Добірка наукової літератури з теми "Β-FeSi2"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Β-FeSi2".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Β-FeSi2"

1

Tsunoda, Tatsuo, Masakazu Mukaida, Akio Watanabe, and Yoji Imai. "Composition dependence of morphology, structure, and thermoelectric properties of FeSi2 films prepared by sputtering deposition." Journal of Materials Research 11, no. 8 (August 1996): 2062–70. http://dx.doi.org/10.1557/jmr.1996.0259.

Повний текст джерела
Анотація:
Direct β–FeSi2 film preparation from gaseous phase was examined using a radio-frequency (rf) sputtering deposition apparatus equipped with a composite target of iron and silicon. Films composed of only β–FeSi2 phase were formed at substrate temperatures above 573 K when the chemical composition of the film was very close to stoichiometric FeSi2. The β–FeSi2 films thus formed showed rather large positive Seebeck coefficient. When the chemical composition of the films were deviated to the Fe-rich side, ∈–FeSi phase was formed along with β–FeSi2. On the other hand, α–FeSi2 phase, which is stable above 1210 K in the equilibrium phase diagram, was formed at the substrate temperature as low as 723 K when the chemical composition was deviated to the Si-rich side. The formation of α–FeSi2 phase induced drastic changes in the morphology and thermoelectric properties of the films. The α–FeSi2 phase formed in the films was easily transformed to β–FeSi2 phase by a thermal treatment.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nanko, Makoto, Se Hun Chang, Koji Matsumaru, Kozo Ishizaki та Masatoshi Takeda. "Isothermal Oxidation of Sintered β-FeSi2 in Air". Materials Science Forum 522-523 (серпень 2006): 641–48. http://dx.doi.org/10.4028/www.scientific.net/msf.522-523.641.

Повний текст джерела
Анотація:
High-temperature oxidation of sintered β-FeSi2 doped with Mn and Co was evaluated at 800°C in air. Amorphous SiO2 was developed as an oxide scale. Granular ε-FeSi also appeared below the SiO2 scale as a result of consumption of Si in β-FeSi2. Growth of the oxide scale on doped FeSi2 followed a parabolic law and its rate was similar to oxidation of undoped samples. Thermoelectric properties of sintered β-FeSi2 were also evaluated before and after oxidation at 800°C for 7 days. There was no significant change in thermoelectric properties after high-temperature oxidation on β-FeSi2 sintered bodies.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hong, Soon Jik, Chang Kyu Rhee та Byong Sun Chun. "Phase Transition and Thermoelectric Property of Ultra-Fine Structured β-FeSi2 Compounds". Solid State Phenomena 118 (грудень 2006): 591–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.118.591.

Повний текст джерела
Анотація:
FeSi2 compounds were fabricated by rapid solidification and hot pressing, which is considered to be a mass production technique for this alloy. Structural behavior of melt-spun ribbon during heat-treatment and Seebeck coefficient of the hot pressed bulk were systemically investigated and compared with conventionally fabricated alloys. The melt-spun ribbon consists of α-Fe2Si5 and ε-FeSi phase. With increasing annealing time, the phase transition to β-FeSi2 phase occurred more rapidly. 20 min of annealing is sufficient for a homogeneous formation of β-FeSi2 phase in melt-spun ribbon, while it is 100 h in as-cast alloy. In this research, the formation mechanism of β-FeSi2 phase during annealing is a transition of α+ε→β. The microstructure of sintered bulk generally consist of a randomly distributed β-FeSi2 phase with an average grain size of 0.9 μm. The increase of Seebeck coefficient in melt-spun and sintered specimen is due to fine grain size formed by rapid solidification.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Meng, Qing Sen, Wen Hao Fan, L. Q. Wang та L. Z. Ding. "Effect of FAPAS Process on the Thermoelectric Properties of β-FeSi2". Materials Science Forum 650 (травень 2010): 137–41. http://dx.doi.org/10.4028/www.scientific.net/msf.650.137.

Повний текст джерела
Анотація:
Iron disilicide (-FeSi2, and -FeSi2+Cu0.1wt%) were prepared by a field-activated pressure assisted synthesis(FAPAS) method from elemental powders and the thermoelectric properties were investigated. The average grain size of these products is about 0.3m. The thermal conductivity of these materials is 3-4wm-1K-1in the temperature range 300-725K. These products’ figure of merit is 28.50×10-4 in the temperature range 330-450K. The additions of Cu promote the phase transformation of -Fe2Si5 + -FeSi → β-FeSi2 and shorten the annealing time. It is proved that FAPAS is a benign and rapid process for sintering of -FeSi2 thermoelectric materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kawabata, Naoki, та Kazuhiro Nakamura. "Transformation from ε-FeSi to β- FeSi2 in RF-sputtered FeSix films". Physics Procedia 11 (2011): 87–90. http://dx.doi.org/10.1016/j.phpro.2011.01.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kloc, Ch, E. Arushanov, M. Wendl, H. Hohl, U. Malang та E. Bucher. "Preparation and properties of FeSi, α-FeSi2 and β-FeSi2 single crystals". Journal of Alloys and Compounds 219, № 1-2 (березень 1995): 93–96. http://dx.doi.org/10.1016/0925-8388(94)05055-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

KLOC, CH, E. ARUSHANOV, M. WENDL, H. HOHL, U. MALANG та E. BUCHER. "ChemInform Abstract: Preparation and Properties of FeSi, α-FeSi2 and β-FeSi2 Single Crystals." ChemInform 26, № 32 (17 серпня 2010): no. http://dx.doi.org/10.1002/chin.199532022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laila, Assayidatul, та Makoto Nanko. "Characterization of Cast Iron Scrap Chips toward β-FeSi2 Thermoelectric Materials". Materials Science Forum 804 (жовтень 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/msf.804.3.

Повний текст джерела
Анотація:
The upgrade recycling process of cast-iron scrap chips toward β-FeSi2 is regarded as an eco-friendly and cost-effective production process. It is useful for reducing the material cost in fabricating β-FeSi2 by utilizing the waste that is obtained from the manufacturing process of cast-iron components. In this research, β-FeSi2 was successfully obtained from cast iron bscrap chips and showed good thermoelectric performance in Seebeck coefficient and electrical conductivity which is around 70% to almost 100% compared to β-FeSi2 that was prepared from pure Fe and other publications. The thermoelectric power factor was achieved 90% performance compared to other literatures and β-FeSi2 prepared from pure Fe.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cho, Sung-Pyo, Yoshiaki Nakamura, Jun Yamasaki, Eiji Okunishi, Masakazu Ichikawa та Nobuo Tanaka. "Microstructure and interdiffusion behaviour of β-FeSi2 flat islands grown on Si(111) surfaces". Journal of Applied Crystallography 46, № 4 (4 липня 2013): 1076–80. http://dx.doi.org/10.1107/s0021889813015355.

Повний текст джерела
Анотація:
β-FeSi2 flat islands have been fabricated on ultra-thin oxidized Si(111) surfaces by Fe deposition on Si nanodots. The microstructure and interdiffusion behaviour of the β-FeSi2/Si(111) system at the atomic level were studied by using spherical aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. The formed β-FeSi2 flat islands had a disc shape with an average size of 30–150 nm width and 10–20 nm height, and were epitaxically grown on high-quality single-phase Si with a crystallographic relationship (110)β-FeSi2/(111)Si and [001]β-FeSi2/[1\bar 10]Si. Moreover, the heterojunction between the β-FeSi2(110) flat islands and the Si(111) substrate was an atomically and chemically abrupt interface without any irregularities. It is believed that these results are caused by the use of ultra-thin SiO2 films in our fabrication method, which is likely to be beneficial particularly for fabricating practical nanoscaled devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eguchi, Hajime, Motoki Iinuma, Hirofumi Hoshida, Naoki Murakoso та Yoshikazu Terai. "Growth of Sb-Doped β-FeSi2 Epitaxial Films and Optimization of Donor Activation Conditions". Defect and Diffusion Forum 386 (вересень 2018): 38–42. http://dx.doi.org/10.4028/www.scientific.net/ddf.386.38.

Повний текст джерела
Анотація:
Sb-doped β-FeSi2 epitaxial films on Si(111) were grown by molecular beam epitaxy to control an electron density of β-FeSi2. After an optimization of donor activation conditions in the Sb-doped β-FeSi2, the electron density of 6 × 1018 cm-3 at 300 K was achieved by thermal annealing in a N2 ambient. In the temperature dependence of carrier density, the n-type conduction was changed to p-type conduction at low temperatures in the film annealed at high temperature (600 °C). Raman spectra of the annealed films showed that both Fe and Si sites were substituted by the doped Sb in β-FeSi2 lattice.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Β-FeSi2"

1

Li, Fangfei [Verfasser], та Hartmut [Akademischer Betreuer] Wiggers. "Charge Storage Behavior of β-FeSi2 Nanoparticles / Fangfei Li ; Betreuer: Hartmut Wiggers". Duisburg, 2021. http://d-nb.info/123904870X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Feng, Xiaohua. "Etude des propriétés thermoélectriques des revêtements de matériaux de type β-FeSi2". Thesis, Belfort-Montbéliard, 2016. http://www.theses.fr/2016BELF0288/document.

Повний текст джерела
Анотація:
L'incertitude de l'énergie mondiale avec l'augmentation constante de la demande d'énergie déclenche la recherche de technologies de conversion d'énergie à haut rendement. Les dispositifs thermoélectriques (TE) peuvent jouer un rôle très important dans la collecte et la valorisation de l'énergie car ils peuvent être employés pour récupérer la chaleur résiduelle. Par exemple, la quantité de chaleur émise sous forme de déchets par les différents moteurs thermiques est évaluée en centaines de millions de MWh /an.Cette thèse vise à démontrer la faisabilité de fabrication des systèmes de récupération de la chaleur issue des déchets à l'échelle industrielle en utilisant des générateurs thermoélectriques (TE). Les techniques de fabrication proposées sont basées sur l'utilisation de technologies avancées comme le frittage par spark plasma, le broyage, la fusion laser sélective et la technologie de projection thermique. Ces techniques rendent possible l'élaboration de revêtements de matériau thermoélectrique avec des performances thermoélectriques supérieures et une flexibilité forte liées aux choix multiples de tailles, de formes et de matériaux.Nous nous sommes intéressés à l'étude du matériau semi-conducteur ß-FeSi2 car il présente un coefficient de mérite fort dans une plage de température de 300-800oC qui est la température des gaz en sortie de moteur voiture.Les techniques de SLM (Selective Laser Melting), de broyage, de frittage et de frittage flash (SPS) ont été successivement utilisées pour aboutir à l'élaboration de l'alliage ¿-FeSi2. Les revêtements ont ensuite été obtenus par la technique de projection plasma sous basse pression.Concernant le revêtement formé à partir de l'alliage par procédé LPPS, la transformation de phase de la phase cubique -ferrosilicium et de la phase quadratique ¿-Fe2Si5 en phase orthorhombique ß-FeSi2 se produit en obéissant aux réactions péritectique et eutectique. Après recuit sous température et temps appropriés, les revêtements présentent une phase complète ß-FeSi2 sur le substrat céramique.En outre pour une application à grande échelle, il est nécessaire de déposer ce type de revêtement sur un substrat en acier inoxydable et il convient dans ce cas d'utiliser un masque approprié pour fabriquer le dispositif thermoélectrique
The uncertainty in the global energy with the constant increase in energy demand triggers the search for energyconversion technologies with high efficiency. The thermoeletrical devices (TE) can play a relevant role in thecollection and recovery of energy because they can be used to recover waste heat. For example, the amount of heatemitted as waste by different ombustion engines is evaluated hundreds of millions of MWh / year.This thesis aims to demonstrate the feasibility of anufacturing heat recovery systems from waste on an industrialscale using thermoelectric generators (TE). The proposed manufacturing techniques are based on the use ofadvanced technologies such as spark plasma sintering, crushing, selective laser melting and thermal spraytechnology. These techniques make possible the development of thermoelectric material coatings with superiorthermoelectric performance and high flexibility related to multiple choices of sizes, shapes and materials.The study of semiconductor ß-FeSi2 material was conducted in this goal because it has a strong merit coefficient(ZT) in the temperature range of 300-800°C which is the temperature of the output gas of the cars.Selective Laser Melting, sintering and spark plasma sintering (SPS) were successively used to lead to themanufacture of ¿-FeSi2 alloy. The coatings were then obtained by low pressure plasma spraying.Concerning the coating formed from the alloy, the phase transformation of the cubic phase ¿-ferro-silicon and thetetragonal phase ¿-Fe2Si5 in the orthorhombic phase ß-FeSi2 is produced by obeying the eritectic and eutecticreactions. After annealing under suitable temperature and time, the coatings sprayed on the ceramic bstratepresent a complete phase ß-FeSi2.In view of a large-scale application, it is necessary to spray this type of coating on a stainless steel substrate and inthis case to use a suitable mask for making the appropriate thermoelectric device
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wei-JieHuang та 黃韋傑. "Synthesis and properties of morphology-improved single crystalline FeSi and β-FeSi2 nanowires". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/qn6j62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Geng-Tong, та 吳耿同. "Simulation and Analysis of β-FeSi2 LED". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/24482201414219379794.

Повний текст джерела
Анотація:
碩士
義守大學
電子工程學系碩士班
94
The light-emitting devices are all fabricated by using Ⅲ-Ⅴ compound materials at the present day. However, the lattice constants of Ⅲ-Ⅴcompound materials are different from Si material, therefore the light-emitting devices can not integrate with Si chips. Recently, light emission from Si has been showed to be possible when the Si in the from of a low-dimensional system or when selected active impurities (such as erbium) and/or new phases (such as β-FeSi2). So far the studies of β-FeSi2 by many scholars have been focused on the investigation of its optical and electrical properties to find out the optimum thin film growth conditions. The theoretical investigation of β-FeSi2 light-emitting devices has not been reported. Thus, various laser diode structures (such as edge-emitting diode and surface-emitting diode) by using β-FeSi2 film as the action layer will be designed and analyzed in this proposal. First, the gain of β-FeSi2 /Si double heterostructure laser will be calculated. Then, the steady state solution of the rate equations will be solved to investigate the threshold characteristics and output power of β-FeSi2 /Si laser. The transient solutions of the rate equations will be calculated by using Analytic Solution to analyze the dynamic effects, frequency response and turn-on delay behavior of β-FeSi2 /Si laser, The analysis of rate equations can investigate the key factors that dominate the β-FeSi2/Si laser performances, These results can be used to fabricate the optimum β-FeSi2/Si laser structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chih-YungYang та 楊智詠. "Synthesis and properties of single-crystalline β-FeSi2 nanowires". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/7z2fyj.

Повний текст джерела
Анотація:
碩士
國立成功大學
材料科學及工程學系碩博士班
101
In this study, self-catalyzed β-FeSi2 nanowires were synthesized via chemical vapor deposition method where the fabrication of β-FeSi2 nanowires occurred on Si(100) substrates through the decomposition of the single-source precursor of anhydrous FeCl3 powders. We carefully varied temperatures, duration time and the flow rates of carrier gases to control and investigate the growth of the nanowires. we can find that β-FeSi2 nanowires grow at about 750 ℃~ 850 ℃ and they are longer and thinner with increasing temperature . The number of nanowires was found fewer at higher gas flow rate, and the flow is less than 50sccm may have different phases appear. It is found that the longer duration time makes longer nanowires. β-FeSi2 in the PL IR spectra test can be found that there is a peak at 1380nm, it can be used as a light-emitting diode applications.The magnetism of β-FeSi2 nanowires is interesting as the result of various dimensions with different futures. β-FeSi2 bulk is non-magnetic,thin film ferromagnetic only below 100K, and in the magnetic analysis , there are room temperature ferromagnetic properties at the β-FeSi2 nanowires. In the field emission measurements, β-FeSi2 were good field emission materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Je-Jen, та 王傑彥. "Synthesis of bulk β-FeSi2 and its electrical measurement". Thesis, 1999. http://ndltd.ncl.edu.tw/handle/29855852689008593881.

Повний текст джерела
Анотація:
碩士
國立交通大學
光電工程所
87
β-FeSi2 is an attractive material because of its high thermoelectric power,high absorption coefficient of visible light,and the integrating on silicon substrate﹒The thermal energy gap ofβ-FeSi2 has been reported 0.87eV-0.95eV in some literatures[1][2]﹒In this research,we synthesized and annealed theβ-FeSi2 in some different conditions﹒Theβ-FeSi2 was observed higher thermoelectric power in the condition that the syntheticβ-FeSi2 was quenched,and then annealed at 800℃,sustained 1000 hours﹒We also found that the copper-dopedβ-FeSi2 performed higher thermoelectric power﹒The higher thermoelectric power could be becauseβ-FeSi2 was formed fast fromε-FeSi and α-Fe2Si5 after annealing or doping copper﹒Structural characterizations were made by X-ray diffraction,Raman scattering,scanning electron microscopy and electron probe microanalyzer﹒Further more,ther result of measurement of resistivity as a function of reciprocal temperature is shown with a thermal energy gap 0.82eV-0.88eV﹒At low temperature(100K-200K),the temperature dependence of the resistivity matched well with Mott''s exp(To/T)^(1/4)law,indicating high impurity and defect in our materials﹒
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Chih-Wei, та 陳志偉. "Synthesis and Properties of the β-FeSi2 and ε-FeSi Nanowires by Oxide Assisted Growth Method". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/59550264757787925877.

Повний текст джерела
Анотація:
碩士
國立清華大學
材料科學工程學系
99
Transition metal silicide nanowires compose a highly broad set of refractory materials that are promising materials that are currently used for many applications including CMOS devices, thin film coatings, bulk structural components, electrical heating elements, photovoltaics, thermoelectric and spintronics. Semiconducting silicides have been extensively investigated for silicon-based optoelectronics such as LEDs and IR detectors. The narrow bandgap semiconducting silicides, in particular CrSi2, β-FeSi2, MnSi1.8, and ReSi1.75, have been targeted and used for robust, stable, and inexpensive thermoelectric materials, and have shown potential for photovoltaic applications. β-FeSi2 is a silicon-rich phase with a orthorhombic structure (space group Cmca) that has direct-bandgap . It allows for making light-emitting devices which operate at 1.5mm that incorporate β-FeSi2 into a conventional silicon bipolar junction. ε-FeSi is a metallic material with a cubic structure (space group P213) that has been classified as a Kondo insulator. It has attracted interest for over half a century, mainly because of its unusual magnetic behavior. β-FeSi2 and ε-FeSi nanowires were produced on silicon substrates covered with a thick layer of silicon oxide through the decomposition of the double-source precursor FeCl3 and SiO in a Oxygen Assisted Growth (OAG) process. Unlike typical Vapor-Liquid-Solid (VLS) NWs growth, The NWs form without the addition of metal catalysts had no catalyst tips. The morphologies and structure of NWs were confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). SEM shows that the diameter of the NWs is below 100nm and the length of NWs is tens of micrometers. XRD reveals that samples can grow in single phase or in double phase NWs depending on the growth temperature. Energy spectroscopy for chemical analysis (ESCA) shows the NWs are covered a thick SiO2 layer. TEM results indicate that the NWs growth is along the low index plane. We also have fabricated two-terminal electrical devices of β-FeSi2 and ε-FeSi NWs, and they exhibited average resistivity about 2000μΩ.cm and 250μΩ.cm. We found that the resistivity decreases stepwise as the NWs is thinned in semiconducting nanowires. In conclusion, we have successfully synthesized freestanding single-crystalline nanowires of β-FeSi2 and ε-FeSi by OAG method. This shows that semiconducting and metallic NWs will prove to be promising materials in future nanotechnology.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yeh, Chan-Cheng, та 葉展成. "Analysis of the Response Characteristics of β-FeSi2 Heterojunction Photodiodes". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/41338836743477185428.

Повний текст джерела
Анотація:
碩士
義守大學
電子工程學系
101
In this thesis,the responsivity characteristics of the p-n heterojunction photodiodes are investigated by using Si andβ-FeSi2 materials with different combinations of doping concentration and device thickness. In recent research report, the absorption coefficient and the wavelength range of absorption ofβ-FeSi2 material are larger than that of Si material. Therefore, the spectral responsivities of β-FeSi2 p-n heterojunction photodiode are also larger than that of Si photodiode. In this thesis, the drift and diffusion currents of photodiodes are calculated by solring the charge transport equations. Then the I-V characteristic curves and the responsivities of the photodiodes and obtained by these currents. The calculated results show that theβ-FeSi2 heterojunction photodiode has a good rectifying character and a good response to the NIR light. Theβ-FeSi2 / 4H-SiC photodiode with the doping concentration of 1015 cm-3 in p type β-FeSi2 absorption layer and the absorption layer thickness of 2.0 μm has a peak responsivity value of 398 mA / W at 1.189μm. Therefore, the is applicable to NIR optically-activated SiC based power switching devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Chi-bi, та 王麒弼. "Design and Analysis of Internal Efficiency for β-FeSi2 Light-Emitting Diodes". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/03093450393648381607.

Повний текст джерела
Анотація:
碩士
義守大學
電子工程學系碩士班
97
The light-emitting devices are all fabricated by using Ⅲ-Ⅴ compound materials at the present day. However, the lattice constants of Ⅲ-Ⅴcompound materials are different from Si material, therefore the light-emitting devices can not integrate with Si chips. Recently, light emission from Si has been showed to be possible when the Si in the from of a low-dimensional system or when selected active impurities (such as erbium) and/or new phases (such as β-FeSi2). So far the studies of β-FeSi2 by many scholars have been focused on the investigation of its optical and electrical properties to find out the optimum thin film growth conditions. The theoretical investigation of β-FeSi2 light-emitting devices has not been reported. Thus, various laser diode structures (such as edge-emitting diode and surface-emitting diode) by using β-FeSi2 film as the action layer will be designed and analyzed in this proposal. First, the gain of β-FeSi2 /Si double heterostructure LED will be calculated. Then, the steady state solution of the rate equations will be solved to investigate the threshold characteristics and output power of β-FeSi2 /Si LED. The transient solutions of the rate equations will be calculated by using Analytic Solution to analyze the dynamic effects, frequency response and turn-on delay behavior of β-FeSi2 /Si LED, The analysis of rate equations can investigate the key factors that dominate the β-FeSi2/Si LED performances, These results can be used to fabricate the optimum β-FeSi2/Si LED structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Song, Tzu-wen, та 宋子文. "Calculation of Band Structures of β-FeSi2 by Using Tight-Binding Method". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/82375513662170973332.

Повний текст джерела
Анотація:
碩士
義守大學
電子工程學系碩士班
96
β-FeSi2 is a Si-based semiconductor with a direct band gap of ∼0.83-0.87eV at room temperature. This feature makes the β-FeSi2 a potential candidate for the use in the light emitters. In this paper, the band structures of β-FeSi2 is calculated by tight-binding method(TBM). The results show that the direct and indirect band gaps of β-FeSi2 differ only 0.022eV. The other different band-structure calculating methods also show that the β-FeSi2 has the direct and indirect band gaps characteristics. Thus, the TBM can still be used to calculate the band structures of a complicated crystal such as β-FeSi2. And the physical characteristics of the band structures of β-FeSi2 are analyzed easierly by using TBM than the other methods.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Β-FeSi2"

1

Hairin, Assayidatul Laila Nor, Muhammad Haziq Hakmal Jailani, and Megat Muhammad Ikhsan Megat Hasnan. "Thermoelectric Properties of Β-FeSi2 Thermoelectric Module Utilizing Cast-Iron Scrap Chips." In Proceeding of 5th International Conference on Advances in Manufacturing and Materials Engineering, 645–51. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9509-5_85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schaaf, P., M. Milosavljevic, S. Dhar, N. Bibic, K. P. Lieb, M. Wölz, and G. Principi. "Mössbauer Optimization of the Direct Synthesis of β-FeSi2 by Ion Beam Mixing of Fe/Si Bilayers." In Industrial Applications of the Mössbauer Effect, 615–21. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0299-8_67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nanko, Makoto, Se Hun Chang, Koji Matsumaru, Kozo Ishizaki, and Masatoshi Takeda. "Isothermal Oxidation of Sintered β-FeSi2 in Air." In High-Temperature Oxidation and Corrosion 2005, 641–48. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-409-x.641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hong, Soon Jik, Chang Kyu Rhee, and Byong Sun Chun. "Phase Transition and Thermoelectric Property of Ultra-Fine Structured β-FeSi2 Compounds." In Solid State Phenomena, 591–96. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-25-6.591.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Xiao Na, Chuang Dong, and Lei Xu. "High-Quality Semiconductor Carbon-Doped β-FeSi2 Film Synthesized by MEVVA Ion Implantation." In Materials Science Forum, 3803–6. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.3803.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hunt, Tim D., Brian J. Sealy, Karen J. Reeson, Russell M. Gwilliam, Kevin P. Homewood, Richard J. Wilson, C. Douglas Meekison, and G. Roger Booker. "Ion beam synthesis of α and β FeSi2 layers." In Ion Implantation Technology–92, 60–64. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89994-1.50015-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pauli, M., M. Dücker, M. Döscher, J. Müller, W. Henrion, and H. Lange. "Characterization of the heterostructure between heteroepitaxially grown β-FeSi2 and (111) silicon." In European Materials Research Society Symposia Proceedings, 270–73. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81769-3.50039-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yamauchi, S., H. Ohshima, T. Hattori, M. Kasaya, M. Hirai, M. Kusaka, M. Iwami, Y. Kamiura, and F. Hashimoto. "Preparation and Electronic Properties of Epitaxial β-FeSi2 on Si(111) Substrate." In Control of Semiconductor Interfaces, 377–82. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-444-81889-8.50070-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Katsumata, Hiroshi, Hong-Lie Shen, Naoto Kobayashi, Yunosuke Makita, Masataka Hasegawa, Hajime Shibata, Shinji Kimura, Akira Obara, and Shin-ichiro Uekusa. "Optical and structural properties of β-FeSi2 layers on Si fabricated by triple 56Fe ion implantations." In Ion Beam Modification of Materials, 943–46. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82334-2.50187-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maltez, R. L., M. Behar, and X. W. Lin. "Ion-beam induced sequential epitaxy of α, β and γ-FeSi2 in Si (100) at 320°C." In Ion Beam Modification of Materials, 400–403. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82334-2.50076-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Β-FeSi2"

1

Akiyama, Kensuke, Yoshihisa Matsumoto та Hiroshi Funakubo. "Room-temperature photoluminescence spectrum from β-FeSi2 films". У Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XXII, редактори Li-Wei Tu, Martin Strassburg, Jong Kyu Kim та Michael R. Krames. SPIE, 2018. http://dx.doi.org/10.1117/12.2289984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sun, C. M., P. S. Chan та H. K. Tsang. "Photoresponse of β-FeSi2 precipitates in a silicon waveguide". У LEOS 2007. 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society. IEEE, 2007. http://dx.doi.org/10.1109/leos.2007.4382443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Terai, Yoshikazu, та Yoshihito Maeda. "Photoluminescence Enhancement in β-FeSi2 by Annealing in Oxygen". У 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.d-9-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Akiyama, Kensuke, Satoru Kaneko та Hiroshi Funakubo. "Epitaxial Growth of β-FeSi2 on Single Crystal Insulator". У 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.d-9-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Akiyama, K., M. Itakura та H. Funakubo. "Photoluminescence enhancement from β-FeSi2 on Ag-coated Si". У 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.ps-8-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maeda, Yoshihito, Takahide Tatsumi, Yuki Kawakubo, Yuya Noguchi, Kosuke Morita, Hiroyuki Kobayashi та Kazumasa Narumi. "Enhancement of photoluminescence from Cu-doped β-FeSi2/Si heterostructures". У International Conference and Summer School on Advanced Silicide Technology 2014. Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/jjapcp.3.011108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MCKINTY, C. N., K. J. KIRKBY, K. P. HOMEWOOD, S. P. EDWARDS, G. SHAO, R. VALIZADEH та J. S. COLLIGON. "THE POTENTIAL OF β-FeSi2 NANOSTRUCUTRES FOR SOLAR CELL APPLICATIONS". У Reviews and Short Notes to NANOMEETING-2001. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810076_0084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

GALKIN, N. G., E. A. CHUSOVITIN, A. V. SHEVLYAGIN, S. A. DOTSENKO, D. L. GOROSHKO, T. S. SHAMIRZAEV та A. K. GUTAKOVSKII. "MODEL OF β-FeSi2 NANOCRYSTALLITE “EMERSION” PROCESS DURING SILICON LAYER OVERGROWTH". У Proceedings of International Conference Nanomeeting – 2013. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814460187_0042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tatar, B., та K. Kutlu. "Optical Properties Of β-FeSi2 Thin Films Grown By Magnetron Sputtering". У SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Narazaki, Aiko, Tadatake Sato, Yoshizo Kawaguchi та Hiroyuki Niino. "Room-temperature fabrication of β-FeSi2 microprecipitates by pulsed laser deposition". У SPIE Proceedings, редактори Isamu Miyamoto, Henry Helvajian, Kazuyoshi Itoh, Kojiro F. Kobayashi, Andreas Ostendorf та Koji Sugioka. SPIE, 2004. http://dx.doi.org/10.1117/12.596386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії