення оптичної щільності у точці 4 до 205 ± 59 од. Під час дослідження в точці 2 оптична щільність кісткової тканини при фіксації пластиною з часом збільшується з 184 ± 19 од. до 211 ± 48 од., у пацієнтів з фіксацією стрижнем оптична щільність у точці 2 за весь час спостереження залишається без змін. Оптична щільність у точці 3 після операції з фіксацією пластиною була меншою (98 ± 46 од.), ніж при фіксації стрижнем (121 ± 44 од.). Оптична щільність у точці 3 при фіксації пластиною через рік збільшилась удвічі, а при фіксації стрижнем збільшення було менш значним. Висновки. Відсутність консолідації алоімплантата та кістки реципієнта спостерігалася виключно при застосуванні методики фіксації пластинами. Знижену оптичну щільність у зоні контакту можна пояснити нещільним контактом між кісткою та алоімплантатом; хоча з часом зона контакту зміцнюється, міцність новоутвореного кісткового регенерату не забезпечує достатню стабільність у даній групі пацієнтів. При застосуванні інтрамедулярного блокуючого стрижня ознак порушення процесу консолідації не було відмічено, а кісткова тканина у цілому набувала більшої щільності.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Шимон, В. М., С. П. Алфелдій, В. В. Стойка, А. А. Шерегій та М. В. Шимон. "Фотоспектрометричне дослідження структури поверхневого шару матеріалів АСЗ-5 та FAR 5 після витримки in vivo". Науковий вісник Ужгородського університету. Серія Медицина 60, № 2 (31 грудня 2019): 37–42. http://dx.doi.org/10.24144/2415-8127.2019.60.37-42.

Повний текст джерела
Анотація:
Механізм скріплення кісткової тканини з матеріалом аналогічний механізму природного ремоделювання кістки. Після імплантації біоактивних матеріалів жива кістка формує міцний фізико-хімічний зв’язок з імплантатом, який повинен характеризуватися значною стабільністю проти хімічного і біологічного руйнування під дією рідкого середовища людського організму, оскільки призначений для постійного знаходження усередині людського тіла. Мета дослідження: на основі експериментальних і теоретичних досліджень електронної будови апатитів природного походження встановити механізм взаємодії АСЗ-3 та FAR 5 з органічним матриксом нативної кістки і зародкоутворення апатиту in vivo. Матеріали та методи. Хімічний склад поверхневих шарів та їх структуру визначали кількісним методом електроного зондового мікроаналізу на скануючому електроному мікроскопі РЭМ Tescan Mira 3LMU з використанням енергодисперсійного спектрометру Oxford X-max 80mm. Результати досліджень та їх обговорення. Результати дослідження поперечного перерізу склокристалічного матеріалу FAR 5, який було імплантовано в кісткову тканину, дозволили встановити таке: після 14 та 28 витримки in vivo в умовах статичних та динамічних навантажень імплантат щільно прилягає до кісткової тканини, що свідчить про цілісність формування зв’язку імплантат – кісткова тканина. Структура імплантату після динамічних навантажень не втрачає міцності: не містить тріщин і зломів та наявності дебрису. Це вказує на відповідність пружних та механічних властивостей до таких як у кісткової тканини. При поперечному перерізі зразку АСЗ-5, який імплантовано у кісткову тканину, через 14 діб in vivo cпостерігається його міцна фіксація у зоні контакту. Після 28 діб in vivo зразок АСЗ-5 характеризується незначними зламами поверхні, що свідчить про його крихкість. Це може обумовити складність вилучення імплантату при повторних операціях. Однак завдяки тому, що даний зразок характеризується здатністю до прискореного формування апатитоподібного шару впродовж одного місяця, процес мінералізації даного імплантату дозволить забезпечити його міцність впродовж експлуатації. Висновки. Встановлено, що природні апатити характеризуються наявністю великої кількості дефектів у їх структурі. Мінералізація нанодисперсних кристалів кістки у відсутності умов формування апатиту з перебігом тривалого часу супроводжується деградацією кісткового мінералу. Встановлені умови осадження кристалічних фаз АМФ та ОГА як прекурсорів для формування апатитового шару ГАП на поверхні імплантату in vivo, що є запорукою успішної адаптації імплантату в середовищі організму. Ключові слова: кісткова тканина, біоскло, природні апатити.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Рудик, Олександр Юхимович. "Методика використання ІКТ у курсі «Контроль якості покриттів»". Theory and methods of e-learning 3 (11 лютого 2014): 273–78. http://dx.doi.org/10.55056/e-learn.v3i1.349.

Повний текст джерела
Анотація:
Підвищення рівня надійності і збільшення ресурсу машин та інших об’єктів техніки можливо тільки за умови випуску продукції високої якості у всіх галузях машинобудування. Це вимагає безперервного вдосконалення технології виробництва і методів контролю якості покриттів. У даний час все більш широкого поширення набуває 100%-вий неруйнівний контроль покриттів на окремих етапах виробництва. Для забезпечення високої експлуатаційної надійності машин і механізмів велике значення має також періодичний контроль їх стану без демонтажу або з обмеженим розбиранням, який проводиться при обслуговуванні в експлуатації або при ремонті.Висока якість машин, приладів, устаткування – основа успішної експлуатації, отримання великого економічного ефекту, конкурентоспроможності на світовому ринку. Тому комплекс глибоких знань і певних навичок в області контролю якості покриттів є необхідною складовою частиною професійної підготовки фахівців з машинобудування.Існуючі методики викладання інженерних дисциплін, як правило, не відповідають змінам у розвитку суспільства. У зв’язку з невеликим обсягом годин, що приділяються на вивчення дисципліни, й сучасними високими вимогам до рівня підготовки фахівців такий курс необхідно ввести не традиційним способом, а з використанням інформаційних технологій. Для цього:– студенти повинні мати попередню комп’ютерну підготовку;– викладач повинен розробити відповідну технологію навчання.Відомо [1], що під технологією навчання мається на увазі системна категорія, орієнтована на дидактичне застосування наукового знання, наукові підходи до аналізу й організації навчального процесу з урахуванням емпіричних інновацій викладачів і спрямованості на досягнення високих результатів у розвитку особистості студентів.Суть пропонованої технології полягає у створенні модульного середовища навчання (МСН) «Контроль якості покриттів» і впровадженні його у процес навчання, що забезпечує систематизацію навчання й формалізацію інформації. Метою технології є індивідуалізація навчання, а визначеність МСН полягає в її алгоритмічній структурі. Тому зміст МСН розроблений у вигляді систематизуючої ієрархічної схеми, куди увійшли основні розділи робочої програми курсу. Структура МСН складається з наступних блоків:1. «Методичне забезпечення дисципліни», у якому пропонуються відповідні дії, що сприяють засвоєнню інформації на заданому рівні:– першоджерела;– робоча програма;– робочий план;– опис дисципліни;– загальні методичні вказівки;– методичні вказівки до вивчення лекційного матеріалу;– методичні вказівки до виконання самостійної роботи;– методичні вказівки до виконання лабораторних робіт;– методичні вказівки до виконання домашнього завдання №1;– методичні вказівки до виконання домашнього завдання №2;– зразок титульної сторінки домашнього завдання.2. «Лекції», у якому представлені html-файли відповідного лекційного матеріалу, контрольні питання й тести до кожної теми:– дефекти і фізико-хімічні властивості покриттів;– оцінка механічних властивостей покриттів; класифікація видів і методів неруйнівного контролю (НК); візуально-оптичний, радіохвильовий і тепловий види НК;– вихореструмовий і радіаційний види неруйнівного контролю покриттів;– магнітний та електричний види НК покриттів;– акустичний метод НК покриттів;– НК покриттів проникаючими речовинами;– технологічні випробування покриттів;– методи і засоби статистичного контролю якості; автоматизація контролю якості покриттів.Викладання лекцій проводиться у режимі комп’ютерної презентації.3. «Самостійне опрацювання теоретичного матеріалу» з тестами.Відомо, що викладач у процесі своєї роботи повинен не тільки передавати студентам певний об’єм інформації, але і прагнути сформувати у них потребу самостійно здобувати знання, застосовуючи різні засоби, зокрема комп’ютерні. Чим краще організована самостійна пізнавальна активність студентів, тим ефективніше і якісніше проходить навчання. Тому деякі матеріали, що відносяться до лекційних тем, пропонуються для самостійного вивчення. При цьому організований доступ студентів до розділів МСН без звернення за допомогою до викладача. При необхідності подальшого використання матеріалів МСН можна копіювати ресурси, компонувати, редагувати і згодом відтворювати їх.4. «Лабораторні роботи» з інструкціями з техніки безпеки при виконанні робіт у лабораторіях і при роботі на персональному комп’ютері й з тестами до кожної теми:– вплив товщини покриття на міцність деталі;– контроль мікротвердості покриттів;– моделювання технологічних випробувань покриттів;– контроль внутрішніх напружень покриттів;– вплив дефектів покриття на якість деталі;– корозійний та електрохімічний контроль якості покриттів;– використання х– та s–діаграм для визначення причин погіршення якості покриттів.5. «Домашні завдання» (умова з варіантами даних і методичні вказівки до виконання, зразок оформлення):– оцінити вплив мікротвердості покриття на міцність деталі;– оцінити вплив корозії покриття на міцність деталі.Для ефективного використання МСН необхідне його планомірне включення в учбовий процес. Тому ще на етапі тематичного планування були розглянуті варіанти можливого використання усіх модулів МНС.Для розвитку розумової діяльності студентів і виховання у них пізнавальної активності самостійну роботу потрібно добре методично забезпечити. У свою чергу, ефективність самостійної роботи студентів багато в чому залежить від своєчасного контролю за її ходом. Тому для оцінки ефективності використання ІКТ у учбовому процесі створена система визначення якості навчання і на її основі побудовані тестові процедури оцінки знань з усіх тем курсу. Перевірку і контроль знань студентів можна здійснити як під час занять, так й інтерактивно. Основними перевагами програми автоматизованого контролю знань є:– випадковий характер вибору тестових завдань, порядок проходження завдань і відповідей, що сприяє об’єктивності оцінок;– представлення варіантів відповідей у вигляді формул і малюнків, що дозволяє розширити коло текстових завдань;– диференційована оцінка кожного варіанту відповіді, що забезпечує детальний аналіз результатів тестування.Комп’ютерне тестування дозволяє [2] розширити можливості проведення індивідуально адаптованих процедур контролю і коректування знань конкретних тем, підвищити об’єктивності контролю знань студентів, забезпечити можливість проведення їх попереднього самоконтролю, підвищити рівень стандартизації вимог до об’єму і якості знань та умінь.Розв’язування експрес-тестів проходить під час лабораторних занять протягом фіксованого проміжку часу. Крім режиму контролю передбачений режим навчання.Важливим елементом навчання є використання моделюючих програм у процесі навчання. У цьому випадку студенти самостійно задають різні параметри задачі, що дає можливість детальніше перевірити характер поведінки моделі за різних умов.Особливістю МСН є застосування комп’ютерного моделювання для лабораторних робіт, оскільки постійні бюджетні проблеми останніх років виключають придбання необхідних установок і приладів. Моделювання контролю якості покриттів дозволило істотно наситити заняття експериментальним і теоретичним змістом. При цьому учбові і учбово-дослідницькі задачі розв’язуються як з формуванням практичних навиків у вивченні фізичних явищ, так і дослідницького мислення, а розроблені методичні вказівки дозволяють разом з типовими лабораторними роботами виконувати роботи евристичного змісту. І, що особливо важливо, використання ІКТ, методів комп’ютерного моделювання дозволяє істотно розширити можливості лабораторних робіт.Використання електронних лабораторних робіт дозволяє більш повно реалізувати диференційований підхід у процесі навчання, ніж роботи і завдання на паперових носіях. Це пов’язано з можливістю включення в роботи необхідної кількості завдань різного рівня складності або об’єму. Істотною перевагою є можливість легко адаптувати наявні роботи до нових версій програм, що з’являються [3].Домашні завдання також виконуються з використанням САПР: на етапі побудови 3D моделі деталі з покриттям студенти працюють в SolidWorks; потім, перейшовши до реальної конструкції, використовують SimulationXpress і SolidWorks Simulation (додатки для аналізу проектних розв’язків, повністю інтегровані в SolidWorks). Оформлення робочої документації досягається засобами Microsoft Office. Така організація роботи дозволяє у процесі навчання побудувати модель контролю якості покриттів на якісно новому рівні й підготувати студентів до використання сучасних інструментаріїв інженера.В SolidWorks Simulation студенти виконують наступне:– прикладають до деталей з покриттями рівномірний або нерівномірний тиск в будь-якому напрямі, сили із змінним розподілом, гравітаційні та відцентрові навантаження, опорну та дистанційну силу;– призначають не тільки ізотропні, а й ортотропні та анізотропні матеріали;– застосовують дію температур на різні ділянки деталі (умови теплообміну: температура, конвекція, випромінювання, теплова потужність і тепловий потік; автоматично прочитується профіль температур, наявний в розрахунку температур, і проводиться аналіз термічного напруження);– знаходять оптимальний розв’язок, який відповідає обмеженням геометрії та поведінки; якщо допущення лінійного статичного аналізу незастосовні, застосовують нелінійний аналіз– за допомогою аналізу втоми оцінюють ефект циклічних навантажень у моделі;– при аналізі випробування на ударне навантаження вирішують динамічну проблему (створюють епюру і будують графік реакції моделі у вигляді тимчасової залежності);– обробляють результати частотного і поздовжнього вигину, термічного і нелінійного навантажень, випробування на ударне навантаження й аналіз втоми;– будують епюри поздовжніх сил, деформацій, переміщень, результатів для сил реакції, форм втрати стійкості, резонансних форм коливань, результатів розподілу температур, градієнтів температур і теплового потоку;– проводять аналізи контактів у збираннях з тертям, посадок з натягом або гарячих посадок, аналізи опору термічного контакту.Змінюючи при чисельному моделюванні деякі вхідні параметри, експериментатор може прослідити за змінами, які відбуваються з моделлю. Основна перевага методу полягає у тому, що він дозволяє не тільки поспостерігати, але і передбачити результат експерименту за якихось особливих умов.Метод чисельного моделювання має наступні переваги перед іншими традиційними методами [4]:– дає можливість змоделювати ефекти, вивчення яких в реальних умовах неможливе або дуже важке з технологічних причин;– дозволяє моделювати і вивчати явища, які передбачаються будь-якими теоріями;– є екологічно чистим і не представляє небезпеки для природи і людини;– забезпечує наочність і доступний у використанні.Але щоб приймати технічно грамотні рішення при роботі з САПР, необхідно уміти правильно сприймати і осмислювати результати обчислень. Цілеспрямований пошук шляхом ряду проб оптимального або раціонального рішення у проектних задачах набагато цікавіший і повчальніший для майбутнього інженера, ніж отримання тільки одного оптимального проекту, який не можна поліпшити і ні з чим порівняти.При великій кількості варіантів проекту аналіз машинних розрахунків дозволяє виявити основні закономірності зміни характеристик проекту від варійованих проектних змінних і сприяє тим самим швидкому і глибокому вивченню властивостей об’єктів проектування.Упровадження сучасних САПР для контролю якості покриттів не тільки забезпечує підвищення рівня комп’ютеризації інженерної праці, але й дозволяє приймати оптимальні рішення. При створенні і використанні таких систем сучасний інженер повинен мати навички роботи з комп’ютерними системами, уміти розробляти математичні моделі формування параметрів оцінки якості покриттів.У цих умовах молодий інженер не має достатнього резерву часу для надбання на виробництві необхідних навичок моделювання складних процесів і систем – він повинен одержати такі навички у процесі навчання у вузі. Таким чином, йдеться про володіння прийомами постановки і розв’язування конструкторсько-технологічних задач сучасними методами моделювання.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Міцність контактна"

1

Кравченко, Сергій Олександрович, Едуард Карпович Посвятенко, Микола Анатолійович Ткачук, Віктор Григорович Гончаров, В. М. Шеремет, О. К. Олейник та В. І. Демиденко. "Технологія дискретного зміцнення для поверхонь деталей". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/24959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Мартиненко, Олександр Вікторович, Ганна Володиміровна Ткачук та Антон Миколайович Ткачук. "Аналіз термопружної контактної взаємодії втулки з циліндром гідрооб'ємної передачі". Thesis, НТУ "ХПІ", 2010. http://repository.kpi.kharkov.ua/handle/KhPI-Press/14753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Волков, Олег Олексійович, Богдан Леонідович Прасок та Володимир Андрійович Якунін. "Зміцнення ювелірного інструменту з використанням методу термофрикційної обробки (ТФО)". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Скріпченко, Наталія Борисівна. "Контактна взаємодія складнопрофільних деталей машинобудівних конструкцій з урахуванням локальної податливості поверхневого шару". Thesis, ФО-П Дуюнова Т. В, 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19907.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.02.09 – динаміка та міцність машин. Національний технічний університет "Харківський політехнічний інститут", Міністерство освіти і науки України, Харків, 2016. Дисертація присвячена розробці підходів, методів і моделей для дослідження напружено-деформованого стану складнопрофільних тіл з урахуванням їхнього контакту по шорстких поверхнях. У роботі розв'язана задача аналізу контактної взаємодії складнопрофільних елементів машинобудівних конструкцій за наявності локальної податливості поверхневого шару. Для цього запропоновано варіант методу граничних рівнянь, в який додана модель пружного проміжного шару за Вінклером. Отриманий метод дослідження контактної взаємодії об'єднує в рамках єдиних співвідношень "локальні" та "глобальні" характеристики податливості контактуючих шорстких тіл. Числова реалізація методу граничних елементів здійснена в спеціалізованому програмно-модельному комплексі для дослідження контактної взаємодії складнопрофільних тіл. Розв'язано низку прикладних задач аналізу контактної взаємодії, а саме проведено дослідження впливу форми зазору і податливості шорсткого шару на характер розподілів контактного тиску у наступних випадках: контакту прямокутного в плані штампа з округленнями з плоскою поверхнею, спряження підшипника кочення з модифікованим дворадіусним роликом, передачі зусиль між кульовими поршнями та біговими доріжками в гідрооб'ємній передачі танкової трансмісії. Проведене порівняння отриманих числових результатів досліджень з експериментальними даними. Підтверджено точність і достовірність запропонованих методів та моделей, а також створеного програмно-модельного комплексу.
The thesis in qualification for a scientific degree of Candidate of Technical Science in speciality 05.02.09 - dynamics and strength of machines, National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2016. The thesis is devoted to development of approaches, methods and models for analysis of stress-strain state of complex-shaped bodies with account for their contact over rough surfaces. In the present work the contact problem is solved for complex-shaped elements of engineering structures with local compliance of the surface layer. For this purpose a variation to the boundary integral equations method extended with a Winkler-type model of elastic layer is proposed. The resulting approach combines in a unified formulation the "local" and "global" compliance characteristics of the contacting rough bodies. The numerical implementation of the boundary element method is included in a software-and-model complex for analysis of contact interaction of complex-shaped bodies. A number of applied contact problems is solved. Namely, the influence of the gap and rough layer compliance on the contact pressure distribution is studied for the following cases: contact of a rectangular round-end stamp with a flat surface, junction of a rolling bearing and a modified double-radius roller, normal traction between spherical pistons and treadmills of a tank transmission. Numerical results of the research are compared to experimental data. Accuracy and reliability of the proposed methods and models, as well as special-purpose software-andmodel complex are confirmed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Андрєєв, Арнольд Георгійович, В. О. Белостоцький, Антоніна Петрівна Звонарьова та Олександр Віталійович Щепкін. "Вплив параметрів з’єднань з натягом на втомлисну міцність". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2012. http://repository.kpi.kharkov.ua/handle/KhPI-Press/45515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Андрєєв, Арнольд Георгійович, Антоніна Петрівна Звонарьова та Олександр Віталійович Щепкін. "Використання з’єднань деталей з натягом з відхиленнями від правильної геометричної форми". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/45519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Лавриненко, Сергій Миколайович, Ірина Яківна Храмцова, Ольга Владиславівна Кохановська та В. І. Кохановський. "Математичні моделі ударно-контактної взаємодії елементів механічних систем: теоретичні основи та промислове впровадження". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/38492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Мартиненко, Володимир Геннадійович. "Розробка методів розрахунку елементів конструкцій із в'язкопружних композиційних матеріалів". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/37543.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.02.09 – динаміка та міцність машин. Національний технічний університет "Харківський політехнічний інститут", Харків, 2018 р. Дисертацію присвячено створенню нових методів опису та моделювання анізотропної в'язкопружності композиційних елементів конструкцій і машин. На підставі аналізу актуальних методик встановлено, що на даний момент не існує комплексного підходу до встановлення параметрів анізотропної в'язкопружності полімерних армованих композиційних матеріалів, а також моделювання їхньої механічної поведінки. З метою визначення властивостей в'язкопружного композиту був розроблений чисельний метод гомогенізації ядер ортотропної в'язкопружності ортогонально армованого композиційного матеріалу. Спланований та реалізований експеримент зі знаходження параметрів анізотропної в'язкопружності склотекстоліту кількісно та якісно підтвердив результати чисельних розрахунків, що продемонструвало необхідність врахування в'язкопружних властивостей із загальним ступенем анізотропії при моделюванні механіки елементів конструкцій і машин, виконаних із полімерних армованих композиційних матеріалів. Запропонований в роботі метод накладених сіток надав до цього моменту відсутні можливості моделювання будь якого ступеня анізотропії в'язкопружних властивостей в програмних комплексах скінченно-елементного. Цей метод в роботі був застосований до моделювання контакту ділянки пружного трубопроводу із ортотропним в'язкопружним ремонтним бандажем за допомогою тривимірної в'язкопружної скінченно-елементної моделі, що в порівнянні із розробленими аналітичною та чисельно-аналітичною моделями плоского вісесиметричного напружено-деформованого стану такої конструкції показало його адекватність та високу точність.
Thesis for granting the Degree of Candidate of Technical sciences in speciality 05.02.09 – Dynamics and Strength of Machines. – National Technical University "Kharkiv Politechnical Institute", 2018. The thesis is dedicated to a creation of new methods for describing and modeling the anisotropic viscoelasticity of composite structural elements. Basing on an analysis of actual methods it is established that at the moment there is no a complex approach for determining anisotropic viscoelastic parameters of polymer reinforced composite materials and modeling their mechanical behavior. With a purpose of finding the quantitative and qualitative properties of a viscoelastic composite, a numerical method for homogenizing orthotropic viscoelastic kernels of orthogonally reinforced composite material, that are dependent on a fiber volume fraction, time and temperature, was developed. The time dependencies of these kernels were approximated by Prony series, whereas the temperature ones were approximated by Williams-Landel-Ferry shift function. This approach allowed to indicate that the viscoelasticity of fiber reinforced polymeric composite materials is of orthotropic nature for an orthogonal reinforcement scheme, that the relaxation curves of viscoelastic parameters are not similar to each other, which contradicts the classical engineering viscoelastic models, and that the temperature dependency of these properties coincide with the ones of the composite polymeric matrix. The planned and realized experiment on finding the parameters of anisotropic viscoelasticity of a fiber-glass with a woven reinforcement scheme has confirmed the results of numerical calculations, which demonstrated the need to take into account viscoelastic properties with a general degree of anisotropy when modeling the mechanics of structural elements and machines made of fiber reinforced polymeric composite materials. The experiment rig was improved during the research in order to satisfy the requirements for carrying out tests on plane polymeric composite samples. The method of super-imposed meshes proposed in the work provided the possibilities of modeling any degree of anisotropy of viscoelastic properties in commercial finite-element codes without a necessity to create additional material user subroutines using only the standard tools of these codes. The convergence of the method was also proved in the work. This method was applied to modeling a contact behavior of an elastic pipeline section with an orthotropic viscoelastic repair bandage using a three-dimensional viscoelastic finite element model that in comparison with the developed analytical and numerical-analytical models of a plane axisymmetric stress-strain state of such a design showed its adequacy and accuracy. In addition, proposed analytical and numerical-analytical methods allowed to take into account mounting features of repair band-age assembled on unloaded or loaded pipeline with or without tension, that enabled to indicate a relaxation of contact stresses for different repair regimes.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Мартиненко, Володимир Геннадійович. "Розробка методів розрахунку елементів конструкцій із в'язкопружних композиційних матеріалів". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/37542.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.02.09 – динаміка та міцність машин. Національний технічний університет "Харківський політехнічний інститут", Харків, 2018 р. Дисертацію присвячено створенню нових методів опису та моделювання анізотропної в'язкопружності композиційних елементів конструкцій і машин. На підставі аналізу актуальних методик встановлено, що на даний момент не існує комплексного підходу до встановлення параметрів анізотропної в'язкопружності полімерних армованих композиційних матеріалів, а також моделювання їхньої механічної поведінки. З метою визначення властивостей в'язкопружного композиту був розроблений чисельний метод гомогенізації ядер ортотропної в'язкопружності ортогонально армованого композиційного матеріалу. Спланований та реалізований експеримент зі знаходження параметрів анізотропної в'язкопружності склотекстоліту кількісно та якісно підтвердив результати чисельних розрахунків, що продемонструвало необхідність врахування в'язкопружних властивостей із загальним ступенем анізотропії при моделюванні механіки елементів конструкцій і машин, виконаних із полімерних армованих композиційних матеріалів. Запропонований в роботі метод накладених сіток надав до цього моменту відсутні можливості моделювання будь якого ступеня анізотропії в'язкопружних властивостей в програмних комплексах скінченно-елементного. Цей метод в роботі був застосований до моделювання контакту ділянки пружного трубопроводу із ортотропним в'язкопружним ремонтним бандажем за допомогою тривимірної в'язкопружної скінченно-елементної моделі, що в порівнянні із розробленими аналітичною та чисельно-аналітичною моделями плоского вісесиметричного напружено-деформованого стану такої конструкції показало його адекватність та високу точність.
Thesis for granting the Degree of Candidate of Technical sciences in speciality 05.02.09 – Dynamics and Strength of Machines. – National Technical University "Kharkiv Politechnical Institute", 2018. The thesis is dedicated to a creation of new methods for describing and modeling the anisotropic viscoelasticity of composite structural elements. Basing on an analysis of actual methods it is established that at the moment there is no a complex approach for determining anisotropic viscoelastic parameters of polymer reinforced composite materials and modeling their mechanical behavior. With a purpose of finding the quantitative and qualitative properties of a viscoelastic composite, a numerical method for homogenizing orthotropic viscoelastic kernels of orthogonally reinforced composite material, that are dependent on a fiber volume fraction, time and temperature, was developed. The time dependencies of these kernels were approximated by Prony series, whereas the temperature ones were approximated by Williams-Landel-Ferry shift function. This approach allowed to indicate that the viscoelasticity of fiber reinforced polymeric composite materials is of orthotropic nature for an orthogonal reinforcement scheme, that the relaxation curves of viscoelastic parameters are not similar to each other, which contradicts the classical engineering viscoelastic models, and that the temperature dependency of these properties coincide with the ones of the composite polymeric matrix. The planned and realized experiment on finding the parameters of anisotropic viscoelasticity of a fiber-glass with a woven reinforcement scheme has confirmed the results of numerical calculations, which demonstrated the need to take into account viscoelastic properties with a general degree of anisotropy when modeling the mechanics of structural elements and machines made of fiber reinforced polymeric composite materials. The experiment rig was improved during the research in order to satisfy the requirements for carrying out tests on plane polymeric composite samples. The method of super-imposed meshes proposed in the work provided the possibilities of modeling any degree of anisotropy of viscoelastic properties in commercial finite-element codes without a necessity to create additional material user subroutines using only the standard tools of these codes. The convergence of the method was also proved in the work. This method was applied to modeling a contact behavior of an elastic pipeline section with an orthotropic viscoelastic repair bandage using a three-dimensional viscoelastic finite element model that in comparison with the developed analytical and numerical-analytical models of a plane axisymmetric stress-strain state of such a design showed its adequacy and accuracy. In addition, proposed analytical and numerical-analytical methods allowed to take into account mounting features of repair band-age assembled on unloaded or loaded pipeline with or without tension, that enabled to indicate a relaxation of contact stresses for different repair regimes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Міцність контактна"

1

Ракша, С. В., П. Г. Анофрієв та О. С. Куроп’ятник. "Стенд для випробувань залізничних коліс на контактну міцність". У SCIENCE, ENGINEERING AND TECHNOLOGY: GLOBAL TRENDS, PROBLEMS AND SOLUTIONS. Baltija Publishing, 2020. http://dx.doi.org/10.30525/978-9934-588-79-2-2.42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії