Добірка наукової літератури з теми "Кут падіння"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Кут падіння".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Кут падіння"

1

Антощенко, М. І., Є. С. Руднєв, Е. М. Філатьєва, І. В. Мелконова та Г. Л. Мелконов. "Про вибір показників ступеня метаморфізму вугілля для прогнозу небезпечних властивостей шахтопласту". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 5 (269) (10 вересня 2021): 47–60. http://dx.doi.org/10.33216/1998-7927-2021-269-5-47-60.

Повний текст джерела
Анотація:
Ідея роботи полягає у вивченні статистичних моделей окремих показників пилоутворювальної здатності вугільних шахтопластів, відомих з нормативно-довідкових даних за якістю і властивостями викопного вугілля. Зокрема в посібнику [4] наведені дані (каталог) про пилоутворювальні здатності більш ніж для двох тисяч шахтопластів. Чинниками першого блоку, що визначають склад і властивості вугілля є вихід летких речовин при термічному розкладанні вугілля без доступу повітря (Vdaf), вологість вугілля (Wt), вміст пилу в відбитому вугіллі (N) і питоме пиловиділення (q). Крім цих показників першого блоку, при визначенні груп пластів за пиловим фактором враховувалися фактори другого блоку - потужність пласта (m) та кут його падіння (α) з градацією відповідно до 35° і більше 35° [4]. По своїй суті значення застосовуваних показників першого блоку (Vdaf, W, N, q) є наслідком впливу метаморфічних процесів перетворення вугільних шахтопластів, а другого (α, m) - відносяться до гірничо-геологічними умовами залягання пластів. Статистичні моделі розподілу цих факторів дозволяють встановити зв'язки між ними і можливість їх використання для вдосконалення прогнозу пилоутворення та інших небезпечних властивостей шахтопластів.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Лупіна, Т. О., Є. Т. Горалік та М. М. Крюков. "РУХ РЯТУВАЛЬНОЇ ШЛЮПКИ ВІЛЬНОГО ПАДІННЯ ПРИ СХОДЖЕННІ З ПОХИЛОЇ РАМПИ". Vodnij transport, № 2(33) (14 грудня 2021): 23–35. http://dx.doi.org/10.33298/2226-8553.2022.2.33.03.

Повний текст джерела
Анотація:
В статті наведено короткий огляд історії створення та розробок рятувальних шлюпок вільного падіння (РШВП), призначених для термінової безпечної евакуації людей з морських суден та морських нафтодобувних платформ у випадку аварій за екстремальних погодних умов. Розглядається задача про рух РШВП, яка моделюється однорідним стрижнем, при сходженні з похилої рампи протягом першої фази падіння з наростаючим кутом нахилу (тангажу -tangage)–з моменту, коли центр мас шлюпки опиняється над краєм опори (крайнім роликом рампи) , до моменту сходу з рампи кінця опорних поверхонь шлюпки.Диференціальні рівняння руху в полярних координатах складені за допомогою рівнянь Лагранжа другого роду. Отриманорозв’язувальну систему звичайних диференціальних рівнянь і сформульовано відповідну задачу Коші, яка розв’язується чисельно за допомогою методу Рунге-Кутта четвертого порядку точності. На основі запропонованого підходу проведеночисельні експерименти длявизначення часу скочування РШВП, швидкості її центру мас, кутів повороту та кутової швидкості шлюпки в момент відриву від рампи при значенні кута нахилу рампи та різних значеннях початкової швидкості центру мас в діапазоні від 1 до 10 м/с і довжини шлюпки в діапазоні від 5 до 15 м.За результатами чисельних експериментівздійснено аналіз впливу початкової швидкості і довжини РШВП на параметри її руху при сходженні з похилої рампи. Розрахункові значення часу першої фази падіння, кута тангажу, кутової швидкості тангажу та модуля швидкості центру мас РШВП в ході виконаних чисельних експериментів змінювались в діапазоні 1,424 -0,234 с,, та м/свідповідно. При цьому зі збільшенням довжини шлюпки час першої фази падіння зростає, а зі збільшенням початкової швидкості зменшується. Кути тангажу зі збільшенням швидкості зменшуються, а зі збільшенням довжини шлюпки зростають, в той час як кутові швидкості тангажу зі збільшенням початкової швидкості так само, які зі збільшенням довжини шлюпки спадають. За результатами роботи зроблено висновок про можливість використання запропонованогопідходу і чисельних експериментів для раціонального вибору параметрів руху РШВП та напрямів подальших досліджень.Ключові слова:рятувальна шлюпка вільного падіння, плоско-паралельний рух, стрижень, похила рампа, рівняння Лагранжа другого роду, звичайні диференціальні рівняння, задача Коші, чисельне моделювання, метод Рунге-Кутта.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Slabinoga, M. O., Yu M. Kuchirka, О. S. Krynytskyi та N. M. Yurkiv. "МОДЕЛЮВАННЯ ЗАЛЕЖНОСТІ ЗМІНИ ПОТУЖНОСТІ СОНЯЧНИХ ПАНЕЛЕЙ ВІД КУТА ПАДІННЯ ПРОМЕНІВ". METHODS AND DEVICES OF QUALITY CONTROL, № 2(41) (22 листопада 2018): 18–24. http://dx.doi.org/10.31471/1993-9981-2018-2(41)-18-24.

Повний текст джерела
Анотація:
У роботі було проаналізовано сучасний стан та перспективи досліджень у галузі математичного моделювання технологічних процесів в контексті сонячної енергетики. Було розглянуто фізичні та математичні моделі сонячних панелей, а також розглянуто теоретичні основи перетворення енергії у сонячних панелях, які покладено в основу принципу їх функціонування. На основі проведеного аналізу в роботі було розроблена математичну модель залежності потужності сонячної панелі від кута повороту. Розроблена модель враховує температуру навколишнього середовища, температуру, що отримала панель у процесі функціонування, вплив вітру на температуру панелі, а також вплив часу доби, дня року, кутів нахилу панелі відносно сонця, можливостей світловідбивання оточуючого середовища. Також, в даній моделі враховується вплив характеристик самої панелі, та її допоміжних елементів функціонування, на отримувану споживачем потужність. В роботі було проведено апробацію даної математичної моделі, результати якої вказують на можливість її застосування для моделювання функціонування панелі при різних характеристиках навколишнього середовища. Розроблене відповідне програмне забезпечення для генерування експериментальних даних залежності сили продукованого струму від кута нахилу панелі, позиції сонця, метеорологічних умов, світловідбиваючих властивостей поверхні, тощо. Сформовано висновки та визначено подальші перспективи щодо використання такого математичного та програмного забезпечення для вирішення наукових та практичних задач.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Slabinoga, M. О., N. V. Klochko, A. G. Vynnychuk та S. P. Sapa. "РОЗРОБЛЕННЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ДЛЯ ДОСЛІДЖЕННЯ ЗМІНИ ПОТУЖНОСТІ СОНЯЧНИХ ПАНЕЛЕЙ ВІД КУТА ПАДІННЯ ПРОМЕНІВ". METHODS AND DEVICES OF QUALITY CONTROL, № 2(41) (10 грудня 2018): 113–19. http://dx.doi.org/10.31471/1993-9981-2018-2(41)-113-119.

Повний текст джерела
Анотація:
В роботі було проведено розроблення програмного забезпечення для дослідження зміни потужності сонячних панелей від кута падіння променів, що є актуальною задачею у вирішенні проблеми підвищення ефективності функціонування засобів генерації «зеленої» електроенергії, зокрема сонячних електростанцій. Для цього, було проаналізовано проблему дослідження ефективності застосування сонячних панелей у фіксованій позиції та на рухомому кріпленні. Сформовано мету та задачі дослідження. Вибрано засоби для реалізації програмного забезпечення та наведено їх переваги при вирішенні даної задачі. Проведено експериментальні дослідження залежності потужності продукованого сонячною панеллю струму в залежності від позиції сонячної панелі, наведено алгоритм роботи програмного забезпечення. Проведено обробку отриманих результатів з метою отримання відфільтрованого графічного образу, представленого у вигляді матриці значень. Для цього здійснено порівняння методів фільтрації значень матриці від промахів та згладжування локальних максимумів. Також, приведено опрацьовані зображення до заданого розміру методами інтерполяції. Наведено кінцевий результат у вигляді рисунків поверхонь на основі матричних значень. Сформульовано подальші перспективи застосування отриманих даних для вирішення науково-практичних задач в галузі сонячної енергетики та наведено напрямки подальших досліджень. Результати роботи будуть використані в подальших дослідженнях з порівняння ефективності застосування сонячних панелей у фіксованій позиції та на рухомому кріпленні.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Безуглий, Анатолій Васильович, та Олександр Матвійович Петченко. "Комп’ютерне моделювання механічного руху в фізичному практикумі". New computer technology 5 (2 листопада 2013): 10–11. http://dx.doi.org/10.55056/nocote.v5i1.52.

Повний текст джерела
Анотація:
Методичні розробки, які реалізуються за допомогою ПК, збагачують віртуальний фізичний практикум та надають можливість засвоєння фізичних явищ та їх законів при реалізації дистанційного навчання.В даній роботі пропонується дві віртуальні лабораторні роботи з вивчення механічного руху: “Визначення прискорення вільного падіння” та“Вимірювання коефіцієнта в’язкості рідини за методом Стокса”, що реалізуються за допомогою однієї комп’ютерної програми.Прискорення вільного падіння g визначається за прямими вимірюваннями часу t та висоти падіння h. Відстань H, яке тіло проходить за час t, визначається за кінематичним законом руху:H=gt2/2, (1)Якщо виміряти час падіння кульки з різної висоти та побудувати графік залежності від t, то згідно з (2) отримаємо пряму, тангенс кута нахилу якої до вісі t буде дорівнювати .Графік залежності від t дає можливість обчислити значення g за формулоюПрограма моделює рух тіла, який користувач спостерігає на екрані, в широких межах зміни густини середовища ρ та коефіцієнта в’язкості , а також в частинному випадку, коли , , тобто, у вакуумі. Одновимірний рух тіла (кульки) описується за допомогою модифікованого метода Ейлера з урахуванням всіх сил, які діють на кульку: сили тяжіння, сили Архімеда та сили внутрішнього тертя. Шлях падіння кульки вимірюється за шкалою, на якій нанесені поділки в метрах. Час падіння кульки вимірюється секундоміром. На екрані дисплею виведені кнопки регулювання секундоміра для ввімкнення, вимкнення та скидання до нуля. Програма дозволяє зупинити процес падіння в будь-який момент, а потім або продовжити із збереженими значеннями величин на цей момент часу, або повернутися до початкового моменту.При виконанні роботи користувач встановлює у вікні інтерфейсу (рис. 1) значення густини та в’язкості, скидає секундомір, встановлює висоту, згідно з номером варіанту. Одразу ж після запуску програми, вмикає секундомір. В момент досягнення кулькою дна судини, вимикає секундомір і заносить в таблицю значення висоти та часу падіння для кожного значення висоти падіння. Побудувавши графік залежності від t, обчислюють величину g за формулою (3).Метою наступної роботи є вивчення особливостей руху кульки у в’язкій рідині та визначення в‘язкості рідини за методом Стокса. При моделюванні руху кульки для обчислення сили внутрішнього тертя використовується формула Стоксаде r – радіус кульки,  – коефіцієнт в‘язкості рідини, V – швидкість кульки відносно рідини.Оскільки вимірювання часу треба виконувати для рівномірного руху, програмою передбачено виведення на екран риски в момент, коли всі сили, що діють на кульку, врівноважуються. З цього моменту рух кульки стає рівномірним. На екран виведено два секундоміри. Один вмикається з початком руху кульки і вимикається автоматично, коли кулька досягає дна судини. Другий можна вмикати і вимикати від руки, клацаючи мишкою на кнопки вмикання та вимикання. Радіус, масу кульки, висоту судини можна змінювати як завгодно, маючи тільки на увазі, що радіус кульки повинен залишатися меншим за діаметр судини. Але якщо ви й забудете про це, програма нагадає, висвітить зауваження. На панелі інтерфейсу також виведені параметри зображення, які можна змінювати, такі, як кольори рідини і кульки та радіус зображення кульки.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Поляшенко, Сергей. "Визначення продуктивності транспортерів бурякозбиральних машин". Науковий жарнал «Технічний сервіс агропромислового лісового та транспортного комплексів», № 21 (7 грудня 2020): 148–55. http://dx.doi.org/10.37700/ts.2020.21.148-155.

Повний текст джерела
Анотація:
Конвеєри є складовою, невід'ємною частиною сучасного технологічного процесу, вони встановлюють і регулюють темп виробництва, забезпечують його ритмічність, сприяють підвищенню продуктивності праці і збільшення випуску продукції. Проектування скребкових транспортерів бурякозбиральних машин ведеться головним чином на основі накопиченого досвіду і шляхом послідовних наближень (проектування, випробування, коригування конструкції і т.д.). Однією з основних вимог, що пред’являються до конструкції транспортерів бурякозбиральних машин, є забезпечення якості продукції коренеплодів цукрового буряка при вивантаженні їх в кузов транспортного засобу. Робота транспортера залежить від десяти основних параметрів, варіювання яких дає десятки тисяч комбінацій. Tpaєктopія падіння коренеплодів при вивантаженні транспортером визначається конструктивними і кінематичними і розмірними характеристиками вороха коренеплодівТраєкторія падіння коренеплодів при відриві від полотна транспортера визначалася аналітично, при цьому діаметр коренеплодів розглядався як дискретна випадкова величина. Однією з найбільш актуальних завдань є визначення формул для обчислення продуктивності, яка залежить як від ряду конструктивних параметрів самого транспортера, так і від розмірних характеристик вороху бурякових коренеплодів. Для дослідження були застосовані методи планування повного факторного експерименту. Отримані регресійні залежності для великих і середніх коренеплодів, які треба враховувати для отримання максимальної продуктивності транспортерів бурякозбиральних машин. Чисельний аналіз отриманих регресійних залежностей показує, що в дослідженому ФП величина продуктивності приблизно прямо пропорційна висоті скребка і обернено пропорційна куту нахилу полотна відносно горизонтальної площини. Величина продуктивності нелінійно залежить від швидкості транспортера, причому для фіксованих значень висоти скребка і куту нахилу полотна продуктивність має максимум при значеннях швидкості транспортера > 1,4 м/с.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Savchuk, V. P., D. O. Zinchenko та O. V. Akimov. "МОДЕЛЮВАННЯ РОБОЧИХ ПАРАМЕТРІВ МОТИЛЕВИХ ПІДШИПНИКІВ МАЛООБЕРТОВОГО СУДНОВОГО ДИЗЕЛЬНОГО ДВИГУНА WARTSILA RT-FLEX82C". Transport development, № 1(8) (29 квітня 2021): 91–102. http://dx.doi.org/10.33082/td.2021.1-8.09.

Повний текст джерела
Анотація:
Вступ. Системне моделювання та аналіз стану підшипників кривошипно-шатун- ного механізму може значно поліпшити розуміння механізму контактної взаємодії робочих поверхонь, пов’язаного з динамічними характеристиками, і є ефективним методом для визначення граничних значень експлуатаційних показників підшипників колінчастого валу. Мета. Ця стаття присвячена моделюванню показників працез- датності мотилевого підшипника дизельного двигуна Wartsila RT-flex82C у програм- ному середовищі GT-Suite при різних значеннях експлуатаційних зазорів, що допомо- же вдосконалити теорію аналізу мащення підшипників двигуна і може забезпечити більш повну довідкову базу для проектування шатунів та підшипників. Моделювання виконувалося із застосуванням показників моторного масла класу в’язкості SAE 30, що подається при температурі 318 К, та тиском 0,5 МПа. Результати. Отрима- но результати робочих параметрів чотирьох варіантів радіального зазору в під- шипнику 0,3, 0,4, 0,5 та 0,6 мм. Підвищення зносу супроводжується ростом мак- симального гідродинамічного тиску в масляному прошарку, а саме із 9,44 МПа до 13,02 МПа (40%), зменшенням товщини змащувального шару з 65,3 мкм до 63,0 мкм (3,5%). Також збільшення зазору закономірно призводить до зменшення середнього моменту тертя -625,6 Н∙м до -468,1 Н∙м та зменшуються втрати потужності з 7,8 кВт до 6,3 кВт. Відповідно, температура масла в підшипнику знижується з 323,4 до 318 К. Висновки. У цій статті ми показуємо, що збільшення радіального зазору призводить до підвищення витрати масла через підшипник, що своєю чергою призводить до падіння тиску. Оскільки математична модель базується на умові постійного тиску циркуляційного масла, розрахована середня витрата становить 21,3, 28,6, 64,8 та 102,8 л/хв для досліджуваних варіантів радіальних зазорів. Мож- на сказати, що працездатність підшипника з радіальним зазором 0,6 мм буде склад- но забезпечити внаслідок падіння в ньому тиску.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bekhta, Pavlo, Yurii Maksymiv та Tomasz Krystofiak. "Вплив температури термічного ущільнення підкладки, типу лаку і кількості його шарів на блиск опорядженої поверхні". Наукові праці Лісівничої академії наук України, № 20 (4 червня 2020): 206–13. http://dx.doi.org/10.15421/412019.

Повний текст джерела
Анотація:
В основному, поверхня підкладки шліфується перед нанесенням на неї лакового покриття. Метою дослідження є з’ясування можливості заміни операції шліфування підкладки перед нанесенням на неї лакового покриття операцією термічного ущільнення і встановлення впливу температури термічного ущільнення, типу лаку і кількості його шарів на блиск опорядженої поверхні. Як підкладку було використано лущений вільховий шпон (Alnus glutinosa), приклеєний до волокнистої плити середньої щільності (MDF). Перед приклеюванням шпону до поверхні MDF він піддавався термічному ущільненню за температур 150, 180 та 210°С і тиску 2 МПа впродовж 3 хв. Використано три типи лаку: водорозчинний (IQ-HY1330-15), поліуретановий (R533-2-15) і акриловий (UV120-45) ультрафіолетового затвердіння. На термічно ущільнену поверхню підкладки наносили один або два шари лакового покриття, з міжшаровим шліфуванням або без нього. Оцінку блиску здійснювали при куті падіння світла 60° за допомогою блискоміра Erichsen PICOGLOSS 503. Для порівняння визначали блиск лакового покриття на шліфованій підкладці. Встановлено, що всі змінні фактори суттєво (p ≤ 0,05) впливають на формування блиску лакованої поверхні на термічно ущільненій підкладці. Акриловий лак ультрафіолетового затвердіння дає змогу сформувати лакове покриття з найвищими значеннями блиску. Водорозчинний та поліуретановий лаки формують матове і напівматове покриття поверхні. Із збільшенням кількості шарів лаку блиск підвищується. Міжшарове шліфування не дає відчутного ефекту на блиск лакованої поверхні на термічно ущільненій підкладці.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Деркач, М. В., та Д. С. Матюк. "Застосування модулю GY-521 для орієнтації БПЛА". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 7 (263) (10 грудня 2020): 24–28. http://dx.doi.org/10.33216/1998-7927-2020-263-7-24-28.

Повний текст джерела
Анотація:
У статті розглянута задача визначення положення в тривимірному просторі, оскільки це один з ключових етапів при створенні БПЛА, що за останні кілька років стали дуже популярними і водночас корисними, так як здатні виконувати широкий спектр завдань. Вирішення цієї задачі дозволяє отримати значення кута нахилу за допомогою акселерометра та миттєвої кутової швидкості з роздільною здатністю, заданою в настройках, в градусах в секунду завдяки гіроскопу, тобто можна визначати рух, падіння об'єкта або поштовх об перешкоду, щоб оминати її. Визначено конфігурацію БПЛА та комунікаційний зв’язок. Також у роботі наведено принцип обробки даних мікроконтролером з суміщених датчиків, на прикладі застосування модуля GY-521, головним елементом якого є мікросхема MPU-6050, що об'єднала в одному корпусі 3х-осевий гіроскоп, 3х-осевий акселерометр і термометр. Область застосування модулю досить широка, а саме для координації різних пристроїв - від просто детектора руху до системи орієнтації різних роботів або управління рухами будь-яким пристроями, до того ж суттєвою перевагою модуля GY-521 є низька вартість і низьке енергоспоживання. Завдяки реалізації внутрішнього зв'язку між мікроконтролером STM32 і модулем GY-521 по шині даних I2C, протестована робота сенсора для орієнтації БПЛА; наведено фрагмент коду, що демонструє настройку модуля, тобто встановлення режиму роботи, значення чутливості сенсора і діапазон вимірювань датчика MPU-6050, та фрагмент коду для зчитування показників датчиків. В роботі використано середовище розробки Keil µVision, що представляє собою набір утиліт для виконання повного комплексу заходів з написання програмного забезпечення для мікроконтролерів на мові програмування C++.Отримані результати перевірки роботи модуля GY-521 демонструють показання акселерометра по осі x.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Кут падіння"

1

Серков, Олександр Анатолійович, Олексій Іванович Баленко та Д. Р. Рева. "Методи відводу інформації з оптичних інфокомунікаційних мереж". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/42953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Кут падіння"

1

Федоляк, Н. "АНАЛІЗ ВПЛИВУ ВИСОТИ ПАДІННЯ ЧАСТИНКИ ПРОМИВНОГО РОЗЧИНУ ТА КУТА НАХИЛУ ВІБРОПЛОЩИНИ НА ЕФЕКТИВНІСТЬ ЙОГО ОЧИЩЕННЯ БУРОВИМ ВІБРОСИТОМ". У IMPATTO DELL'INNOVAZIONE SULLA SCIENZA: ASPETTI FONDAMENTALI E APPLICATI. European Scientific Platform, 2020. http://dx.doi.org/10.36074/26.06.2020.v1.26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії