Добірка наукової літератури з теми "Механізм катодних реакцій"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Механізм катодних реакцій".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Механізм катодних реакцій"

1

Kravchenko, Tamara A., Dmitrii D. Vakhnin, Valeria E. Pridorogina, Ekaterina A. Shevtsova та Alina V. Chumakova. "Химический и электрохимический вклады в редокс-сорбцию кислорода из водына зернистых слоях медьсодержащих нанокомпозитов". Сорбционные и хроматографические процессы 20, № 4 (16 вересня 2020): 539–48. http://dx.doi.org/10.17308/sorpchrom.2020.20/2958.

Повний текст джерела
Анотація:
Наночастицы металлов в пористых полимерных матрицах проявляют выраженные сорбцион-ные и окислительно-восстановительные свойства. На этих свойствах металл-полимерных нанокомпо-зитов (НК) основан процесс глубокой деоксигенации воды. Ранее обнаружен существенный вклад электрохимической составляющей процесса восстановления кислорода на тонком катодно поляризу-емом зернистом слое медьсодержащего НК. В начальный период процесс лимитируется стадией внешней диффузии кислорода к поверхности гранул НК. В последующем отмечен все возрастающий со временем вклад химической составляющей, характерной особенностью которой является лимити-рование процесса внутридиффузионной стадией переноса кислорода к наночастицам меди и затрата электричества на электровосстановление оксидов металла. Однако при переходе от тонких пленок и слоев к зернистым слоям НК колоночного типа с распределенными по высоте кинетическими пара-метрами вопрос о соотношении вкладов электрохимического и химического маршрутов требует спе-циального рассмотрения.В настоящей работе исследован процесс редокс-сорбции кислорода из воды на динамических зернистых слоях нанокомпозитов медь-сульфокатионообменник (КУ-23, Lewatit K2620) при различ-ных силах поляризующего тока, оценены вклады химической и электрохимической составляющих общего процесса в стационарный период.Найдено, что количество поглощенного кислорода находится в экстремальной зависимости от силы поляризующего тока в допредельном режиме поляризации. Отмечено образование продуктов окисления металлических наночастиц в виде островковых кластеров, часть зерен окисляется с воз-никновением границ оксидных слоев, одинаковых по высоте зернистого слоя. С увеличением высоты зернистого слоя и силы поляризующего тока в допредельном режиме процесс поглощения кислорода становится все более квазистационарным. Показано, что вклады химического и электрохимического маршрутов восстановления кислорода соизмеримы при длительном процессе (100 ч). Часть кислорода поглощается за счет реакции электровосстановления на частицах меди в основном на поверхности зерен нанокомпозита, а часть – за счет автокаталитической химической реакции кислорода с электро-регенерируемыми наночастицами металла в объеме зерен нанокомпозита. Тот или иной механизм более вероятен в зависимости от состояния системы и силы воздействия на нее электрического тока. За счет постоянной электрогенерации ионов водорода и электрорегенерации наночастиц меди, необ-ходимых для восстановления кислорода, устанавливается стационарный режим редокс-сорбции кис-лорода их воды
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Panteleeva, Viktoria V., Ilya S. Votinov, Igor S. Polkovnikov та Anatoliy В. Shein. "КИНЕТИКА КАТОДНОГО ВЫДЕЛЕНИЯ ВОДОРОДА НА МОНОСИЛИЦИДЕ МАРГАНЦА В СЕРНОКИСЛОМ ЭЛЕКТРОЛИТЕ". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, № 3 (26 вересня 2019): 432–40. http://dx.doi.org/10.17308/kcmf.2019.21/1153.

Повний текст джерела
Анотація:
Методами поляризационных и импедансных измерений изучена кинетика реакции выделения водорода на MnSi-электроде в сернокислых растворах с различной концентрацией ионов водорода. Сделано предположение о механизме выделения водорода на силициде. Отмечено влияние тонкой оксидной пленки на кинетику выделения водорода на MnSi при невысоких катодных поляризациях. REFERENCES Rotinyan A. L., Tikhonov K. I., Shoshina I. A. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Leningrad, Khimiya Publ., 1981, 424 p. (in Russ.) Antropov L. I. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Мoscow, Vysshaya shkola Publ., 1984, 519 p. (in Russ.) Shamsul Huq A. K. M., Rosenberg A. J. J. Electrochemical behavior of nickel compounds. Electrochem. Soc. , 1964, v. 111(3), p. 270. https://doi.org/10.1149/1.2426107 Vijh A. K., Belanger G., Jacques R. Electrochemical reactions oh iron silicide surfaces in sulphuric acid. Materials Chemistry and Physics, 1988, v. 20(6), pp. 529–538. https://doi.org/10.1016/0254-0584(88)90086-7 Vijh A. K., Belanger G., Jacques R. Electrochemical activity of silicides of some transition metals for the hydrogen evolution reaction in acidic solutions. Int. J. Hydrogen Energy, 1990, v. 15(11), pp. 789–794. DOI: 10.1016/0360-3199(90)90014-P Shein A. B. Elektrokhimiya silitsidov i germanidov perekhodnykh metallov [Electrochemistry of silicides and germanides of transition metals]. Perm‘, Perm. gos. un-t Publ., 2009, 269 p. (in Russ.) Vigdorovich V. I., Tsygankova L. E., Gladysheva I. E., Kichigin V. I. Kinetics of hydrogen evolution from acidic solutions on pressed micro graphite electrodes modifi ed with carbon nanotubes. II. Impedance studies. Protection of Metals and Physical Chemistry of Surfaces, 2012, v. 48(4), pp. 438–443. https://doi.org/10.1134/S2070205112040181 Meyer S., Nikiforov A. V., Petrushina I. M., Kohler K., Christensen E., Jensen J. O., Bjerrum N. J. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int. J. Hydrogen Energy, 2015, v. 40(7), pp. 2905–2911. https://doi.org/10.1016/j.ijhydene.2014.12.076 Kichigin V. I., Shein A. B., Shamsutdinov A. Sh. The kinetics of cathodic hydrogen evolution on iron monosilicide in acid and alkaline solutions. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(3), pp. 326–337. URL: https://journals.vsu.ru/kcmf/article/view/140/98 (in Russ.) Eftekhari A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, v. 42(16), pp. 11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125 Schalenbach M., Speck F. D., Ledendecker M., Kasian O., Goehl D., Mingers A. M., Breitbach B., Springer H., Cherevko S., Mayrhofer K. J. J. Nickelmolybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochimica Acta, 2018, v. 259, pp. 1154–1161. https://doi.org/10.1016/j.electacta.2017.11.069 Kuz’minykh M. M., Panteleeva V. V., Shein A. B. Cathodic hydrogen evolution on iron disilicide. II. Acidic solution. Izvestiya vuzov. Khimiya i khim. tekhnologiya, 2019, v. 62(2), pp. 59–64. https://doi.org/10.6060/ivkkt. 20196202.5750 (in Russ.) Samsonov G. V., Dvorina L. A., Rud’ B.M. Silitsidy [Silicides]. Moscow, Metallurgiya Publ., 1979, 272 p. (in Russ.) Samsonov G. V., Vinitskii I. M. Tugoplavkie soedineniya [Refractory compounds]. Moscow, Metallurgiya Publ., 1976, 560 p. (in Russ.) Yamasaki T., Okada S., Kamamoto K., Kudou K. Crystal Growth and properties of manganese-silicon system compounds by high-temperature tin solution method. Pacific Science Review, 2012, v. 14(3), pp. 275. Lee M., Onose Y., Tokura Y., Ong N. P. Hidden constant in the anomalous Hall effect of high-purity magnet MnSi. Phys. Rev. B., 2007, v. 75(17), p. 172403. https://doi.org/10.1103/PhysRevB.75.172403 Neubauer A., Pfl eiderer C., Binz B., Rosch A., Ritz R., Niklowitz P. G., Boni P. Topological Hall effect in the a phase of MnSi. Phys. Rev. Lett., 2009, v. 102(18), pp. 186602. https://doi.org/10.1103/PhysRevLett.102.186602 Sukhotin A. M. Spravochnik po elektrokhimii [Handbook of electrochemistry]. Leningrad, Khimiya Publ., 1981, 488 p. (in Russ.) Zhang X. G. Electrochemistry of silicon and its oxide. Kluwer Academic/Plenum Publishers, New York, 2001. 510 p. Xu X., Bojkov H., Goodman D. W. Electrochemical study of ultrathin silica fi lms supported on a platinum substrate. J. Vac. Sci. Technol., 1994, v. A12(4), pp. 1882–1885. https://doi.org/10.1116/1.579022 Harrington D. A., Conway B. E. ac Impedance of Faradaic reactions involving electrosorbed intermediates — I. Kinetic theory. Electrochim. Acta, v. 32(12), pp. 1703–1712. https://doi.org/10.1016/0013-4686(87)80005-1 Orazem M. E., Tribollet B. Electrochemical Impedance Spectroscopy. J. Wiley and Sons, Hoboken, New York, 2008, 533 p. Kichigin V. I., Sherstobitova I. N., Shein A. B. Impedans elektrokhimicheskikh i korrozionnykh sistem: ucheb. posobie po spetskursu [The impedance of electrochemical and corrosion systems: textbook. special course allowance]. Perm’, Perm. gos. un-t Publ., 2009, 239 p. (in Russ.) Kichigin V. I., Shein A. B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. Electrochemica Acta, 2014, v. 138, pp. 325–333. https://doi.org/10.1016/j.electacta.2014.06.114 Kichigin V. I., Shein A. B. Additional criteria for the mechanism of hydrogen evolution reaction in the impedance spectroscopy method. Vestnik Permskogo Universiteta. Ser. Khimiya, 2018, v. 8, iss. 3, pp. 316–324. https://doi.org/10.17072/2223-1838-2018-3-316-324 (in Russ.) Kichigin V. I., Shein A. B. Infl uence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction. Electrochemica Acta, 2016, v. 201, pp. 233–239. https://doi.org/10.1016/j.electacta.2016.03.194
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Механізм катодних реакцій"

1

Сачанова, Юлія Іванівна. "Електрохімічне формування покривів сплавами і композитами Fe–Co–Mo(MoOₓ)". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/43990.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.03 – Технічна електрохімія. – Національний технічний уні-верситет “Харківський політехнічний інститут”, Харків, 2019. Дисертаційну роботу присвячено розробці технології електроосадження функціональних покривів сплавами заліза з кобальтом і молібденом з комплек-сних цитратних електролітів. За результатами аналізу іонних рівноваг і кінетичних закономірностей встановлено, що молібден відновлюється у сплав з ферумом та кобальтом до металевого стану з гетероядерних комплексів через утворення проміжних сполук як внаслідок катодної поляризації, так і ад-атомами водню за рахунок реалізації спілловер-ефекту. Варіювання режимів і параметрів електролізу дозволяє формувати композитні металоксидні покриви в системі ферум-кобальт-молібден інкорпорацію до складу металевої матриці оксидів молібдену, як інтермедіатів електродних реакцій. Обґрунтовано кількісний склад електроліту та режими нанесення покривів із заданим вмістом компонентів, морфологією, структурою та експлуатаційними характеристиками. Визначено оптимальні режими поляризації, застосування яких дозволяє отримувати бездефектні покриви. Корозійний опір покривів системи Fe–Co–Mo(МоОₓ) перевищує значення для сплавотвірних компонентів, а мікротвердість майже втричі вища за мікротвердість матеріалу основи та індивідуальних компонентів тернарної системи. Високу електрокаталітичну активність покривів виявлено в катодних реакціях виділення водню, яка внаслідок реалізації синергетичного ефекту вища порівняно із індивідуальними металами і зростає з вмістом молібдену, а активність покривів Fe–Co–Mo(МоОₓ) в анодних реакціях окиснення низькомолекулярних спиртів за густиною струмів анодних і катодних піків навіть вища, ніж на платині. Покриви є “магнітом’якими матеріали”, які можна застосовувати у виробництві магніто-оптичних інформаційних накопичувачів, а сенсорні властивості щодо окремих компонентів газових середовищ використано для створення чутливого елемента сенсора. Запропоновано технологічну схему електроосадження покривів Fe–Co–Mo(МоОₓ) залежно від їх практичного призначення.
Thesis for the degree of Candidate of Technical Sciences in the speciality 05.17.03 – Technical еlectrochemistry. – National Technical University “Kharkiv Polytechnic Institute” Kharkiv, 2019. The dissertation is devoted to the development of technology for electrodeposition of functional coatings by alloys of iron with cobalt and molybdenum from complex citrate electrolytes. Based on the analysis of ionic equilibria and kinetic laws, it was found that molybdenum is converted into an alloy with iron and cobalt to a metallic state from heteronuclear complexes through the formation of intermediate spokes both as a result of cathodic polarization and as a result of the formation of hydrogen and hydrogen atoms. realize overflow effect. Changing the modes and parameters of electrolysis allows the formation of composite metal oxide coatings in iron-cobalt-molybdenum system by including a metal matrix of molybdenum oxide as an intermediate link of electrode reactions. The quantitative composition of the electrolyte and the modes of coating with a given content of components, morphology, structure and operational characteristics are justified. The optimal polarization modes are determined, the use of which allows one to obtain defect-free coatings. The corrosion resistance of the coatings of the Fe-Co-Mo(MoOₓ) system exceeds the value for the alloy components, and the microhardness is three times higher than the microhardness for steel and individual components of the ternary system. High electrocatalytic activity of the coatings was found in cathodic hydrogen evolution reactions, which, as a result of the synergistic effect, is higher than for individual metals, and grows with the molybdenum content and the activity of Fe-Co-Mo (MoOₓ). Coatings in the reactions of anodic oxidation of low molecular weight alcohols at a current density of the anodic and cathodic peaks are even higher than on a platinum electrode. The coatings turned out to be "soft magnetic materials" that can be used in the manufacture of magneto-optical information storage devices, and the sensory properties of individual components of gaseous media were used to create a sensitive element of the sensor. The technological scheme of electrodeposition of Fe-Co-Mo (MoOₓ) coatings is proposed, depending on their practical purpose.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Сачанова, Юлія Іванівна. "Електрохімічне формування покривів сплавами і композитами Fe–Co–Mo(MoOₓ)". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/43993.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.03 – Технічна електрохімія. – Національний технічний університет «Харківський політехнічний інститут», Харків, 2019. Дисертаційну роботу присвячено розробці гальванохімічної технології покривів тернарними сплавами і композитами системи ферум-кобальт-молібден з підвищеним рівнем функціональних властивостей на підставі гіпотези про інкорпорацію оксидів тугоплавких компонентів як інтермедіатів електродних реакцій, до складу металевої матриці. Обґрунтовано компонентний склад електроліту та співвідношення концентрацій сплавотвірних компонентів в системі ферум-кобальт-молібден і закономірності комплексоутворення в присутності цитрату, які склали підгрунтя до розробки електролітів для нанесення металевих і металооксидних покривів. Встановлено, що бездефектні покриви високої якості з вмістом молібдену понад 30 ат.% формуються з електролітів із концентрацією натрій цитрату 0,4−0,5 М та оксометалату 0,2 М. Доведено, що утворення гетероядерних комплексів є передумовою для гнучкого керування іонними рівновагами в розчині, а відтак, і механізмом та перенапругою електродних реакцій, перебіг яких підпорядковується закономірностям змішаної кінетики, про що свідчать і визначена енергія активації процесу. Відновлення молібдат-іону до металевої фази відбувається через утворення поверхневих оксидів проміжного ступеню окиснення. Залежно від повноти перебігу цього процесу створюються умови до формування металевого покриву тернарним сплавом або металоксидного композиту, друга фаза якого складається з оксидів молібдену в проміжному ступені окиснення, тобто утворюється безпосередньо в електродному процесі. Встановлено, що відновлення оксометалату може перебігати в декілька стадій − як за електрохімічним, так і хімічним механізмом за участю ад-атомів гідрогену, які утворюються в катодній реакції. Саме така особливість забезпечує варіативність катодного процесу та надає можливість гнучкого керування перебігом окремих стадій і складом та властивостями цільового продукту технологічного процесу. Головними чинниками, що забезпечують варіативність складу покривів, є режим поляризації – гальваностатичний або імпульсний, та амплітудні і часові параметри струму. За однакових густин струму застосування імпульсного електролізу дозволяє формувати покриви із значно вищим вмістом молібдену. Зокрема, за сталих тривалості імпульсу 10-20 мс та паузи 5–20 мс склад покривів збагачується молібденом до 30 ат. % при суттєво нижчому вмісті оксигену. Такі зміни у складі покриву порівняно з стаціонарним режимом зумовлені перебігом впродовж паузи хімічної реакції відновлення проміжних оксидів молібдену ад-атомами водню внаслідок реалізації спілловер-ефекту. Вища кількість фази оксидів в складі покривів тернарним сплавом, сформованих в гальваностатичному режимі, дає підстави класифікувати їх як композити. За однакового типу поляризації струмозалежними виявились не тільки вміст компонентів сплаву/композиту, а й морфологія поверхні осадів та вихід за струмом. В умовах стаціонарного електролізу вихід за струмом сплаву знаходиться в межах 56−62 %, а при застосуванні імпульсного електролізу ефективність процесу зростає до 61−70 % за рахунок внеску хімічної реакції відновлення оксидів молібдену ад–атомами водню. Розсіювальна здатність електроліту також залежить від густини струму і має екстремальний характер із максимумом у 62 % при і=2,5 А/дм². Отримані результати розсіювальної здатності узгоджуються із значеннями для відомих електролітів. Композитні Fe−Co−MoОₓ і металеві Fe−Co−Mo покриви мають дрібноглобулярну структуру поверхні, розвиненість якої зростає зі збільшенням густини струму, а характер і розмір кристалітів залежить від складу покривів і режимів електролізу. Так, для покривів Fe48Сo40Mo12, отриманих постійним струмом, середній розмір кристалітів становить 63 Ǻ, а для покриву Fe43Сo39Mo18, отриманому в імпульсному режимі, середній розмір кристалітів складає 56 Ǻ. Залежно від режимів електроосадження різниться і шорсткість поверхні – в гальваностатичному та імпульсному режимах параметр Ra для сплавів становить 0,15 і 0,11, відповідно, що характерно для 9–10 класів шорсткості. Синтезовані покриви мають широкий спектр фізико-хімічних і фізико-механічних властивостей з високим рівнем споживчих характеристик. Так, тестуванням корозійної тривкості встановлено, що за глибинним показником (0,018 – 0,02 мм/рік) покриви мають 4 бал стійкості за десятибальною шкалою, а ранжовані за густиною струму корозії є "стійкими" в кислому середовищі та "вельми стійкими" у нейтральному та лужному. Корозійну стійкість в кислому середовищі підвищує наявність молібдену через кислотний характер його оксидів, а в нейтральному і лужному середовищах покриви проявляють стійкість внаслідок пасивації феруму і кобальту. Вільна енергія поверхні металевих покривів і композитів в межах 118−128 мДж/м², що майже на порядок величини нижча за сплавотвірні компоненти, а поверхні композитів Fe−Co−MoОₓ нижча ніж сплаву Fe−Co−Mo завдяки вищому вмісту кисню в його структурі, внаслідок чого покриви композитами є хімічно стійкішими. Мікротвердість гальванічних покривів знаходиться в межах 595 – 630 кгс/мм² і є вищою, порівняно із сплавотвірними компонентами, а також в 2,5–3 рази більшою за сталеву основу. Мікротвердість осадів симбатно змінюється із вмістом молібдену і в інтервалі досліджених густин струму також зростає з підвищенням цього параметра. Результатами комплексних випробувань механічних характеристик доведено високу адгезію покривів до поверхні підкладки, стійкість до полірування, нагріву і зламу. Встановлено високу електрокаталітичну активність тернарного сплаву в анодних реакціях окиснення низькомолекулярних спиртів, а значення анодних і катодних піків струму на циклічних вольтамперограмах навіть вищі за платиновий електрод, тому гальванічні покриви сплавом Fe−Co−Mo можна розглядати як перспективні каталітичні матеріали паливних елементів. Високу електрокаталітичну активність покривів виявлено і в катодних реакціях виділення водню з лужних та кислих середовищ, яка внаслідок реалізації синергетичного ефекту вища порівняно із індивідуальними металами. Встановлено залежність між складом сплаву і каталітичними властивостями – більший вміст молібдену в цілому покращує якість покривів. Водночас, густина струму обміну реакції виділення водню на композитних покривах в усіх модельних розчинах вище, ніж для металевих, що узгоджується з результатами визначення виходу за струмом. Покривам притаманні магнітні властивості, а значення коерцитивної сили для покривів Fe−Co−Mo знаходиться в інтервалі 7−10 Ое, що перевищує значення для бінарного Fe−Co сплаву (6,5–7,2 Ое). Сплави Fe−Co−Mo, як "магнітом’які матеріали", можна застосовувати і у виробництві елементів магнітних інформаційних накопичувачів. Означений сплав виявляє сенсорні властивості щодо окремих компонентів газових середовищ та може бути використаний, зокрема, як матеріал чутливого елемента сенсора для визначення граничної концентрації водню. На підставі визначених кінетичних характеристик і технологічних струмозалежних параметрів створено програмний і технологічний модулі і запропоновано варіативну технологічну схему нанесення покривів Fe−Co−Мо(МоОₓ) керованого складу та прогнозованими фізико-механічними і фізико-хімічними властивостями. За результатами дослідно-промислових випробувань виробів та елементів обладнання з покривами тернарними сплавами на ПАТ "Укрндіхіммаш" та в Метрологічному центрі військових еталонів Збройних Сил України доведено високий рівень експлуатаційних характеристик синтезованих покривів та ефективність технології їх нанесення. Результати досліджень впроваджені в навчальний процес кафедри фізичної хімії НТУ "ХПІ" і Військового інституту танкових військ НТУ "ХПІ".
Thesis for the degree of Candidate of Technical Sciences in the speciality 05.17.03 – Technical Electrochemistry. – National Technical University «Kharkiv Polytechnic Institute» Kharkiv, 2019. The component composition of the electrolyte and the ratio of the concentrations of the alloys forming components in the ferum-cobalt-molybdenum system and the regularities of the complex formation in the presence of citrate, which became the basis for the development of electrolytes for metal deposition and metal oxide coatings are substantiated. It was found that high-quality coatings with a molybdenum content of more than 30 at.% Are formed from electrolytes with a concentration of sodium citrate of 0,4 – 0,5 М and oxometalate of 0,2 М. It is proved that the formation of heteronuclear complexes is a prerequisite for the flexible control of ionic equilibria in solution, the mechanism and overvoltage of electrode reactions, the course of which obeys the laws of mixed kinetics, which is confirmed and determined by the activation energy of the process. The reduction of the molybdate ion to the metal phase occurs by the formation of surface oxides of an intermediate oxidation state. Depending on the completeness of the course of this process, conditions are created for the formation of a metal coating of a ternary alloy or a metal oxide composite, the second phase of which consists of molybdenum oxides in an intermediate oxidation state, that is, is formed directly in the electrolysis process. The reduction of oxometalate can occur in several stages using both the electrochemical and chemical mechanisms, which include hydrogen ad-atoms and atoms that are formed in the cathodic reaction. It is this feature that provides the variability of the cathode process and allows flexible control of the stages, as well as the composition and properties of the product of the technological process. The main factors ensuring variability of the coating composition are polarization modes — galvanostatic and pulsed modes, and amplitude and time parameters of the current. At the same current densities, the use of pulsed electrolysis allows the formation of coatings with a significantly higher molybdenum content. In particular, with a constant pulse duration of 10–20 ms and pauses of 5–20 ms, the composition of the shells is enriched in molybdenum to 30 at.% With a significantly lower oxide content. Such changes in the composition of the coating compared with the stationary regime are due to the chemical reaction of the reduction of intermediate molybdenum oxides by hydrogen atoms as a result of the overflow effect. The higher content of the oxide phase in the composition of tournament alloys formed in the galvanostatic mode allows us to classify them as composites. With the same polarization mode, the parameters depending on the current are determined not only by the content of the components of the alloy or composite, but also by the morphology of the coating surface and the current efficiency. Under the conditions of stationary electrolysis, the efficiency of the alloy is in the range 56−62 %, and when using pulsed electrolysis, the efficiency of the process increases to 61–70 % due to the chemical reaction of the reduction of molybdenum oxides. hydrogen atoms of hydrogen. The dissipated ability of the electrolyte also depends on the current density and is extreme in nature with a maximum of 62% at i = 2.5 A/dm². Dissipation results are consistent with known electrolytes. Composite coatings Fe−Co−MoOₓ and metallic coatings Fe−Co−Mo have a fine-crystalline structure, surface development increases with increasing current density, and the nature and size of crystallites depends on the composition of the coatings and electrolysis conditions. So for Fe48Co40Mo12 coatings obtained by direct current, the average crystallite size is 63 Ǻ, and for Fe43Co39Mo18 coatings obtained in a pulsed mode, the average crystallite size is 56 Ǻ. Depending on the electrodeposition modes, the surface roughness also varies - in the galvanostatic and pulsed modes, the parameter Ra for the alloys is 0,15 and 0,11, respectively, which corresponds to grades 9-10. The synthesized coatings have a range of physico-chemical and physico-mechanical properties with a high level of performance. Thus, corrosion resistance testing shows that the depth of the index (0,018 – 0,02 mm/year) coatings are characterized as 4 points of resistance on a ten-point scale, and ranked according to the density of the corrosion current is "stable" in acidic solutions and "very stable" in neutral and alkaline solutions. Corrosion resistance to the acid solutions increases the presence of molybdenum through the acidic nature of its oxides, and in neutral and alkaline solutions the covers exhibit resistance due to passivation of iron and cobalt. The free energy of the surface of metal coatings and composites is in the range of 118-128 mJ/m², which is almost an order of magnitude lower than the alloys of the component and the surfaces of the Fe−Co−MoOₓ composites lower than the Fe−Co−Mo alloy due to the higher oxygen content in its structure. , causing the composites to be chemically stable. The microhardness of galvanic coatings is in the range of 595–630 kgf/mm² depending on the individual components and is 2,5–3 times higher than for steel. The microhardness of the coatings increases symbatically with an increase in the amount of molybdenum in the alloy and also increases with an increase in this parameter in the integral of current densities. The high adhesion of the coatings to the surface of the steel, resistance to polishing, heating and kink is established. The high electrocatalytic activity of ternary alloys in the reactions of anodic oxidation of low molecular weight alcohols was established, and the magnitude of the peaks of the anodic and cathodic currents in the cyclic voltammogram is even higher than that of the platinum electrode, so galvanic coatings with Fe−Co−Mo alloy can be considered a promising catalytic material for fuel cells. High electrocatalytic activity of the skin was also detected in cathodic reactions of hydrogen evolution from alkaline and acidic media, which is higher as a result of the synergistic effect compared to individual metals. A connection was established between the alloy composition and catalytic properties – a higher molybdenum content usually improves the quality of coatings. At the same time, the exchange current density of the hydrogen evolution reaction on composite coatings in all model solutions is higher than for metal coatings, which is consistent with the results of determining the current efficiency. The coatings have magnetic properties, and the value of the coercive force for Fe—Co−Mo coatings is in the range of 7-10 Oe, which is higher than the value for the Fe−Co alloy (6,5-7,2 Oe). Fe−Co−Mo alloys are "Magnetic materials" and can be used in the production of magnetic information storage elements. The alloy has sensory properties on the individual components of the gas environment and can be used, in particular, as a sensor material of the sensor to determine the maximum hydrogen concentration. Based on kinetic characteristics and technological parameters, software and technological module have been created and a variable technological scheme for applying Fe−Co−Mo(MoOₓ) coatings of controlled composition and predicted physicomechanical and physicochemical properties has been proposed. According to the results of tests and elements of equipment coated with ternary alloys at PJSC "Ukrndikhimmash" and at the Metrological center of military standards of the Armed Forces of Ukraine, a high level of operational characteristics of the synthesized coatings and the effectiveness of the technology for their synthesis have been proved. The research results were introduced into the educational process of the Department of Physical Chemistry NTU "KhPI" and the Military Institute of Tank Troops NTU "KhPI".
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Каракуркчі, Ганна Володимирівна. "Електрохімічне формування функціональних покриттів сплавами заліза з молібденом і вольфрамом". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/21865.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.03 – технічна електрохімія. – Національний технічний університет “Харківський політехнічний інститут”, Харків, 2015 р. Дисертацію присвячено розробці технології електрохімічного формування функціональних покриттів сплавами заліза з молібденом і вольфрамом із цитратних електролітів для одержання матеріалів з високою корозійною стійкістю, фізико-механічними та трибологічними характеристиками. На підставі аналізу кінетичних закономірностей встановлено механізм електрохімічного одержання сплавів Fe-Mo і Fe-Mo-W, за яким співосадження заліза з молібденом і вольфрамом із цитратного електроліту в інтервалі pH 3,0–4,0 відбувається за двома маршрутами: перший – стадійне відновлення металів із гетероядерних комплексів складу [FeHCitMO₄]⁻, (М = Mo, W), розряд яких супроводжується хімічною реакцією вивільнення ліганду, а другий – стадійне відновлення феруму (ІІІ) із цитратних електролітів переважно з адсорбованих комплексів складу [FeHCit]⁺, й частково – з FeOH²⁺, та супроводжується хімічною стадією вивільнення ліганду. Експериментальні дослідження функціональних властивостей електролітичних сплавів довели, що покриття Fe-Mo і Fe-Mo-W володіють підвищеною корозійною стійкістю у кислому середовищі, що зумовлене кислотним характером оксидів тугоплавких компонентів, у нейтральному – опором пітинговій корозії, що загалом перевищує хімічний опір сталі та чавуна. Запропоновані електролітичні сплави переважають за мікротвердістю основу зі сталі у 2–3 рази, а чавуну – у 4–5 рази, причому вміст вольфраму забезпечує зростання механічних та триботехнічних характеристик. Мікротвердість, антифрикційні властивості та зносостійкість електролітичних сплавів Fe-Mo і Fe-Mo-W зростають за рахунок утворення аморфної структури. Запропоновано технологічну схему електрохімічного формування функціональних покриттів сплавами заліза з молібденом і вольфрамом та розроблено технологічні інструкції для процесів їх осадження.
Thesis for granting the Degree of Candidate of Technical sciences in speciality 05.17.03 – Technical Electrochemistry. – National Technical University “Kharkiv Politechnical Institute”, 2015. The thesis is devoted to the development of technology for iron alloys electrochemical functional coatings with molybdenum and tungsten electrodeposition from citrate electrolyte to produce materials with high corrosion resistance, physical, mechanical and tribological properties. On the basis of kinetic regularities the mechanism of Fe-Mo, Fe-Mo-W alloys’ formation was established as co-precipitation of iron with molybdenum and tungsten in the range pH 3,0–4,0 happening on two routes, one-alloying metals reduction from heteronuclear complexes [FeHCitMO₄]⁻ is accompanied by chemical reaction of ligand releasing, and the second-reduction of iron (III) from the adsorbed complexes [FeHCit]⁺ and in part – from FeOH²⁺ accompanied by the chemical stage of ligand release. Experimental study of the electrolytic alloys functional properties have shown the high corrosion resistance of FeMo and Fe-Mo-W coatings in acidic and neutral media stimulated by acidic nature of refractory oxide components which exceeds the resistance of steel and cast iron. Proposed electrolytic alloys dominated by microhardness steel substrates in 2–3 times, and cast iron – in 4–5 times, the increasing tungsten content provides increasing in physical, mechanical and tribological properties of electrolytic alloys due to the formation of amorphous structure. A technological scheme for electrochemical synthesis of iron alloys functional coatings with molybdenum and tungsten was designed and technological instructions were prepared for implementation.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії