Добірка наукової літератури з теми "Метод ab initio"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Метод ab initio".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Метод ab initio"

1

Князев, Ю. В., А. В. Лукоянов, Ю. И. Кузьмин, S. Gupta та K. G. Suresh. "Ab initio моделирование электронной структуры и оптическая спектроскопия соединения ErRhGe". Физика твердого тела 59, № 7 (2017): 1251. http://dx.doi.org/10.21883/ftt.2017.07.44582.455.

Повний текст джерела
Анотація:
Представлены результаты исследования электронной структуры и оптических свойств соединения ErRhGe. В приближении локальной электронной спиновой плотности с поправкой на сильные электронные взаимодействия в 4f-оболочке редкоземельного металла (метод LSDA+U) проведены расчеты зонного спектра с учетом спиновой поляризации. В широком интервале длин волн эллипсометрическим методом измерены значения оптических постоянных соединения, определен ряд спектральных и электронных характеристик. Структурные особенности спектра оптической проводимости в области межзонного поглощения света интерпретированы на основе рассчитанной плотности электронных состояний. Работа выполнена в рамках государственного задания ФАНО России (тема "Электрон", N 01201463326) при частичной поддержке РФФИ (проект N 17-02-00412). А.В. Лукoянов благодарит за поддержку Правительство РФ (постановление N 211, контракт N 02.A03.21.0006) и стипендиальную программу Президента РФ СП-226.2015.2. DOI: 10.21883/FTT.2017.07.44582.455
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Асадов, М. М., С. Н. Мустафаева, С. С. Гусейнова та В. Ф. Лукичев. "Ab initio расчеты электронных свойств и перенос заряда в Zn-=SUB=-1-x-=/SUB=-Cu-=SUB=-x-=/SUB=-O со структурой вюртцита". Физика твердого тела 64, № 5 (2022): 528. http://dx.doi.org/10.21883/ftt.2022.05.52332.270.

Повний текст джерела
Анотація:
Представлены результаты исследования электронной структуры, влияния локального окружения примеси Cu на свойства и формированный магнитный момент в суперъячейках Zn1-xCuxO со структурой вюртцита. В приближении локальной электронной плотности (LDA) и обобщенной градиентной аппроксимации (GGA) с поправкой на спиновую поляризацию и сильные электронные взаимодействия (U --- кулоновское взаимодействие) в 3d-оболочке катионов Zn и Cu (методы DFT LSDA + U и SGGA + U) проведены расчеты зонного спектра: зонная структура, плотность состояний электронные и магнитные свойства. Установлено, что легированные медью кристаллы на основе ZnO являются прямозонными полупроводниками. Представлены результаты ab initio моделирования энергии образования дефектов в легированном медью оксиде цинка, содержащего ряд устойчивых собственных и примесных дефектов в различных зарядовых состояниях. В широком интервале частот проанализированы частотные зависимости электрических и диэлектрических характеристик образцов Zn1-xCuxO (где x=0, 0.01 и 0.02). Показано, что в области частот 1.8·10^4-4.3·105 Hz ac-проводимость Zn1-xCuxO подчинялась закономерности, характерной для прыжковой модели переноса заряда по локализованным вблизи уровня Ферми состояниям. Определены основные параметры локализованных состояний в Zn1-xCuxO. Ключевые слова: ZnO, легирование медью, теория функционала плотности, зонные расчеты, электронная структура, локализованный магнитный момент, энергии образования дефектов, перенос заряда, параметры локализованных состояний.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Захаров, П. В., М. Д. Старостенков, А. В. Маркидонов, И. С. Луценко та С. А. Сафронова. "AB INITIO И МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДИСКРЕТНЫХ БРИЗЕРОВ В КРИСТАЛЛЕ Pt3Al". Фундаментальные проблемы современного материаловедения, № 4 (23 січня 2020). http://dx.doi.org/10.25712/astu.1811-1416.2019.04.003.

Повний текст джерела
Анотація:
В работе посредством первопринципного подхода и метода молекулярной динамики исследуются свойства кристалла Pt3Al на предмет возможности существования таких солитоноподобных объектов как дискретные бризеры. Платиновые сплавы применяются во многих областях науки и техники, отличаются жаростойкостью и устойчивостью к коррозии, являются перспективными для микроэлектроники. Рассмотрены методические аспекты построения моделей кристалла, с анализом достоинств и недостатков каждого метода. На основе abinitio расчетов получены такие характеристики кристалла как распределение плотности фононных состояний, дисперсионные кривые, распределение электронной плотности. Опираясь на теорию функционала плотности показано, что спектр кристалла не имеет запрещенной зоны в фононном спектре, произведено сравнение данного спектра с полученным ранее методом молекулярной динамики фононным спектром. Рассмотрено распределение электронной плотности вблизи атома Al в положении равновесия и при смещении на 0,5 . Приведена зависимость координаты атома Al относительно положения равновесия для первоначальных амплитуд: 0,5, 0,6, и 0,7 , в течение первых двух пикосекунд колебаний. Наиболее устойчивые колебания были зафиксированы при начальной амплитуде 0,6 . Установившаяся амплитуда соответствовала значениям 0,2-0,25 и частотам 5,5-5 ТГц соответственно. Устойчивость колебаний обусловлена наименьшей плотностью фононного спектра в указанном интервале частот. Результаты свидетельствуют в пользе концепции дискретныхбризеров в рассматриваемом кристалле. Приведенные результаты не противоречат имеющимся данным и могут быть полезны при создании материалов с уникальными свойствами, в дизайне наноматериалов и разработке новых технологий на их основе.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kovalenko, Liliya Yu, Vladimir A. Burmistrov та Dmitrii A. Zakhar’evich,. "Состав и структура фаз, образующихся при термолизе твердых растворов замещения H2Sb2-xVxO6·nH2O". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, № 1 (17 березня 2020). http://dx.doi.org/10.17308/kcmf.2020.22/2507.

Повний текст джерела
Анотація:
В соединениях, кристаллизующихся в структурном типе пирохлора (пр. гр. симм. Fd3m) общей формулы А2В2X6X’, на месте катионов A могут находиться двух- или трёхзарядные ионы, на месте B – четырёх- или пятизарядные ионы. В большом количестве работ рассматриваются вопросы формирования таких структур в зависимости от природы и размеров катионов A и B, мало внимания уделяется определению температурных интервалов их устойчивости. Поэтому целью данной работы являлось исследование термолиза твердых растворов замещения H2Sb2–xVxO6·nH2Oв интервале температур 25–700 °С, определение влияния природы катиона B (Sb, V) на устойчивость структуры типа пирохлора при нагревании.Твердые растворы замещения были получены методом соосаждения. В качестве объектов исследования выбраны образцы H2Sb2–xVxO6·nH2O, содержащие по данным элементного анализа 0; 5 (x = 0.10); 15 (x = 0.30); 20 (x = 0.40); 24 (x = 0.48) ат.% ванадия. С помощью метода ИК-спектроскопии анализировали изменение протонгидратной подрешетки в образцах, содержащих различное количество V+5. Рентгенофазовый и термогравиметрический анализ образцов позволил смоделировать процесс термолиза и определить состав фаз на каждой стадии.Показано, что при температурах 25–400 °С происходит удаление протонсодержащих группировок из гексагональных каналов структуры типа пирохлора. Увеличение количества ионов V+5 в твердых растворах изменяет энергию связи протонов с ионами кислорода [BO3]–-октаэдра, что приводит к смещению границ стадий: ионы оксония и молекулы воды удаляются при более высоких температурах, а гидроксид-ионы при более низких температурах. Повышениетемпературы выше 500 °С приводит к разрушению структуры по причине удаления кислорода из [BO3]–-октаэдров.Предложена модель заполнения атомами кристаллографических позиций структуры типа пирохлора для фаз, которые образуются при термолизе H2Sb2–xVxO6·nH2O при температурах 25–400 °С.Установлены структурные формулы твердых растворов - (H3O)Sb2-xVxO5(OH)·nH2O, где 0 < x≤ 0.48, 0 <n≤ 1.1. Показано, что на температурные интервалы стадий термолиза влияет энергия связи протонов с ионами кислорода [BO3]–-октаэдров, где B = V, Sb, формирующих каркас структуры. При этом в рамках структуры типа пирохлора исследуемые твердые растворы устойчивы до 400 °С. ЛИТЕРАТУРА Subramanian M. A., Aravamudan G., Rao G. V. S. Oxide pyrochlores — A review. Progress in Solid State Chemistry. 1983;15(2): 55–143. DOI: https://doi.org/10.1016/0079-6786(83)90001-8 Krasnov A. G., Piir I. V., Koroleva M. S., Sekushin N. A., Ryabkov Y. I., Piskaykina M. M., Sadykov V. A., Sadovskaya E. M., Pelipenko V. V., Eremeev N. F. The conductivity and ionic transport of doped bismuth titanate pyrochlore Bi1.6МxTi2O7–d (М– Mg, Sc, Cu). Solid State Ionics. 2017;302: 118–125. DOI: https://doi.org/10.1016/j.ssi.2016.12.019 Cherednichenko L. A., Moroz Ya. A. Catalytic properties of heteropolytungstates with 3d elementsand their thermolysis products. Kinetics and Catalysis. 2018;59(5): 572–577. DOI: https://doi.org/10.1134/S0023158418050038 Krasnov A. G., Kabanov A. A., Kabanova N. A., Piir I. V., Shein I. R. Ab initio modeling of oxygen ionmigration in non-stoichiometric bismuth titanate pyrochlore Bi1.5Ti2O6.25. Solid State Ionics. 2019;335: 135–141. DOI: https://doi.org/10.1016/j.ssi.2019.02.023 Farlenkov A. S., Khodimchuk A. V., Eremin V. A., Tropin E. S., Fetisov A. V., Shevyrev N. A., Leonidov I. I., Ananyev M. V. Oxygen isotope exchange in doped lanthanum zirconates. Journal of Solid State Chemistry. 2018;268: 45–54. DOI: https://doi.org/10.1016/j.jssc.2018.08.022 Rejith R. S., Thomas J. K., Solomon S. Structural, optical and impedance spectroscopic characterizations of RE2Zr2O7 (RE = La, Y) ceramics. Solid State Ionics. 2018;323: 112–122. DOI: https://doi.org/10.1016/j.ssi.2018.05.025 Егорышева А. В., Эллерт О. Г., Гайтко О. М., Берсенева А. А., Максимов Ю. В., Дудкина Т. Д. Магнитные свойства твердых растворов со структурой типа пирохлора Pr2-xFe1+xSbO7, Bi2–xLnxFeSbO7 (Ln = La, Pr). Неорганические материалы. 2016;52(10): 1106–1115. DOI: https://doi.org/10.7868/S0002337X16100079 Rau J. G., Gingras M. J. P. Frustrated quantum rare-earth pyrochlores. Annual Review of Condensed Matter Physics. 2019;10(1): 357-386. DOI: https://doi.org/10.1146/annurev-conmatphys-022317-110520 Ломанова Н. А., Томкович М. В., Соколов В. В., Уголков В. Л. Формирование и термическое поведение нанокристаллического Bi2Ti2O7. Журнал общей химии. 2018;88(12): 1937–1942. DOI: https://doi.org/10.1134/S0044460X18120016 Liu X., Huang L., Wu X., Wang Z., Dong G., Wang C., Liu Y., Wang L. Bi2Zr2O7 nanoparticles synthesized by soft-templated sol-gel methods for visiblelight-driven catalytic degradation of tetracycline. Chemosphere. 2018;210: 424–432. DOI: https://doi.org/10.1016/j.chemosphere.2018.07.040 Weller M. T., Hughes R. W., Rooke J., Knee Ch. S., Reading J. The pyrochlore family – a potential panacea for the frustrated perovskite chemist. Dalton Transactions. 2004;19: 3032–3041. DOI: https://doi.org/10.1039/B401787K Knop O., Brisse F., Meads R. E., Brainbridge J. Pyrochlores. IV. Crystallographic and mossbauer studies of A2FeSbO7 pyrochlores. Canadian Journal of Chemistry. 1968;46: 3829–3832. DOI: https://doi.org/10.1139/v68-635 Sadykov V. A., Koroleva M. S., Piir I. V., Chezhina N. V., Korolev D. A., Skriabin P. I., Krasnov A. V., Sadovskaya E. M., Eremeev N. F., Nekipelov S. V., Sivkov V. N. Structural and transport properties of doped bismuth titanates and niobates. Solid State Ionics. 2018;315: 33–39. DOI: https://doi.org/10.1016/j.ssi.2017.12.008 Егорышева А. В., Попова Е. Ф., Тюрин А. В., Хорошилов А. В., Гайтко О. М., Светогоров Р. Д. Сложные танталаты РЗЭ с пирохлороподобной структурой: синтез, структура и термические свойства. Журнал неорганической химии. 2019;64(11):1154–1165. DOI: https://doi.org/10.1134/S0044457X19110059 McCauley R. A. Structural characteristics of pyrochlore formation. Journal of Applied Physics. 1980;51(1): 290–294. DOI: https://doi.org/10.1063/1.327368 Лупицкая Ю. А., Бурмистров В. А. Фазообразование в системе K2CO3–Sb2O3–WO3 при нагревании. Журнал неорганической химии. 2011; 56 (2): 329–331. Режим доступа: https://www.elibrary.ru/download/elibrary_15599328_91286141.pdf Piir I. V., Koroleva M. S., Korolev D. A., Chezina N. V., Semenov V. G., Panchuk V. V. Bismuth iron titanate pyrochlores: Thermostability, structure and properties. Journal of Solid State Chemistry. 2013;204: 245–250. DOI: https://doi.org/10.1016/j.jssc.2013.05.031 Лупицкая Ю. А., Калганов Д. А., Клюева М. В. Образование cоединений в системе Ag2O-Sb2O3-MoO3 при нагревании. Неорганические материалы. 2018;54(3): 252–256. DOI: https://doi.org/10.7868/S0002337X18030053 Lomakin M. S., Proskurina O. V., Danilovich D. P., Panchuk V. V., Semenov V. G., Gusarov V. V. Hydrothermal synthesis, phase formation and crystal chemistry of the pyrochlore/Bi2WO6 and pyrochlore/a-Fe2O3 composites in the Bi2O3–Fe2O3–WO3 system. Journal of Solid State Chemistry. 2019. DOI: https://doi.org/10.1016/j.jssc.2019.121064 Yang J., Han Y., Shahid M., Pan W., Zhao M., Wu W., Wan C. A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7. Scripta Materialia. 2018;149: 49–52. DOI: https://doi.org/10.1016/j.scriptamat.2018.02.005 Коваленко Л. Ю., Бурмистров В. А., Лупицкая Ю. А., Ковалев И. Н., Галимов Д. М. Синтез твёрдых растворов H2Sb2–xVxO6·nH2O со структурой типа пирохлора. Бутлеровские сообщения. 2018;55(8): 24–30. ROI: jbc-01/jbc-01/18-55-8-24 Коваленко Л. Ю., Бурмистров В. А. Диэлектрическая релаксация и протонная проводимость полисурьмяной кислоты, допированной ионами ванадия. Конденсированные среды и межфазные границы. 2019;21(2): 204–214. DOI: https://doi.org/10.17308/kcmf.2019.21/758 Трофимов В. Г., Шейнкман А. И., Клещев Г. В. О пятиокиси сурьмы в кристаллическом состоянии. Журнал структурной химии. 1973;14(2): 275–279. Коваленко Л. Ю., Ярошенко Ф. А., Бурмистров В. А., Исаева Т. Н., Галимов Д. М. Термолизгидрата пентаоксида сурьмы. Неорганические материалы. 2019;55(6): 628–634. DOI: https://doi.org/10.1134/S0002337X19060083 Chen J., Chen Z., Zhang X., Li X., Yu L., Li. D. Antimony oxide hydrate (Sb2O5·3H2O) as a simple and high effi cient photocatalyst for oxidation of benzene. Applied Catalysis B: Environmental. 2018;210: 379–385. DOI: https://doi.org/10.1016/j.apcatb.2017.04.004 Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Yaroshenko F. A., Filonenko E. M., Bulaeva E. A. Ion exchange of H+/Na+ in polyantimonic acid, doped with vanadium ions. Pure and Applied Chemistry. 2019. DOI: https://doi.org/10.1515/pac-2019-0112 Юхневич Г. В. Успехи в применении ИК-спектроскопии для характеристики ОН-связей. Успехи химии. 1963;32(11): 1397–1423. DOI: https://doi.org/10.1070/RC1963v032n11ABEH001370 Тарасова Н. А., Анимица И. Е. Влияние природы галогена на локальную структуру и интеркалацию воды в оксигалогенидах Ba2InO3X (X = F, Cl, Br). Оптика и спектроскопия. 2018;124(2): 167–170. DOI: https://doi.org/10.21883/OS.2018.02.45518.171-17 Дерягин Б. В., Чураев Н. В., Овчаренко Ф. Д., Тарасевич Ю. И., Букин В. А., Сарвазян А. П., Харакоз Д. П., Саушкин В. В. Вода в дисперсных системах. М.: Химия; 1989. 288 с. Ферапонтов Н. Б., Вдовина С. Н., Гагарин А. Н., Струсовская Н. Л., Токмачев М. Г. Свойства воды в гелях гидрофильных полимеров. Конденсированные среды и межфазные границы. 2011; 13(2): 208–214. Режим доступа: http://www.kcmf.vsu.ru/resources/t_13_2_2011_015.pdf Frenkel L. S. Nuclear magnetic resonance method for determining the moisture holding capacity of cation exchange resins as a function of temperature. Analytical Chemistry. 1973;45(8): 1570–1571. DOI: https://doi.org/10.1021/ac60330a052 Карговский А. В. Водные кластеры: структуры и оптические колебательные спектры. Известия вузов. Прикладная нелинейная динамика. 2006;14(5): 110–119. DOI: https://doi.org/10.18500/0869-6632-2006-14-5-110-119 Eisenberg D., Kauzmann W. The structure and properties of water. Oxford: Oxford University Press; 1969. 296 p. Yu T., Zhang H., Cao H., Zheng G. Understanding the enhanced removal of Bi(III) using modifi ed crystalline antimonic acids: creation of a transitional pyrochlore-type structure and the Sb(V)-Bi(III) interaction behaviors. Chemical Engineering Journal. 2019;360: 313–324. DOI: https://doi.org/10.1016/j.cej.2018.11.209 Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds: Part A: Theory and applications inorganic chemistry (Sixth ed.). New York: John Wiley & Sons; 2009. 419 p. DOI: https://doi.org/10.1002/9780470405840 Birchall T., Sleight A. W. Oxidation states in vanadium antimonate (“VSbO4”). Inorganic Chemistry. 1976;15(4): 868–870. DOI: https://doi.org/10.1021/ic50158a026 Guerrero-Pérez M. O. V-containing mixed oxide catalysts for reduction–oxidation-based reactions with environmental applications: A short review. Catalysts. 2018;8(11): 564. DOI: https://doi.org/10.3390/catal8110564 Котов В. Ю., Ярославцев А. Б. Протонная подвижность в неорганических гидратах кислот и кислых солей. Известия Академии наук. Серия химическая. 2002;4: 515–528. Полинг Л. Природа химической связи. М.:Ленинград: Госхимиздат; 1947. 116 с.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Метод ab initio"

1

Булавін, Віктор Іванович, та Андрій Вікторович Крамаренко. "Термодинамічні характеристики іонізації гідрогенфлюориду у метанолі та етанолі". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2009. http://repository.kpi.kharkov.ua/handle/KhPI-Press/47198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Метод ab initio"

1

Соловйов, Володимир Миколайович, та Сергей Александрович Томилин. Эмпирические потенциалы для моделирования разупорядоченных структур. Видавничий відділ КДПУ, 2001. http://dx.doi.org/10.31812/0564/1029.

Повний текст джерела
Анотація:
Метод молекулярной динамики, являющийся одним из численных методов физики твердого тела, позволяет получить полную картину эволюции молекулярных систем. Основу метода составляет численное интегрирование уравнений Ньютона для системы частиц (материальных точек), под которыми понимаются отдельные атомы или фрагменты молекул, взаимодействие между которыми определяется выбранным потенциалом. Задание координат и скоростей всех частиц в исходный момент времени полностью определяет дальнейшее поведение системы. Усреднение пространственных конфигураций частиц по траекториям их движения, а также скоростей и энергетических характеристик позволяет получить информацию о структуре ансамбля частиц, о термодинамических и кинетических свойствах системы, дает возможность рассчитывать макроскопические свойства материалов. Для интегрирования уравнений движения был выбран аддитивный алгоритм Верле. Он характеризуется повышенной устойчивостью и быстрой релаксацией системы к равновесному положению, при этом выбор потенциала межатомного взаимодействия является решающим фактором, обеспечивающим точность расчетов в методе молекулярной динамики. Потенциал должен как можно точнее соответствовать реальному взаимодействию частиц в кристалле. Хотя методы ab initio приобретают все более важное значение, моделирование кластеров размером в несколько тысяч атомов, содержащих к тому же структурные несовершенства на длительных промежутках времени, проблематично. По этой причине поиск новых потенциалов межатомного взаимодействия, является актуальным.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії