Добірка наукової літератури з теми "Гідродинамічна якість"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Гідродинамічна якість".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Гідродинамічна якість"

1

Karnaukh, S. G. "Перспективні технології заготівельного виробництва та обладнання для їх реалізації". Обробка матеріалів тиском, № 2(49) (22 грудня 2019): 202–11. http://dx.doi.org/10.37142/2076-2151/2019-2(49)202.

Повний текст джерела
Анотація:
Карнаух С. Г. Перспективні технології заготівельного виробництва та обладнання для їх реалізації // Обробка матеріалів тиском. – 2019. – № 2 (49). - С. 202-211. Запропоновано новий спосіб розділення сортового прокату (труб), в якому потенційна енергія деформації деталей і приводу обладнання витрачається на здійснення корисної роботи – нанесення концентратора напружень за один робочий хід. Обладнання статичної дії працює в динамічному режимі, що забезпечує високу якість отриманих заготовок. Можливість попереднього статичного навантаження, у сполученні з високою швидкістю деформування, дозволяє створити у прокаті схему напруженого стану, яка забезпечує необхідну геометричну точність і якість заготовок. Розроблено спосіб ломки прокату, в якому зона напружень розтягу збільшується за рахунок зони напружень стиску, що створює метод навантаження, якому органічно властивий однорідний напружений стан. Це дозволяє стабілізувати траєкторію тріщини та підвищити якість заготовок, що поділяються. Запропоновано спосіб гідродинамічної ломки прокату, в якому в зоні концентраторів напружень утворюється складний напружений стан, що приводить до поділу труби на мірні заготовки (множинна ломка). Спільний вплив на заготовку гідродинамічного тиску і поздовжньої хвилі стиску дозволяє знизити величину тиску в робочій камері, спростити конструкцію вузлів ущільнення, що підвищує надійність роботи установки. Запропонована конструкція обладнання, в якому спільне застосування клиношарнірного і гідропружного приводів дозволяє усунути заклинювання і знизити необхідну потужність приводу. Це стало можливим тому, що в момент розділення сила з боку клиношарнірного механізму з увігнутим клином максимальна і далі зменшується по ходу клина. При цьому зменшується величина шкідливої енергії розвантаження обладнання. Підвищується коефіцієнт корисної дії та надійність роботи обладнання. Застосування статико-динамічного навантаження дозволяє підвищити якість заготовок, що поділяються, за рахунок створення у прокаті оптимальної схеми напруженого стану.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

М’ягкий, М. М., та І. І. Ткаченко. "ВДОСКОНАЛЕННЯ ПРОЦЕСУ ОЧИЩЕННЯ ВОД, ЩО МІСТЯТЬ НАФТУ". Ship power plant 41 (5 листопада 2020): 26–29. http://dx.doi.org/10.31653/smf341.2020.21-29.

Повний текст джерела
Анотація:
Актуальність вирішення проблеми сепарації суднових лляльних вод (СЛВ) в умовах роботи судна безпосередньо призводить до підвищення не тільки його економічних показників роботи, а й впливає на якість його експлуатації. У цьому випадку можливе підвищення сумарного ККД суднової енергетичної установки і зведення до допустимим нормам екологічного забруднення водного басейну в районі плавання. Переробка СЛВ безпосередньо пов'язана з отриманням вторинних енергоресурсів в умовах роботи судна і практично що раніше не розглядалася. Основна мета проведених досліджень полягала в отриманні нових даних, що вказують на можливість створення принципово нової технології сепарації СЛВ. Така технологія повинна базуватися на методі гідродинамічної кавітації багатофазного потоку зі штучним управлінням розмірами суперкаверни за допомогою штучної вентиляції. Основне завдання досліджень було зведенно до отримання результатів, що дозволяють виконати оцінку продуктивності такої технології і розробити нову конструкцію суднового сепаратора. Ключові слова: морське судно, нафтовмісні води, очищення нафтовмісних вод, сепарація, кавітація
Стилі APA, Harvard, Vancouver, ISO та ін.
3

М’ягкий, М. М., та І. І. Ткаченко. "ВДОСКОНАЛЕННЯ ПРОЦЕСУ ОЧИЩЕННЯ ВОД, ЩО МІСТЯТЬ НАФТУ". Ship power plant 41 (5 листопада 2020): 26–29. http://dx.doi.org/10.31653/smf341.2020.26-29.

Повний текст джерела
Анотація:
Актуальність вирішення проблеми сепарації суднових лляльних вод (СЛВ) в умовах роботи судна безпосередньо призводить до підвищення не тільки його економічних показників роботи, а й впливає на якість його експлуатації. У цьому випадку можливе підвищення сумарного ККД суднової енергетичної установки і зведення до допустимим нормам екологічного забруднення водного басейну в районі плавання. Переробка СЛВ безпосередньо пов'язана з отриманням вторинних енергоресурсів в умовах роботи судна і практично що раніше не розглядалася. Основна мета проведених досліджень полягала в отриманні нових даних, що вказують на можливість створення принципово нової технології сепарації СЛВ. Така технологія повинна базуватися на методі гідродинамічної кавітації багатофазного потоку зі штучним управлінням розмірами суперкаверни за допомогою штучної вентиляції. Основне завдання досліджень було зведенно до отримання результатів, що дозволяють виконати оцінку продуктивності такої технології і розробити нову конструкцію суднового сепаратора. Ключові слова: морське судно, нафтовмісні води, очищення нафтовмісних вод, сепарація, кавітація
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Авдєєва, Леся Юріївна, Едуард Костянтинович Жукотський та Андрій Анатолійович Макаренко. "Дослідження кавітаційних ефектів в насосах різних типів". Scientific Works 83, № 1 (1 вересня 2019): 74–79. http://dx.doi.org/10.15673/swonaft.v83i1.1421.

Повний текст джерела
Анотація:
Насоси широко використовуються в більшості технологічних процесів хімічної і харчової промисловості, в т.ч. в апаратах для інтенсифікації процесу отримання мікро- і наноемульсій за рахунок виникнення ефектів гідродинамічної кавітації. Використання кавітаційних технологій дозволяє збільшити продуктивність технологічних процесів, забезпечити значну економію енерговитрат і високу якість обробки дисперсних систем. В технологічних схемах кавітаційних апаратів використовуються насоси різних типів. Виникнення в них кавітаційних ефектів призводить до негативних наслідків в результаті яких відбувається зниження продуктивності і ККД всього пристрою і руйнування поверхонь робочих органів. Найбільшого застосування знайшли динамічні лопатеві і об’ємні (гвинтові або шестеренні) насоси. В роботі представлені результати досліджень виникнення кавітаційних ефектів в динамічному відцентровому і в об’ємному шестеренному насосах за зміною температурних і електрохімічних показників води в результаті обробки. Аналіз результатів досліджень температурних показників продемонстрували відмінності принципу дії обраних насосів за їх впливом на оброблюване середовище. В динамічному відцентровому насосі температурні показники швидко наростають, на відміну від об’ємного шестеренного, в якому за 20 хв. роботи підвищення температури практично не відбулося. В результаті активного динамічного впливу на молекулярному рівні при проходження рідини через відцентровий насос рівень рН збільшується вже з перших секунд обробки. Значення питомої електропровідності води змінюються так само більш виражено для динамічного відцентрового насосу. Отримані результати вказують на активацію води з утворенням електронно-збуджених станів молекул. Таким чином, встановлено виникнення кавітації в динамічному відцентровому насосі при певних умовах і параметрах його роботи.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ivanyshyn, Volodymyr, та Ehor Chornyi. "ФАКТОРИ ФОРМУВАННЯ ХІМІЧНОГО СКЛАДУ ПІДЗЕМНИХ ВОД ЧЕРНІГІВСЬКОГО РОДОВИЩА ТА ОРГАНІЗАЦІЯ ЗОН ЇХ САНІТАРНОЇ ОХОРОНИ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 1 (15) (2019): 246–57. http://dx.doi.org/10.25140/2411-5363-2019-1(15)-246-257.

Повний текст джерела
Анотація:
Актуальність теми дослідження. У процесі дослідження підземних вод будь-якої країни актуальним є визначення факторів формування хімічного складу та організація зон санітарної охорони (ЗСО) їх, тому що ці фактори впливають на якість води, а вона – на здоров’я людини. Постановка проблеми. Для забезпечення якісних характеристик підземних питних вод потрібно всебічно, детально вивчати їх. Проблема ця складна, оскільки містить у собі багато факторів, кожен із яких потребує детального вивчення. Аналіз останніх досліджень і публікацій. Публікації про фактори формування хімічного складу підземних вод Чернігівського родовища та санітарну охорону їх відсутні. Виділення недосліджених частин загальної проблеми. Недостатньо дослідженою частиною загальної проблеми є зв’язок формування підземних вод з історією геологічного розвитку (палеотектонікою) окремих блоків Дніпровсько-Донецької западини. Постановка завдання. Цільовим завданням було вивчення факторів формування хімічного складу підземних питних вод Чернігівського родовища, організація зон санітарної охорони їх та інформування зацікавлених осіб про отримані результати. Виклад основного матеріалу. На Чернігівському родовищі підземних питних вод експлуатується бучацький водоносний горизонт і сеноман-нижньокрейдовий водоносний комплекс, які знаходяться в зоні вільного водообміну, що значною мірою зумовлює умови формування сольового складу цих вод. Їхній хімічний склад формується також через вилужування й розчинення водовміщуючих порід. Менший вплив на хімічний склад вод має сорбція, іонний обмін та біохімічні процеси. Область живлення бучацького водоносного горизонту й сеноман-нижньокрейдового водоносного комплексу знаходиться на північному сході від водозабору Чернігівського відділення ПАТ «САН ІнБев Україна». Відповідно до положення про порядок проектування та експлуатації зон санітарної охорони джерел водопостачання та водопроводів господарсько-питного призначення передбачається три пояси зон санітарної охорони: I пояс – зона суворого режиму; II та III пояси – зони обмежень. Межі першого поясу зон санітарної охорони мають радіус 15 м. Другий пояс встановлено для захисту водоносного горизонту від мікробних забруднень, третій – для захисту підземних вод від хімічного забруднення. Межі другого і третього поясів визначені гідродинамічним способом. Висновки відповідно до статті. Бучацький водоносний горизонт і сеноман-нижньокрейдовий водоносний комплекс знаходяться в зоні вільного водообміну, що значною мірою створює умови формування сольового складу підземних вод. Санітарні заходи з ліквідації забруднень у межах зон санітарної охорони в першому поясі повинно виконувати Чернігівське відділення ПАТ «САН ІнБев Україна», у другому та третьому – власники об’єктів, що негативно впливають або можуть впливати на якість води в джерелах, з яких беруть питну воду.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kalchenko, Volodymyr, Vitalii Kalchenko, Sergii Tsybulia та Evgeny Sakhno. "ВИЗНАЧЕННЯ ПОХИБКИ ПРОЦЕСІВ ШЛІФУВАННЯ ТА ШВИДКІСНОГО ФРЕЗЕРУВАННЯ З УРАХУВАННЯМ СТАТИЧНОЇ ТА ДИНАМІЧНОЇ НЕВРІВНОВАЖЕНОСТІ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 3(21) (2020): 72–78. http://dx.doi.org/10.25140/2411-5363-2020-3(21)-72-78.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Досить часто для отримання необхідної точності виготовлення деталей, вони обробляються на круглошліфувальних, внутрішньошліфувальних, плоскошліфувальних та різьбошліфувальних верстатах. Попередньо врівноважене шліфувальне коло в процесі експлуатації втрачає врівноважений стан і набуває дисбаланс, що змінюється протягом часу. Однією з причин, що викликає зміну дисбалансу, є знос шліфувального кола, який може бути нерівномірним або рівномірним. Нерівномірний знос виникає у зв’язку з розсіюванням міцності різальної поверхні кола (у межах одного інструмента). При рівномірному зносі, зокрема й за рахунок правок кола, неврівноваженість виникає через нерівномірну щільність, відхилення розмірів, форми й розташування поверхонь. Постановка проблеми. У процесі виконання шліфувальних робіт необхідно враховувати те, що шпиндель шліфувального верстата внаслідок зносу шліфувального кола, піддатливості опор, згинальної жорсткості переходить у неврівноважений стан, що впливає на точність і якість механічної обробки деталей. Тому виникає проблема визначення похибок положення ротора динамічної системи з урахуванням статичної та динамічної неврівноваженості,складових сил різання та пружних зусиль, що виникають в опорах шпиндельного вузла. Аналіз останніх досліджень і публікацій. У роботі були розглянуті останні публікації з цієї теми, які представлено у відкритому доступі, включаючи мережу Інтернет. Виділення недосліджених частин загальної проблеми. Відомі дослідження точності процесу шліфування важкооброблюваних деталей не враховують вплив статичної, динамічної та моментної неврівноваженості технологічної системи шліфувального верстата. Однак у процесі оцінювання точності положення шпинделя в просторових координатах та точності виготовлення заданої деталі в математичній моделі процесу механічної обробки необхідно враховувати перераховані фактори. Тому дані дослідження дають можливість конструктору підвищити точність проєктування металорізальних верстатів шліфувальної групи при обробці деталей, які мають конструктивну неврівноваженість. Постановка завдання. Метою цієї наукової роботи є моделювання положення шпинделя шліфувальних та фрезерних верстатів з урахуванням інерційних зусиль, які виникають унаслідок статичної та динамічної неврівноваженості роторного вузла, що обумовлює точність і якість процесу механічної обробки. Виклад основного матеріалу. Стан врівноваженості шпиндельного вузла, відбалансованого заводом-виготовлювачем, при обробці деталей на металорізальних верстатах безупинно змінюється. При шліфуванні дисбаланс виникає внаслідок зношування і неоднорідної структури змінної інструментальної головки шліфувального круга. У процесі обробки деталі, яка обертається, він зумовлений неврівноваженою заготовкою. Для компенсації режимної зміни дисбалансу і з метою підвищення якості обробки, особливо на фінішних операціях, без зниження нормативних режимів різання на шпиндель верстата встановлюють коригувальні маси, диски з приводом їх від гідростатичної або гідродинамічної опор. Висновки відповідно до статті. У результаті проведених досліджень у роботі отримано математичну модель положення шпинделя шліфувального верстата з урахуванням складових статичної та динамічної неврівноваженості ротора, яка виникає внаслідок похибок технологічної системи верстата та зносу шліфувального кола. Використовуючи цю модель можна проводити розрахунок похибок механічної обробки, що виникають при різанні. Також це дослідження дозволяє уточнити вплив похибок процесу шліфування на якість обробки деталей, що дає можливість оптимізувати режими різання і, відповідно, підвищити ефективність процесу шліфування. Ця методика також може використовуватися для високошвидкісного фрезерування, яке є альтернативою шліфуванню
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Красніков, Кирило, та Микита Лижов. "ЧИСЕЛЬНІ ДОСЛІДЖЕННЯ НА МАТЕМАТИЧНІЙ МОДЕЛІ СПІНЕННЯ З ІНЖЕКЦІЄЮ ГАЗУ". System technologies 1, № 132 (8 березня 2021): 23–30. http://dx.doi.org/10.34185/1562-9945-1-132-2021-02.

Повний текст джерела
Анотація:
Кисневі конвертори часто використовуються у виробництві сталі для видалення вуглецю з чавуну за допомогою продувки киснем та для розплавлення металобрухту. Шлак на поверхні розплаву всередині конвертора уповільнює газові бульбашки, що утворює велику кількість емульсії або піни. Іноді рівень піни може перевищувати ви-соту конверторної ванни. Щоб запобігти цьому, металургам потрібно прогнозувати подібні ситуації та відповідно зменшувати вдування газу в небезпечні періоди. Після багатьох років використання кисневих перетворювачів металурги отримали досвід і знають безпечні режими цього процесу. Однак ці режими можна вдосконалити за до-помогою математичного моделювання, яке користується популярністю в наші дні, оскільки воно має менші витрати, ніж реальні експерименти на заводі чи в лаборато-рії. Гідродинамічні процеси в конверторі складні, тому математична модель повинна уникати надмірного спрощення та враховувати важливі деталі про них. У попередній роботі представлена модель з детальним описом рівнянь (Нав'є-Стокса) та граничних умов. Чисельне рішення простіше отримати, ніж аналітичне для такої складної моде-лі. Для перевірки адекватності моделі використовуються такі припущення: загальна кількість газу повинна бути збережена у випадку закритого об'єму, а також поле ти-ску повинно збільшуватися відповідно до отриманої кількості газу; у разі переміщення вільної поверхні рівень піни повинен змінюватися відповідно до приходу газу і поверта-тися до початкового значення після того, як весь газ піде з рідини.Представлені малюнки ілюструють зміну рівня піни у випадку, коли газ надходить у розплав протягом перших 20 секунд з лінійним зниженням до нуля через 20 секунд. Об-числювальна область має 72x144 комірок. Ефективність обчислень знижується, коли рівень піни зростає, оскільки в розрахунку бере участь більше клітин. На інших рисун-ках показано газове поле (кольором) і поле швидкості (стрілками) для двох випадків: коли об’єм закритий і коли поверхня розплаву рухається. У закритому об’ємі зазначені вище припущення перевірено та подано графік залежності кількості газу. На основі цього зроблено висновок про якісну адекватність моделі. 2D-візуалізація здійснюється у комп’ютерної програми, розробленої на популярній мові.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Uminskij, S., V. Makarchuk, M. Korol'kova, S. Dmitrieva та S. Zhitkov. "ГІДРОДИНАМІЧНЕ ОБЛАДНАННЯ ДЛЯ ДЕЗОДОРАЦІЯ РОСЛИННОЇ ОЛІЇ". Аграрний вісник Причорномор'я, № 96 (21 липня 2020). http://dx.doi.org/10.37000/abbsl.2020.96.20.

Повний текст джерела
Анотація:
Якість і безпека споживання жирових продуктів харчування є першочерговим завданням інноваційного розвитку масложирової промисловості. Наведено гідродинамічну установку для дезодорації рослинноїолії в умовах фермерських господарств агровиробництва. Запропанована установка для дезодорації рослинної олії дає змогу отримати екологічно чисту рослинну олію по безвідхідній технології, підвищити ефективність отриманнявисвітленої екологічно чистої рослинної олії при зберіганні органолептичних якостей та смакових цінностей продукту , одноразово зі спрощенням конструкції та зменшенням габаритних розмірів установки, зниженням енергоспоживання на реалізацію технологічного процесу.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Гідродинамічна якість"

1

Денисенко, Владислав Русланович. "Гідродинаміка неоднорідного псевдозрідження". Master's thesis, Київ, 2019. https://ela.kpi.ua/handle/123456789/27646.

Повний текст джерела
Анотація:
Об’єкт дослідження: гідродинаміка при пульсаційному псевдозрідженні. Предмет дослідження: якісні характеристики гідродинаміки неоднорідного псевдозрідження при грануляції. Метою роботи є встановлення закономірностей процесу неоднорідного струменево-пульсаційного псевдозрідження в автоколивальному режимі при підвищених висотах шару зернистого матеріалу та розроблення методики розрахунку промислових апаратів для грануляції. Сформульовано принцип взаємодії газового суцільного середовища із зернистим матеріалом для реалізації струменево-пульсаційного режиму псевдозрідження при Zf/H₀≤0,21. Експериментально визначено порозності в зонах камери гранулятора при неоднорідному псевдозрідженні в автоколивальному режимі при п’ятикратному перевищенню висоти нерухомого шару H₀ висоти пробою газового струменя Zf. Експериментально досліджено вплив висоти зернистого матеріалу на динаміку зміни порозності та індекс перемішування в базових зонах апарату. Підтверджено дослідженнями, що процес грануляції при застосуванні неоднорідного струменево-пульсаційного псевдозрідження за підвищених висот шару зернистого матеріалу призводить до інтенсифікації тепломасообмінних процесів в 1,6 рази в порівнянні із барботажним.
The object of the research: the hydrodynamics during the pulsation fluidization. The subject of the research: quality characteristics of hydrodynamics of nonuniform fluidization during the granulation process. The aim of the work is establishment of the regularities of the process of non-uniform fluidization in the application of pulsation in self-oscillating mode at elevated height of a layer of granular material and development of methods of calculation of industrial machines. Formulated the principle of interaction of a gas continuous medium with a granular material for the realization of jet pulsation mode of fluidization in Zf/H₀≤0,21. Experimentally determined voids in the areas of camera granulator in self-oscillating mode of fluidization when a fivefold excess of the height of the fixed bed height H₀ of the breakdown of the gas jet Zf. Experimentally investigated the influence of the height of granular material at the dynamics of void and the index of mixing in the core zones of the apparatus. The study proves that the granulation process in the application of a nonuniform jet-pulsed fluidization at elevated heights of a layer of granular material leads to intensification of heat and mass transfer processes in 1,6 times in comparison with barbotine.
Объект исследования: гидродинамика при пульсационном псевдоожижении. Предмет исследования: качественные характеристики гидродинамики неоднородного псевдоожижения при грануляции. Целью работы является установление закономерностей процесса неоднородного струйно-пульсационного псевдоожижения в автоколебательном режиме при повышенных высотах слоя зернистого материала и разработка методики расчета промышленных аппаратов для грануляции. Сформулирован принцип взаимодействия газовой сплошной среды с зернистым материалом для реализации струйно-пульсационного режима псевдоожижения при Zf/H₀≤0,21. Экспериментально определено порозности в зонах камеры гранулятора при неоднородном псевдоожижении в автоколебательном режиме при пятикратном превышению высоты неподвижного слоя H₀ высоты пробоя газового факела Zf. Экспериментально исследовано влияние высоты зернистого материала на динамику изменения порозности и индекс перемешивания в базовых зонах аппарата. Подтверждено исследованиями, что процесс грануляции при применении неоднородного струйно-пульсационного псевдоожижения при повышенных высотах слоя зернистого материала приводит к интенсификации тепломассообменных процессов в 1,6 раза в сравнении с барботажним.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Пугановський, Олег Валентинович, Михайло Олексійович Подустов та Тамара Іванівна Печенко. "Аналіз впливу окислених та абсорбційних об’ємів на якість роботи абсорбційної колони в технології нітратної кислоти". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/47364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії