Добірка наукової літератури з теми "Біомедичних сигнал"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Біомедичних сигнал".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Біомедичних сигнал"

1

Білобородова, Т. О., М. О. Коверга, І. В. Хамула, П. О. Петров, Л. В. Білобородова та М. В. Нестеров. "Методологія автоматичної оцінки біомедичних даних". ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, № 7 (263) (10 грудня 2020): 18–23. http://dx.doi.org/10.33216/1998-7927-2020-263-7-18-23.

Повний текст джерела
Анотація:
Сучасний розвиток інформаційних технологій відкриває нові можливості в біомедичному моніторингу. Широкий спектр біомедичних датчиків використовується для отримання різних фізіологічних сигналів людини, що можуть свідчити про наявність симптомів хвороби Паркінсона, зокрема, такого як тремор. Визначено, що існуючі методи класифікації даних для визначення постурального тремору недостатньо ефективні. Запропонована методологія включає отримання та сегментація даних, вилучення ознак, моделювання з етапами навчання і тестування для отримання оцінки про передбачуваний ступінь тремору. Дані отримані відповідно до п’яти ступенів тяжкості тремору і містять часову мітку і дані акселерометра по трьох осях. Отримані дані сегментовані у сегменти у вигляді односекундного вікна, що не перекривається. Обробка даних виконана для даних отриманих сегментів. З кожного компонента прискорення сегмента вилучаються наступні ознаки: середнє для x, y, z; стандартне відхилення для x, y, z; максимальне та мінімальне значення для x, y, z; медіана для x, y, z; ентропіядля x, y, z; автокореляція для x, y, z; енергія послідовності для x, y, z; кореляція Пірсона для x і z; кореляція Пірсона для y і z; кореляція Пірсона для x і y. Моделювання проведено з застосуваннямалгоритму підвищення градієнтного дерева XGBoost, якийзастосовано для співставлення ступеню тремору відповідним виділеним векторам ознак. Навчена модель використана для оцінки ступеню тремору усіх векторів ознак в одному тесті. Середні оцінки ступеню тремору представляють оцінки ступеню кожного класу. Класифікатор надає індивідуальний результат для кожного сегмента вилучених з даних тесту ознак. Результати отриманої матриці невідповідності використано для оцінки якості класифікації. На тестових даних отримана точність класифікації з використанням параметру F1-score, що становить 92%. Розрахована важливість кожної вилученої ознаки відносно класу, яка вказує корисність ознаки при побудові дерев рішень в моделі. Визначена важливість вилучених ознак у відповідності до класу, в подальших дослідження використовуватиметься для зменшення обсягу вхідних даних.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко та ін. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ". Theory and methods of e-learning 4 (17 лютого 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Повний текст джерела
Анотація:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Біомедичних сигнал"

1

Пашкевич, Наталія Вікторівна, та Nataliia Pashkevych. "Комп'ютерний засіб випробування алгоритмічно-програмного забезпечення обробки біомедичних сигналів як періодично корельованих випадкових процесів". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, 2021. http://elartu.tntu.edu.ua/handle/lib/36236.

Повний текст джерела
Анотація:
Кваліфікаційна робота виконана на кафедрі біотехнічних систем Тернопільського національного технічного університету імені Івана Пулюя
В роботі застосовано ПКВП в якості математичної моделі біомедичних сигналів ритмічного характеру у вигляді, яка по відношенню до відомих поєднує у своїй математичній структурі стохастичність природи та ритмічності біомедичних сигналів, що є актуальним для сигналів біопородження. На підґрунті математичної моделі ПКВП забезпечено можливість реалізації синфазної та компонентної обробки біомедичних сигналів для оцінення можливостей своєчасної діагностики стану організму людини. Розроблено алгоритм та комп’ютерний засіб імітаційного моделювання тестових сигналів для випробування методів обробки біомедичних сигналів. В результаті випробування встановлено, що результати методів обробки є стійкими, інваріантними щодо зміни вхідних параметрів біомедичного сигналу..
The paper uses PCRP as a mathematical model of biomedical signals of rhythmic nature in the form, which, in addition to the known ones, combines in its mathematical structure the stochastic nature and rhythmicity of biomedical signals, which is relevant for biogeneration signals. On the basis of the mathematical model of PCRP the possibility of realization of in-phase and component processing of biomedical signals for an estimation of possibilities of timely diagnostics of a condition of a human body is provided. An algorithm and computer tool for simulation modeling of test signals for testing methods of biomedical signal processing have been developed. As a result of the test it was found that the results of processing methods are stable, invariant with respect to changes in the input parameters of the biomedical signal.
ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ 9 ВСТУП 10 РОЗДІЛ 1. АНАЛІТИЧНА ЧАСТИНА 13 1.1. Класифікація біомедичних сигналів та способи її одержання 13 1.1.1. Серцеві біомедичні сигнали 13 1.1.2. Мозкові біомедичні сигнали 19 1.1.3. М’язові біомедичні сигнали 20 1.1.4. Біомедичний сигнал органів зору 22 1.1.5. Біомедичний сигнал органів дихання 24 1.1.6. Органів травлення біомедичні сигнали 25 1.1.7. Органів травлення біомедичні сигнали 26 1.2. Методи обробки ритмічних біомедичних сигналів 27 1.2.1. Морфологічна обробка 27 1.2.2. Статистична обробка 28 1.2.3. Спектральна обробка 31 1.3. Висновки до розділу 1 34 РОЗДІЛ 2. МАТЕМАТИЧНА МОДЕЛЬ РИТМІЧНИХ БІОМЕДИЧНИХ СИГНАЛІВ 35 2.1. Характеристики ритмічних біомедичних сигналів 35 2.2. Математичний образ моделі ритмічних біомедичних сигналів 39 2.3. Методи та алгоритми обробки ритмічних біомедичних сигналів 41 2.3.1. Синфазна обробка ритмічних біомедичних сигналів та її алгоритмічна реалізація 41 2.3.2. Компонентна обробка ритмічних біомедичних сигналів та її алгоритмічна реалізація. 45 2.4. Випробування методів обробки ритмічних біомедичних сигналів 47 2.4.1. Метод випробування методів 47 7 2.4.2. Імітаційне моделювання ритмічних біомедичних сигналів для випробування методів обробки 48 2.4.3. Алгоритм імітаційного моделювання ритмічних біомедичних сигналів 50 2.4.4. Алгоритм випробування методів обробки ритмічних біомедичних сигналів 51 2.5. Висновки до розділу 3 52 РОЗДІЛ 3. НАУКОВО-ДОСЛІДНА ЧАСТИНА 54 3.1. Алгоритми програм обробки ритмічних біомедичних сигналів 54 3.1.1. Синфазна обробка 54 3.1.2 Компонентна обробка 55 3.2. Алгоритм програми імітаційного моделювання ритмічних біомедичних сигналів 56 3.3. Алгоритм програми обробки ритмічних біомедичних сигналів 57 3.4. Результати обробок ритмічних біомедичних сигналів 58 3.4.1. Результати синфазної обробки 58 3.4.2. Результати компонентної обробки 66 3.5. Результати випробування методів обробки 68 3.6. Висновки до розділу 3 72 РОЗДІЛ 4. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 74 4.1. Охорона праці 74 4.2. Безпека в надзвичайних ситуаціях 77 4.3. Висновки до розділу 4 80 ЗАГАЛЬНІ ВИСНОВКИ 81 ПЕРЕЛІК ПОСИЛАНЬ 82 ДОДАТКИ 87 Додаток А. Програма синфазної обробки 88 Додаток Б. Програма компонентної обробки 90 Додаток В. Програмна випробування методів обробки ритмічних біомедичних сигналів 91 8 Додаток Г. Копія тези конференції 94 Додаток Д. Копія тези конференції 97
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Зернюк, Іван Вікторович. "Метод хаотичного виявлення слабких періодичних сигналів". Магістерська робота, Хмельницький національний університет, 2021. http://elar.khnu.km.ua/jspui/handle/123456789/10979.

Повний текст джерела
Анотація:
Дипломна робота присвячена розробці методу виявлення слабких біомедичних сигналів та тлі потужних флуктуаційних завад за допомогою використання нелінійних динамічних систем. Проведений аналіз існуючих методів обробки слабких сигналів, показано доцільність застосування нелінійного виявлення для біомедичних сигналів пульсової хвилі людини. Запропоновано структуру хаотичного виявника полігармонічного сигналу пульсової хвилі людини, складено імітаційну модель та проведено дослідження виявлення сигналів за допомогою хаотичного виявника. Сформульовано пропозиції щодо удосконалення схеми хаотичного виявлення.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Філатова, Ганна Євгенівна, Г. О. Надірян та А. О. Чаленко. "Проектування біомедичної систем підтримки прийняття рішень на основі морфологічного аналізу біомедичних сигналів та зображень". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39573.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Стеценко, Ярослава Василівна, та Михайло Юрійович Буриченко. "Аналіз біомедичних сигналів методом рекурентних діаграм". Thesis, «ПОЛІТ. Сучасні проблеми науки–2018»:ХVІІІ Міжнародна науково– технічна конференція молодих учених і студентів, 2018. https://er.nau.edu.ua/handle/NAU/47941.

Повний текст джерела
Анотація:
Запропоновано використання рекурентних діаграм для дослідження аналізу біомедичних сигналів. Розглянута можливості кількісного рекурентного аналізу для виявлення діагностичних ознак в біомедичних сигналах.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Стеценко, Ярослава Василівна, та Михайло Юрійович Буриченко. "Аналіз біомедичних сигналів методом рекурентних діаграм". Thesis, «ПОЛІТ. Сучасні проблеми науки–2018»:ХVІІІ Міжнародна науково– технічна конференція молодих учених і студентів, 2018. http://er.nau.edu.ua/handle/NAU/38969.

Повний текст джерела
Анотація:
Запропоновано використання рекурентних діаграм для дослідження аналізу біомедичних сигналів. Розглянута можливості кількісного рекурентного аналізу для виявлення діагностичних ознак в біомедичних сигналах.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Прокопчук, Артем Миколайович. "Сенсор біомедичних сигналів для цифрової електронної лабораторії". Master's thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/22972.

Повний текст джерела
Анотація:
Магістерська робота містить основну частину на 110 аркушах, 22 ілюстрацій, 22 таблиці кількість джерел за переліком посилань 53 джерела. Об’єктом дослідження є процес зняття електрокардіограми людини. Предметом дослідження є електроди для моніторингу біомедичних сигналів. Метою роботи є огляд роботи електродів в комплексі із датчиком ЕКГ для цифрової електронної лабораторії і запропонування оптимального варіанту електродів для подальшого застосування. Методом дослідження є теоретичний огляд існуючих різновидів біомедичних електродів та можливості їх технічного вдосконалення, а також практична перевірка роботи електродів у цифровій електронній лабораторії. Результатом роботи є отримані зображення ЕКГ при різних дослідженнях з використанням існуючих електродів та визначення оптимального варіанту електродів для застосування. Новизна результатів роботи полягає у застосуванні їх до цифрової електронної лабораторії, де будуть проводитися подальші дослідження та у визначенні вектору подальших досліджень у напрямку сухих ємнісних голчастих електродів. Результати даної роботи можуть бути використанні для подальшого їх застосування у лабораторних роботах та для проектування комбінованого типу електродів. Можливі напрямки продовження досліджень: проектування комбінованого типу сухих ємнісних голчастих електродів. Галузь застосування: навчальна цифрова електронна лабораторія, медицина.
Master's work contains the main part of 110 sheets, 22 illustrations, 22 tables and a number of sources by the list of references 53 source. The object of research is the process of taking human's electrocardiogram. The subject of the study is electrodes for monitoring biomedical signals. The aim of the work is to review the work of electrodes in conjunction with an ECG sensor for a digital electronic laboratory and to offer an optimal variant of electrodes for further application. The research method is a theoretical review of existing varieties of biomedical electrodes and the possibilities for their technical improvement, as well as practical verification of the work of electrodes in a digital electronic laboratory. The result of the work is the obtained ECG images in various studies using existing electrodes and the determination of the optimal variant of electrodes for use. The novelty of the results of the work is to apply them to a digital electronic laboratory, where further research will be carried out and in determining the vector of further research in the direction of dry capacitive needle electrodes. The results of this work can be used for their further application in laboratory work and for the design of a combined type of electrodes. Possible directions for the continuation of research: design of a combined type of dry capacitive needle electrodes. Field of application: educational Digital Electronic Laboratory, Medicine.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Філатова, Ганна Євгенівна. "Методи та засоби підтримки прийняття рішень в біомедичних системах на основі морфологічного аналізу біомедичних сигналів та зображень". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32462.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.11.17 – біологічні та медичні прилади i системи. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2017. Дисертація присвячена вирішенню актуальної науково-прикладної проблеми розвитку теоретичних основ і засобів підтримки прийняття рішень при проектуванні біомедичних систем на основі морфологічного аналізу біомедичних сигналів та зображень з локально зосередженими ознаками з використанням узгодженої морфологічної фільтрації, яка враховує в явному або неявному вигляді моделі корисних одновимірних і двовимірних сигналів. Розроблено узагальнену модель процесу інструментального обстеження пацієнта у вигляді сукупності функціональної, інформаційної, структурної і математичної моделей. Розроблено півтоновий морфологічний фільтр на основі локальних статистик, який в неявному вигляді враховує модель корисного двовимірного сигналу. Розроблений узагальнений метод морфологічного аналізу біомедичних сигналів з локально зосередженими ознаками за допомогою багатоканального узгодженого морфологічного фільтра. Розроблено критерій оцінки якості методу морфологічного аналізу біомедичних сигналів з локально зосередженими ознаками на основі синтезованого багатоканального узгодженого морфологічного фільтра. Розроблена система альтернативних діагностичних ознак при морфологічному аналізі біомедичних сигналів з локально зосередженими ознаками, що враховує модель корисного одновимірного сигналу і властивості функції виявлення узгодженого морфологічного фільтра. Розроблена математична модель цифрового рентгенівського зображення, що враховує особливості візуалізації біологічних об'єктів і їх структурних елементів. Розроблений метод підвищення якості візуалізації біологічних об'єктів на рентгенівських зображеннях широкого класу на основі морфологічного аналізу біомедичних зображень з локально зосередженими ознаками. Розроблений об'єктивний інтегральний критерій оцінки якості візуалізації біологічних об'єктів та їх структурних елементів на медичних слабоконтрастних півтонових рентгенологічних зображеннях. Розроблена структура узагальненої біомедичної системи підтримки прийняття рішень, а також програмне забезпечення модулів морфологічного аналізу біомедичних сигналів та зображень з локально зосередженими ознаками. Виконано перевірку адекватності розроблених методів морфологічного аналізу при обробці реальних біомедичних сигналів та зображень.
Dissertation for the doctor degree in the technical sciences area for specialty 05.11.17 – Biological and Medical Devices and Systems. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2017. The dissertation is devoted to the solution of the actual scientific and applied problem of the development of theoretical foundations and decision support means in the design of biomedical systems based on the morphological analysis of biomedical signals and images with locally concentrated features using consistent morphological filtering that takes into account explicitly or implicitly models of useful one- and twodimensional signals. The generalized model of the instrumental examination process of the patient as a set of functional, informational, structural and mathematical models was developed. The halftone morphological filter on the basis of local statistics which implicitly takes into account the model of a useful two-dimensional signal was developed. The generalized method for the morphological analysis of biomedical signals with locally concentrated features using a multichannel matched morphological filter was developed. The criterion for evaluating the quality of the morphological analysis method of biomedical signals with locally concentrated features on the basis of a synthesized multichannel matched morphological filter was developed. The system of alternative diagnostic features in the morphological analysis of biomedical signals with locally concentrated features taking into account the model of a useful one-dimensional signal and the properties of the detecting function of matched morphological filter was developed. The mathematical model of a digital X-ray image that takes into account the visualization features of biological objects and their structural elements was developed. The method for improving the quality of visualization of biological objects on X-ray images of a wide class was developed on the basis of the morphological analysis of biomedical images with locally concentrated features. The objective integral criterion for assessing the quality of visualization of biological objects and their structural elements on medical lowcontrast halftone X-ray images was developed. The structure of the generalized biomedical decision support system as well as the software for modules of morphological analysis of biomedical signals and images with locally concentrated features were developed. The adequacy of the developed methods of morphological analysis in the processing of real biomedical signals and images was checked.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Філатова, Ганна Євгенівна. "Методи та засоби підтримки прийняття рішень в біомедичних системах на основі морфологічного аналізу біомедичних сигналів та зображень". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32456.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.11.17 – біологічні та медичні прилади i системи. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2017. Дисертація присвячена вирішенню актуальної науково-прикладної проблеми розвитку теоретичних основ і засобів підтримки прийняття рішень при проектуванні біомедичних систем на основі морфологічного аналізу біомедичних сигналів та зображень з локально зосередженими ознаками з використанням узгодженої морфологічної фільтрації, яка враховує в явному або неявному вигляді моделі корисних одновимірних і двовимірних сигналів. Розроблено узагальнену модель процесу інструментального обстеження пацієнта у вигляді сукупності функціональної, інформаційної, структурної і математичної моделей. Розроблено півтоновий морфологічний фільтр на основі локальних статистик, який в неявному вигляді враховує модель корисного двовимірного сигналу. Розроблений узагальнений метод морфологічного аналізу біомедичних сигналів з локально зосередженими ознаками за допомогою багатоканального узгодженого морфологічного фільтра. Розроблено критерій оцінки якості методу морфологічного аналізу біомедичних сигналів з локально зосередженими ознаками на основі синтезованого багатоканального узгодженого морфологічного фільтра. Розроблена система альтернативних діагностичних ознак при морфологічному аналізі біомедичних сигналів з локально зосередженими ознаками, що враховує модель корисного одновимірного сигналу і властивості функції виявлення узгодженого морфологічного фільтра. Розроблена математична модель цифрового рентгенівського зображення, що враховує особливості візуалізації біологічних об'єктів і їх структурних елементів. Розроблений метод підвищення якості візуалізації біологічних об'єктів на рентгенівських зображеннях широкого класу на основі морфологічного аналізу біомедичних зображень з локально зосередженими ознаками. Розроблений об'єктивний інтегральний критерій оцінки якості візуалізації біологічних об'єктів та їх структурних елементів на медичних слабоконтрастних півтонових рентгенологічних зображеннях. Розроблена структура узагальненої біомедичної системи підтримки прийняття рішень, а також програмне забезпечення модулів морфологічного аналізу біомедичних сигналів та зображень з локально зосередженими ознаками. Виконано перевірку адекватності розроблених методів морфологічного аналізу при обробці реальних біомедичних сигналів та зображень.
Dissertation for the doctor degree in the technical sciences area for specialty 05.11.17 – Biological and Medical Devices and Systems. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2017. The dissertation is devoted to the solution of the actual scientific and applied problem of the development of theoretical foundations and decision support means in the design of biomedical systems based on the morphological analysis of biomedical signals and images with locally concentrated features using consistent morphological filtering that takes into account explicitly or implicitly models of useful one- and twodimensional signals. The generalized model of the instrumental examination process of the patient as a set of functional, informational, structural and mathematical models was developed. The halftone morphological filter on the basis of local statistics which implicitly takes into account the model of a useful two-dimensional signal was developed. The generalized method for the morphological analysis of biomedical signals with locally concentrated features using a multichannel matched morphological filter was developed. The criterion for evaluating the quality of the morphological analysis method of biomedical signals with locally concentrated features on the basis of a synthesized multichannel matched morphological filter was developed. The system of alternative diagnostic features in the morphological analysis of biomedical signals with locally concentrated features taking into account the model of a useful one-dimensional signal and the properties of the detecting function of matched morphological filter was developed. The mathematical model of a digital X-ray image that takes into account the visualization features of biological objects and their structural elements was developed. The method for improving the quality of visualization of biological objects on X-ray images of a wide class was developed on the basis of the morphological analysis of biomedical images with locally concentrated features. The objective integral criterion for assessing the quality of visualization of biological objects and their structural elements on medical lowcontrast halftone X-ray images was developed. The structure of the generalized biomedical decision support system as well as the software for modules of morphological analysis of biomedical signals and images with locally concentrated features were developed. The adequacy of the developed methods of morphological analysis in the processing of real biomedical signals and images was checked.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Стасюк, Віталій Борисович, та Vitaliy Stasiuk. "Пристрій прийому та передачі біомедичних сигналів по радіоканалу зв’язку". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, 2020. http://elartu.tntu.edu.ua/handle/lib/33283.

Повний текст джерела
Анотація:
В роботі проаналізовано пробему обміну даними зокрема прийому та передабі біомедичних сигналів по радіоканалу зв’язку. Проаналізовано технічне завдання та прототипи систем обміну даними, способи модуляції та перетворення сигналів. Розроблено пристрій прийому та передачі біомедичних сигналів по радіоканалу зв’язку на основі спеціалізованої мікросхеми TRF6900. Також проведено вибір елементної бази та розроблено друковану плату і друкований вузол пристрою. Запропоновано структуру технологічного процесу виготовлення такого пристрою
In the paper there is analyzes the problem of data exchange, in particular the reception and transmission of biomedical signals over the radio. The technical task and prototypes of data exchange systems, methods of signal modulation and conversion are analyzed. A device for receiving and transmitting biomedical signals over a radio communication channel based on a specialized chip TRF6900 has been developed. The element base was also selected and the printed circuit board and the printed circuit board of the device were developed. The structure of the technological process of manufacturing such a device is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ісаєва, О. А., та І. В. Свид. "Применение цифровой обработки сигналов в медицине". Thesis, ХНУРЕ, 2020. http://openarchive.nure.ua/handle/document/13700.

Повний текст джерела
Анотація:
Digital signal processing is a hardware and software complex that provides the necessary information about the properties and state of the signal, its primary processing, storage, transmission, secondary processing and output of data in a given form for solving various professional tasks of system users. The work is devoted to the basic concepts that are used in digital signal processing. The block diagram of digital signal processing is described. The types of laboratory research in medicine that use digital signal processing are discussed. In general, we are talking about modern digital signal processing.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Біомедичних сигнал"

1

Ків, А. Ю., та В. М. Соловйов. Універсальні прояви складності в системах різної природи. [б. в.], травень 2017. http://dx.doi.org/10.31812/0564/1267.

Повний текст джерела
Анотація:
У даній роботі ми демонструємо універсальність введених мір складності для систем різної природи і походження: фізичних (нестабільність лазера, деградація матеріалів і приладів), астрофізичних (розповсюдження світла і гравітаційних хвиль, флуктуації випромінювання Сонця), геофізичних (землетруси); біомедичних (ЕКГ, ЕЕГ, коливання довжини повного кроку, динаміка положення рівноваги); технічних (трафіки руху транспорту та Інтернету, зміна у часі різноманітних параметрів систем); економічних і фінансових (динаміка численних індексів, крос-курсів валют та реальних цін товарів і послуг); когнітивних (різних дискретних проявів когнітивної діяльності – мови, рефлексії на подразники, спеціальних інтелектуальних тестів), синтетичних (множини атракторів, спеціально сгенерованих сигналів тощо).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії