Зміст
Добірка наукової літератури з теми "Композиційні сплави"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Композиційні сплави".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Композиційні сплави"
Полонський, Володимир А., та Олена В. Сухова. "РОЗРОБКА КОМПОЗИЦІЙНОГО МАТЕРІАЛУ, ЗМІЦНЕНОГО ДЕКАГОНАЛЬНИМИ КВАЗІКРИСТАЛАМИ, ДЛЯ РОБОТИ В МОРСЬКІЙ АТМОСФЕРІ". Journal of Chemistry and Technologies 29, № 4 (21 січня 2022): 495–503. http://dx.doi.org/10.15421/jchemtech.v29i4.236728.
Повний текст джерелаНенастіна, Т., М. Ведь, М. Сахненко, С. Зюбанова та І. Черепньов. "Електродні матеріали для водневої енергетики". Науковий журнал «Інженерія природокористування», № 1(15) (26 жовтня 2020): 6–12. http://dx.doi.org/10.37700/enm.2020.1(15).6-12.
Повний текст джерелаКалинин, Евгений. "Дослідження впливу борвмістних дисперсних фаз на трибологічні характеристики наплавленого покриття На основі сплаву ПГ-10Н-01". Науковий жарнал «Технічний сервіс агропромислового лісового та транспортного комплексів», № 21 (7 грудня 2020): 8–15. http://dx.doi.org/10.37700/ts.2020.21.8-15.
Повний текст джерелаСемерак, Віктор, Йосип Лучко, Олександр Пономаренко та Володимир Косарчин. "Визначення температури в круглій пластині з багатошаровими покриттями". Bulletin of Lviv National Agrarian University Agroengineering Research, № 25 (20 грудня 2021): 120–26. http://dx.doi.org/10.31734/agroengineering2021.25.120.
Повний текст джерелаMovchan, Oleksandr, та Kateryna Chornoivanenko. "ЗАКОНОМІРНОСТІ ФОРМУВАННЯ ТРИФАЗНОГО КОМПОЗИТУ ПРИ НАВУГЛЕЦЮВАННІ СПЛАВІВ СИСТЕМИ Fe-W-V-C". Metallurgicheskaya i gornorudnaya promyshlennost, № 5-6 (27 грудня 2019): 76–83. http://dx.doi.org/10.34185/0543-5749.2019-5-6-76-83.
Повний текст джерелаХарламов, Ю. О., А. В. Міцик та О. В. Романченко. "Дослідження механічних властивостей детонаційно-газових покриттів методом мікроіндентування". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 4(260) (10 березня 2020): 120–28. http://dx.doi.org/10.33216/1998-7927-2020-260-4-120-128.
Повний текст джерелаХарламов, Ю. О., А. В. Міцик та О. В. Романченко. "Формування газотермічних покриттів". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 1(265) (16 березня 2021): 152–64. http://dx.doi.org/10.33216/1998-7927-2021-265-1-152-164.
Повний текст джерелаLavshchenko, R. R., та O. O. Vodka. "Розроблення алгоритмів візуалізації властивостей гетерогенних та композиційних матеріалів". Scientific Bulletin of UNFU 28, № 11 (27 грудня 2018): 125–30. http://dx.doi.org/10.15421/40281122.
Повний текст джерелаReintal, O. O., V. P. Likhoshva, A. M. Tymoshenko, and L. M. Klymenko. "Physico-technological Institute of Metals and Alloys of the NAS of Ukraine (Kyiv, Ukraine)." Metal and Casting of Ukraine 28, no. 3 (October 6, 2020): 69–74. http://dx.doi.org/10.15407/steelcast2020.03.069.
Повний текст джерелаMordyuk, B. M., S. M. Voloshko, A. P. Burmak, V. V. Mohylko, and M. M. Voron. "Synthesis of Composite Coatings by Ultrasonic Impact Treatment of VT6 Titanium Alloy." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 41, no. 8 (October 25, 2019): 1067–86. http://dx.doi.org/10.15407/mfint.41.08.1067.
Повний текст джерелаДисертації з теми "Композиційні сплави"
Пойманов, А. Д., Вікторія Володимирівна Штефан, Анастасія Сергіївна Єпіфанова та Мирослава Михайлівна Метеньканич. "Дослідження мікротвердості композиційного сплаву Co-Mo-ТіО₂". Thesis, Харківський національний університет ім. В. Н. Каразіна, 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40961.
Повний текст джерелаШтефан, Вікторія Володимирівна, Анастасія Сергіївна Єпіфанова та Мирослава Михайлівна Метеньканич. "Рентгенофазовий аналіз композиційного покриття Со-Мо-ТіО₂". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41564.
Повний текст джерелаРуденко, С. Г., Христина Володимирівна Берладір, Кристина Владимировна Берладир та Khrystyna Volodymyrivna Berladir. "Ливарні композиційні матеріали на основі алюмінієвого сплаву для деталей автомобілів". Thesis, Сумський державний університет, 2018. http://essuir.sumdu.edu.ua/handle/123456789/67475.
Повний текст джерелаЄпіфанова, Анастасія Сергіївна, Вікторія Володимирівна Штефан та Артем Дмитрович Пойманов. "Вплив режиму електролізу на морфологію та елементний склад Co-Mo-TіO₂ покриттів". Thesis, Львівський національний університет ім. Івана Франка, 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/43442.
Повний текст джерелаПерерва, Валентина Іванівна, Валентина Ивановна Перерва, Valentyna Ivanivna Pererva, Тетяна Павлівна Говорун, Татьяна Павловна Говорун та Tetiana Pavlivna Hovorun. "Вплив активних добавок на властивості ливарних алюмінієвих композиційних сплавів для автомобілебудування". Thesis, Сумський державний університет, 2018. http://essuir.sumdu.edu.ua/handle/123456789/67474.
Повний текст джерелаМогилко, Владислав Віталійович. "Синтез композиційних покриттів ультразвуковою ударною обробкою титанового сплаву ВТ6". Master's thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/25929.
Повний текст джерелаMaster's thesis: 98 p., 5 chapters, 19 tables, 34 figures, 57 sources. Object of the study – the physical and chemical processes which occur during ultrasonic impact treatment of the surface of the titanium VT6 alloy. Subject of the study – heat resistance, corrosion properties and wear resistance of surface layers of titanium VT6 alloy after ultrasonic impact treatment with Al2O3, α-Si3N4 and β-Si3N4 powders. Aim of the work is to synthesize composite coatings by ultrasonic impact treatment of the VT6 alloy with application of aluminum oxide and α-Si3N4 and β-Si3N4 silicon nitrides powders, as well as to investiagte their properties. Research methods – complex of modern experimental methods of physical material science has been used in this work. X-ray and electron-microscopic analyzes, gravimetric measurements, as well as studies on wear and corrosion resistance were carried out. The influence of ultrasonic impact treatment with of Al2O3 oxide powders and Si3N4 silicon nitrides of various modifications on the heat resistant properties of the alloy has been determined and the possibility of synthesis of protective coatings on its surface has been investigated. The thickness of the coatings was determined using the scanning electron microscopy method and Gwyddion software application.
Булгакова, Анастасія Сергіївна. "Технологія електроосадження функціональних покриттів Со-Мо, Со-Мо-ТіО₂". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48419.
Повний текст джерелаThe dissertation on competition of a scientific degree of the doctor of philosophy on a specialty 161 – Chemical technologies and engineering (16 – Chemical and bioengineering). – National Technical University "Kharkiv Polytechnic Institute", Ministry of Education and Science of Ukraine, Kharkiv, 2020. The dissertation work is directed on development of technology of reception of a composite covering of Co-Mo-TiO₂ with the raised functional properties. The object of research is the processes of electrochemical production of Co-Mo and Co-Mo-TiO₂ coatings from complex electrolytes. The subject of the research is the technological parameters and kinetic regularities of electrodeposition of functional coatings of Co-Mo and Co-Mo-TiO₂ from ammonia-trilonate electrolytes. In the dissertation work the scientific and practical problem of development of processes of electrochemical reception of coverings with the raised functional properties is solved. The research was carried out using both classical and fundamentally new modern methods: the kinetics of cathodic reduction were studied by linear voltammetry (LVA) and impedance spectroscopy; the phase composition of the precipitates was determined according to X-ray phase analysis (X-ray diffraction), the surface morphology and elemental composition of the obtained samples were studied using a scanning electron microscope (SEM); the microhardness of the coatings was determined by Vickers; the catalytic activity of the coatings was tested for hydrogen evolution reactions; corrosion behavior was studied by impedance spectroscopy and polarization resistance. The introduction substantiates the relevance of research objectives, shows the relationship of work with scientific programs, plans, topics, formulates the purpose and main objectives, provides scientific novelty and practical significance of the results, determined the personal contribution of the applicant, noted approbation of the results. The first section provides an analytical review of information sources. The relevance of the topic at the level not only of the country but also of foreign schools is considered. The articles in which data on influence of structure of electrolytes and modes of electrolysis on processes of deposition of similar coverings are resulted are processed. The analysis of methods of research of functional properties of the received materials is executed. The evaluation of the presented results is carried out. The aspects to which it is expedient to pay attention at creation of a new electrolyte are covered. Based on the results of the analysis of literature data, the direction of research is chosen and the main tasks of the dissertation are formulated. The second section describes the methods of studying the coatings of Co-Mo and Co-Mo-TiO₂: – polarization studies were performed using an IPC-Pro potentiostat at a potential sweep rate of 0,001 to 0,1 V/s. – studies by impedance spectroscopy were performed using an IPC-Pro potentiostat and an FRA frequency response analyzer in the frequency range of 0,03-50 kHz; – galvanostatic electrolysis was performed using stabilized DC sources B5-50. Studies of the structure and composition of the obtained sediments were performed using modern physicochemical methods of analysis: – X-ray phase analysis of coatings was performed using the device DRON-3; – surface morphology and elemental composition of the obtained coatings were examined using a scanning electron microscope; – Vickers microhardness was determined on a PMT-3 hardness tester. Mathematical processing of experimental data was carried out by methods of experiment planning and mathematical statistics using Microsoft Office Excel software package. The third section covers the study by LVA and impedance spectroscopy of the kinetics of electrodeposition processes from simple (sulfate) and complex (ammonia-trilonate) electrolytes of coatings with cobalt and cobalt alloys, in particular Co-Mo alloy, composite coating of Co-Mo-TiO₂ and electrolyganate. Studies of this section have yielded the following results: – the process of electroreduction of cobalt ions from a simple electrolyte is irreversible. Limiting stage - charge transfer; – with the addition of ligands, molybdenum salt and titanium dioxide there is a change in the mechanism of the cathode process. The reaction mechanism is determined by a preliminary first-order chemical reaction; – the values of the order of the reaction confirmed that when adding ligands to the electrolyte, the process becomes multi-stage and complicated by intermediate stages; – calculated values of activation energy indicate that the process in the system "Na₂SO₄ - CoSO₄" is limited by the electrochemical stage, but in the formation of cobalt complexes in the electrolyte, the process is slowed down by the chemical stage; – during electrodeposition of molybdenum coating is the reduction of molybdate oxoions to intermediate oxidation states; – the results of impedance spectroscopy in the deposition of Co-Mo and Co-Mo-TiO₂ precipitates indicate the presence of kinetic and diffusion complications in the mechanism of the cathode process due to the reduction of molybdenum oxoanions according to the film adsorption theory. The fourth section substantiates the compositions of electrolytes for the production of galvanic alloy Co-Mo with the ability to control microhardness, catalytic activity and corrosion resistance by varying the molybdenum content in the alloy. The structure, phase and elemental composition of Co-Mo and Co-Mo-TiO₂ coatings have been studied. The influence of the electrolysis regime on the content of sludge components is analyzed. According to the research of this section, the following results were obtained: – current output depends on the mode of electrolysis and the concentration of electrolyte components; – the molybdenum content in the Co-Mo precipitate decreases with increasing current density and increasing pH. The highest content of Mo 85 % by weight in the alloy is observed at j = 1 A/dm² and within pH = 2–4; – the obtained coatings are well adhered to the base, sufficiently uniform and fine-crystalline; – the results of X-ray phase and elemental analysis indicate the presence in the coating of elements of cobalt, molybdenum and titanium, their compounds in the form of oxides and intermetallics in significant quantities; – the results of scanning microscopy revealed a highly developed surface structure of the composite coating; – the content of components significantly depends on the current density and pH of the electrolyte. The fifth section presents studies of functional properties, such as microhardness, catalytic activity in the reaction of hydrogen evolution in solutions with different pH values, corrosion resistance in chloride and hydroxide solutions, anodic behavior of the obtained coatings in solutions with a wide pH range. According to the results of research, the following data were obtained: – the presence of molybdenum in the electrolyte leads to an increase in the hardness of the coatings - the highest hardness of 429 kg/mm² has an alloy Co50-Mo50. In terms of microhardness (416 kgf/mm²), the composite coating of Co-Mo-TiO₂ is almost not inferior to the Co-Mo alloy; – the highest electrocatalytic activity in the reaction of hydrogen evolut ion in an aqueous solution of 0,1 M and 1 M NaOH has an alloy of Co-Mo with a molybdenum content of 25 wt. %. The introduction of titanium dioxide leads to a significant increase in the catalytic activity of Co-Mo-TiO₂ in comparison with the alloy of Co-Mo in solutions of H₂SO₄, NaOH, Na₂SO₄; – Co-Mo alloys corrosion-resistant in chloride solutions (3 % NaCl; 5 % HCl); – Co-Mo-TiO₂ coatings are corrosion-resistant in 1 M NaOH solutions and 0,1 M NaOH and 0,1 N H₂SO₄ and Na₂SO₄ solutions; – the anodic behavior of coatings containing molybdenum and titanium dioxide is similar to the anodic behavior of cobalt coatings, except for the potential values of the critical points of the polarization dependences; the values of corrosion current of molybdenum sludges and composite coatings are much lower than cobalt. The sixth section offers maps of technological processes of deposition of Co-Mo and Co-Mo-TiO₂ coatings with indication of basic and auxiliary operations, electrolyte compositions, processing modes.