Зміст
Добірка наукової літератури з теми "Геометричні об'єкти"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Геометричні об'єкти".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Геометричні об'єкти"
Azarenko, Olena, Yulia Honcharenko, Mykhailo Divizinyuk, Volodymyr Mirnenko та Valeriy Strilets. "Вплив технічних та географічних параметрів на дальність знімання мовної інформації при вирішенні прикладних завдань". Journal of Scientific Papers "Social development and Security" 11, № 6 (18 грудня 2021): 15–30. http://dx.doi.org/10.33445/sds.2021.11.6.2.
Повний текст джерелаС.В. Ковалевський та О.С. Ковалевська. "ІДЕНТИФІКАЦІЯ ОБ’ЄКТІВ МАШИНОБУДУВАННЯ ЗА КІЛЬКОМА КІЛЬКІСНИМИ ОЗНАКАМИ ОДНОЧАСНО". Наукові нотатки, № 68 (29 січня 2020): 23–29. http://dx.doi.org/10.36910/6775.24153966.2019.68.4.
Повний текст джерелаКурбатова, Ірина, та Надія Коновенко. "Основні теореми теорії 2F-планарних відображень псевдоріманових просторів з f-структурою". Proceedings of the International Geometry Center 13, № 1 (6 травня 2020): 9–22. http://dx.doi.org/10.15673/tmgc.v13i1.1707.
Повний текст джерелаShornikova, S. "Валідація та верифікація методик вимірювання геометричних розмірів в умовах виробництва." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 43 (19 червня 2021): 157–63. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-26.
Повний текст джерелаShornikova, S. "Валідація та верифікація методик вимірювання геометричних розмірів в умовах виробництва." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 43 (19 червня 2021): 157–63. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-26.
Повний текст джерелаГадецька, С. В., В. Ю. Дубницький, Ю. І. Кушнерук, Л. Д. Філатова та О. І. Ходирєв. "Геометричні характеристики s-подібних (логістичних) кривих, що застосовуються при моделюванні явища гістерезису". Системи обробки інформації, № 2(165) (21 травня 2021): 14–27. http://dx.doi.org/10.30748/soi.2021.165.02.
Повний текст джерелаBoyko, M. V., O. T. Velyka, S. E. Lyaskovska та N. T. I. Velykij. "Дослідження напружено-деформованого стану та оптимізація геометричних параметрів вирубного Пуансона". Scientific Bulletin of UNFU 28, № 5 (31 травня 2018): 101–5. http://dx.doi.org/10.15421/40280522.
Повний текст джерелаMurashko, O. V., V. V. Shevchenko, I. Benradі, M. Abdelhadі та M. I. Kubiіovуch. "ЗАПОВНЕННЯ ДЕФОРМАЦІЙНИХ ШВІВ МІЖ КАРКАСОМ ТА НЕНЕСУЧИМИ СТІНАМИ ПРИ СТИСКУЮЧОМУ НАВАНТАЖЕННІ". Bulletin National University of Water and Environmental Engineering 3, № 87 (29 листопада 2019): 166. http://dx.doi.org/10.31713/vt3201913.
Повний текст джерелаГОРОДЕЦЬКИЙ, О. С., та Ю. В. ГЕНЗЕРСЬКИЙ. "РІЗНІ ПІДХОДИ ДО РОЗРАХУНКУ КОНСТРУКЦІЙ НА ДИНАМІЧНІ ВПЛИВИ". Наука та будівництво 21, № 3 (26 вересня 2019): 58–64. http://dx.doi.org/10.33644/scienceandconstruction.v21i3.112.
Повний текст джерелаВанєєв, С. М., Д. В. Мірошниченко, В. О. Журба та Я. В. Знаменщиков. "Стенд для дослідження розширювальних турбомашин малої потужності та агрегатів на їх основі". Refrigeration Engineering and Technology 55, № 1 (10 лютого 2019): 15–21. http://dx.doi.org/10.15673/ret.v55i1.1348.
Повний текст джерелаДисертації з теми "Геометричні об'єкти"
Федченко, Ганна Валеріївна. "До питання про побудову моделей в курсі "Геометричне моделювання"". Thesis, НТУ "ХПІ", 2012. http://repository.kpi.kharkov.ua/handle/KhPI-Press/3177.
Повний текст джерелаКохановська, Н. В., О. В. Екслер та Андрій Олександрович Дашкевич. "Використання теорії R-функцій для моделювання складних геометричних об'єктів". Thesis, НТУ "ХПІ", 2012. http://repository.kpi.kharkov.ua/handle/KhPI-Press/3518.
Повний текст джерелаСімонова, Ольга Геннадіївна. "Дослідження геометричних властивостей нев'язок параметрів орбіти в орбітальній системі координат". Thesis, НТУ "ХПІ", 2012. http://repository.kpi.kharkov.ua/handle/KhPI-Press/3541.
Повний текст джерелаСамойленко, О. М. "Геодезичні методи визначення геометричних параметрів динамічних об'єктів". Thesis, Національний технічний університет України "Київський політехнічний інститут", 2011. http://elar.nung.edu.ua/handle/123456789/1894.
Повний текст джерелаIt is proposed to combine objects that change their spatial location, setting and form as dynamic ones for development on the common methodological basis new methods of measurement, processing and interpretation of their results to determine their geometrical parameters. It is introduced concept of local geodetic networks (LGN), creation methods of which include all peculiarities of estimation geometrical parameters of the dynamic objects. Based on the general principles of the theory of geometric parameters defining dynamic objects developed new methods of measurement and processing of their results during determination of the geometrical parameters of surfaces and dynamic objects that rotate together with alignment of LGN. It has been developed universal methods applied in determination the geometrical parameters and metrological characteristics of radio telescopes, including their mirrors, satellite laser ranging stations, cylindrical and spherical tanks, theodolites, total stations, wheel aligners, and local geodetic ties of radio telescopes and laser location stations to GPS-markers.
Шоман, Ольга Вікторівна, та Володимир Якович Даниленко. "Метод проеціювання в моделюванні систем геометричних об'єктів". Thesis, НТУ "ХПІ", 2014. http://repository.kpi.kharkov.ua/handle/KhPI-Press/20276.
Повний текст джерелаКисленко, Д. В., та Н. А. Зубрецька. "Дослідження методів та проблем контролю геометричних характеристик об'єктів". Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/6718.
Повний текст джерелаЛущенко, Л. В., та Павло Федорович Щапов. "Дослідження моделей віброконтролю та вібродіагностики". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/47522.
Повний текст джерелаГлавчев, Дмитро Максимович. "Моделі, методи та програмні компоненти комп'ютерної системи тягового рухомого складу". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48901.
Повний текст джерелаThe thesis is submitted to obtain a scientific degree of Doctor of Philosophy, specialty 123 – Computer Engineering – National Technical University “Kharkiv Polytechnic Institute” , Kharkiv, 2020. The object of the research is the processes of managing the traction rolling stock with the help of an on-board computer system used in the DEL-02 series diesel trains. The subject of research are models, methods and corresponding software components used in the computer system of traction rolling stock, which extend the using scope of geometric control theory for the synthesis of optimal controls of rolling stock, as well as methods and tools for the development of modern software complexes in the development of computer decision support systems of the diesel train driver of the DEL-02 series trains. The introduction focused and explained on the relevance of the topic being researched, shows the relationship with scientific programs, plans and topics, presents the scientific novelty, as well as formulates the practical significance of the results. The first section provides an analytical overview of models, methods and software components used in computerized decision support systems of the diesel train driver and train control systems. The peculiarities of the structure and peculiarities of using such systems on rail transport in Ukraine and in the world (China, India, Germany, CIS countries) are considered. On the example of the operation of such systems considered their structure, specifications, applications and features of use. The first section also deals with the mathematical model of a control object, an example of a method of linearization of a given mathematical model, a method of finding transform functions that relate variables of linear and nonlinear mathematical models. Also, the possibility of using neural network associative memory in control systems was considered and methods of synthesis of optimal control systems were analyzed. As a result, the main directions of research were selected and the main tasks of the dissertation were set. In the second section, the question of converting nonlinear mathematical models into equivalent linear mathematical models in the form of Brunovsky was considered. Also, methods of simplifying analytical transformations during the linearization process by converting to a linear kind of nonlinear systems with different numbers of monomials in the right-hand sides of the differential equations of the initial object, as well as separating the linear equation from the other part of the system of equations, were considered. These methods were verified by modeling the motion along the path of the initial object in the form of a nonlinear system of differential equations and the object transformed into a linear Brunovsky form, with further comparison of the results obtained, which showed coincidence, which indicates that in the case of using this the linearization method allows to obtain a linear mathematical model that is completely equivalent to the original non-linear model. Additionally, linearization of a more complex nonlinear mathematical model describing the operation of a train with two separate engines was performed, and the verification of the results of the linear model simulation showed complete equivalence to its original form. Research results have yielded a number of scientific results: − dependence of quantity and complexity of calculations during linearization and search of transformation functions on the number of monomials in the right part of equations of nonlinear mathematical model is determined; − two new methods of finding transform functions are proposed that relate variables of linear and nonlinear models that extend the scope of geometric control theory to objects whose right-hand sides of differential equations contain more than two monomials; − was proposed a method of reducing the number of calculations when performing linearization by separating a linear equation from the system; − this method was tested, which showed its workability on more complex mathematical models, in particular, on a model that describing the operation of a train using two equivalent motors. In the third section of the paper, the question of creating a new method for finding functions of transformation using neural networks was considered. In this section proposes a new neural network that can be used to search for conversion functions. In addition, this section proposes a new tabular method of finding conversion functions, which is simple and clear and can be used to get results when performing the calculation process. The studies conducted in this section have yielded the following scientific results: − a new neural network has been created and proposed for searching the conversion functions that relate variables to nonlinear and linear models of a control object, which in turn widens the scope of geometric control theory; − a new tabular method for finding conversion functions is proposed, which is simple enough to understand and sufficiently visual. In this context, it is proposed to present a system of partial differential equations with constraints in the form of differential inequalities in the form of a corresponding table, which allows to visualize the dependence of transformation functions on arguments, as well as to form systems of linear homogeneous equations by which it is possible to narrow the search area of conversion functions. The fourth section focuses on the software components of the on-board computer system, as well as the developed software that extends the scope of geometric control theory. Specifically, shows with new functionality of designed software and describes its main characteristics and structure. In the framework of the description of the developed software, special attention is paid to the structure and description of the operation of individual functional blocks of the program, the development of the interface structure, the reliability of the software, components for solving control problems using geometric control theory, evaluation of the quality of the software. Also, this section gives an example of how the developed software works. In addition, this section presents the results of solving the problem of optimal motion of the diesel train along the route of its direction, in which the simulation of the train movement along the route was performed and the comparison of the obtained data with the data of the movement of the real train, as well as an attempt to improve the efficiency of train movement due to the optimization of individual sets of routes, taking into account the features of the route. The following scientific results have been obtained within this section: − new software has been developed that has been further developed through the use of modern programming languages. The developed software is more stable due to the testing unit, more convenient due to the created graphical user interface, more functional, because it can perform the process of linearization and search of conversion functions, many of the functionality are automated, there are comments and an explanation that increases the ease of use of this software, in addition, the characteristics of the program meet the requirements of the standard of program quality; − the study of the dependence of the amount of fuel consumed during train movement on the features of terrain, the style of running the train and its schedule; − a method of reducing the amount of fuel consumed was proposed and tested, using terrain features, permissible lag or advance of the train timetable, as well as determining the optimal driving style for the route as a whole and for its individual parts; − the train simulation was performed on a real route, and the results showed that the simulation was correct, because it was compared to the real train running on this route. Therefore, the dissertation is devoted to the solution of the scientific-applied problem, namely, the development of models, methods and software components of the computer system of traction rolling stock, which is created on the basis of generalized mathematical models, developed software, as well as the means of optimizing the control of moving objects new methods, as well as the use of a new neural network structure to search for transformation functions, which made it possible to extend the scope of geometric control theory it breeds the preconditions for developing automatic train control systems and improves performance related to energy consumption. The advanced diesel train model takes into account the main types of interaction between the train and the track profile, namely, turns, slopes, as well as the performance of the train engines, which adequately reflects the processes in real diesel train. Specialized software has been created that has a graphical user interface and complies with software quality assessment requirements. This software implements an advanced structure of the human-machine system, makes it possible to perform automation of analytical transformations of geometric control theory to the form of Brunovsky. The new neural network structure is based on ART-type neural networks to solve multiple-choice tasks. This made it possible to develop a new method of finding transform functions that relate variables of nonlinear and linear models in the form of Brunovsky. To increase the efficiency of the linearization process, several methods have been proposed to simplify the calculation process by reducing the number of elements in the right-hand side of the initial differential equation system, and by separating the first equation, which itself is linear, from the general system of equations. The performed research and development allowed to improve the structure of the on-board computer system of decision support of the driver of the diesel train, which allowed, under real conditions of movement of the dynamic object, during changes of road conditions, to perform recalculations and to give the driver new control laws which will allow to continue the movement on the route adhering to the timetable and minimum cost of fuel and energy resources. Appropriate researches were conducted on real object and mathematical models. The results of the researches confirmed the correctness of the used tools, methods and algorithms, on the basis of which the appropriate solutions that formed the basis of the developed software were proposed.