Дисертації з теми "ZnO nanocrystal"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: ZnO nanocrystal.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "ZnO nanocrystal".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Chieh-Yi, Kuo. "Fabrication and Optical Properties of ZnO Nanocrystal/GaN Quantum Well Based Hybrid Structures." Thesis, Linköpings universitet, Tunnfilmsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81675.

Повний текст джерела
Анотація:
Optical properties of hybrid structures based on zinc oxide nanocrystals (NCs) and Gallium Nitride quantum well (QW) has been studied. The ZnO NCs thin films on the top of GaN QW structures were fabricated using spin coating. The surface morphology was characterized by scanning electron microscopy (SEM). We have performed temperature dependence time-resolved photoluminescence (TRPL) measurements of the bare AlGaN/GaN QW structures and hybrids, containing ZnO NCs. It was found that at some temperatures the QW PL decay has shorter decay time in the presence of ZnO NCs thin film compared to the bare QW. The effect was stronger for the samples with thinner cap layers. The results are discussed in terms of three models such as exciton nonradiative energy transfer (NRET), tunneling effect, and piezoelectric field influence on the QW exciton energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ericsson, Leif KE. "Growth and Characterization of ZnO Nanocrystals." Doctoral thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-27156.

Повний текст джерела
Анотація:
The understanding of surfaces of materials is of crucial importance to all of us. Considering nanocrystals (NCs), that have a large surface to bulk ratio, the surfaces become even more important. Therefore, it is important to understand the fundamental surface properties in order to use NCs efficiently in applications. In the work reported in this thesis ZnO NCs were studied. At MAX-lab in Lund, synchrotron radiation based Spectroscopic Photoemission and Low Energy Electron Microscopy (SPELEEM) and X-ray Photoelectron Spectroscopy (XPS) were used. At Karlstad University characterization was done using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Scanning Tunnelling Microscopy (STM), Auger Electron Spectroscopy (AES), and XPS. The fundamental properties of ZnO surfaces were studied using distributions of ZnO NCs on SiO2/Si surfaces. The conditions for distribution of ZnO NCs were determined to be beneficial when using ethanol as the solvent for ultrasonically treated dispersions. Annealing at 650 °C in UHV cleaned the surfaces of the ZnO NCs enough for sharp LEEM imaging and chemical characterization while no sign of de-composition was found. A flat energy band structure for the ZnO/SiO2/Si system was proposed after 650 °C. Increasing the annealing temperature to 700 °C causes a de-composition of the ZnO that induce a downward band bending on the surfaces of ZnO NCs. Flat ZnO NCs with predominantly polar surfaces were grown using a rapid microwave assisted process. Tuning the chemistry in the growth solution the growth was restricted to only plate-shaped crystals, i.e. a very uniform growth. The surfaces of the NCs were characterized using AFM, revealing a triangular reconstruction of the ZnO(0001) surface not seen without surface treatment at ambient conditions before. Following cycles of sputtering and annealing in UHV, we observe by STM a surface reconstruction interpreted as 2x2 with 1/4 missing Zn atoms.
Baksidestext The understanding of the surfaces of materials is of crucial importance to all of us. Considering nanocrystals (NCs), that have a large surface to bulk ratio, the surfaces become even more important. In the work in this thesis ZnO NCs were studied. The fundamental properties of ZnO surfaces were studied using distributions of ZnO NCs on SiO2/Si surfaces. Annealing at 650 °C in UHV cleaned the surfaces of the ZnO NCs enough for sharp LEEM imaging and chemical characterization while no sign of de-composition was found. A flat energy band structure for the ZnO/SiO2/Si system was proposed after 650 °C. Increasing the annealing temperature to 700 °C causes a de-composition of the ZnO that induce a downward band bending on the surfaces of ZnO NCs. Flat ZnO NCs with predominantly polar surfaces were grown using a microwave assisted process. Tuning the chemistry in the growth solution the growth was restricted to only plate-shaped crystals, i.e. a very uniform growth. The surfaces of the NCs were characterized using AFM, revealing a triangular reconstruction of the ZnO(0001) surface not seen without surface treatment at ambient conditions before. Following cycles of sputtering and annealing in UHV, we observe by STM a surface reconstruction interpreted as 2x2 with 1/4 missing Zn atoms.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dias, Eva. "The photophysics of CdSe/ZnS/CdSe core/barrier/shell nanocrystals: light harvesting, single nanocrystal blinking, and optical gain." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107729.

Повний текст джерела
Анотація:
This thesis investigates the photophysical properties of CdSe/ZnS/CdSe core/barrier/shell nanocrystals using a combination of steady state and time resolved spectroscopy. Interestingly, these materials exhibit photoluminescence (PL) from both the CdSe core and CdSe shell, which can be exploited for a variety of applications, such as white light emission and optical gain. Steady state measurements shed light on the coupling between the two CdSe phases. The CdSe shell is shown to have a significant influence upon the optical properties of the CdSe core. In fact, the CdSe shell acts as a light harvester, increasing the brightness of the CdSe core as compared to bare CdSe nanocrystals. Single nanocrystal spectra of CdSe/ZnS/CdSe revealed that both CdSe phases exhibited PL intermittency and spectral diffusion. No correlation was observed in the spectral diffusion of the two CdSe phases on the timescale of the measurement. However, the single nanocrystal PL linewidths suggest that spectral diffusion of the two CdSe phases differs on shorter timescales. Using ultrafast transient absorption spectroscopy, CdSe/ZnS/CdSe nanocrystals were shown to exhibit optical gain with enhancements over bare CdSe nanocrystals. The bandwidth of stimulated emission from CdSe/ZnS/CdSe nanocrystals was much broader than bare CdSe nanocrystals due to CdSe shell enabled states. CdSe/ZnS/CdSe nanocrystals were also found to have lower biexciton binding energies than CdSe nanocrystals, contributing to improved gain performance. In addition, higher energy bleaching features in the transient absorption spectra indicated that populations of excitons remain in higher energy states, enabling dual colour emission.
Cette thèse explore les propriétés photophysique du coeur/barrière/coquille des nanocrystaux de CdSe/ZnS/CdSe par une combinaison de spectroscopies à l'état d'équilibre et en temps résolu. Il est intéréssant de noter que ces matériaux présentent de la photoluminescence (PL) provenant du coeur CdSe et de la coquille CdSe qui pourrait être exploitée dans une variété d'applications comme l'émission de lumière blanche et gain optique. Des mesures à l'état d'équilibre ont illustré le couplage entre les deux phases de CdSe. On a démontré que la coquille de CdSe influence les propriétés optique du coeur de CdSe. En effect, la coquille de CdSe fonctionne comme collecteur de lumière, augmentant la luminosité du coeur de CdSe comparé aux nanocrystaux nus de CdSe. Les spectres de nanocrystaux simples de CdSe/ZnS/CdSe révèlent que les deux phases CdSe montrent de l'intermittence PL et de la diffusion spectrale. Aucune corrélation n'a été observée dans la diffusion spectrale des deux phases de CdSe à l'échelle de mesure. Par contre, les largeurs de raie de PL du simple nanocrystal suggère que la diffusion spectrale des deux phases de CdSe diffèrent à des échelles de temps plus courtes. Par spectroscopie ultrarapide d'absorption transitoire, on a démontré que les nanocrystaux de CdSe/ZnS/CdSe font preuve de gain optique amélioré sur les nanocrystaux de CdSe nus. La largeur de raie des émissions stimulées des nanocrystaux de CdSe/ZnS/CdSe était plus élargie que celle des nanocrystaux de CdSe à cause de la présence de la coquille de CdSe. On a aussi démontré que les nanocrystaux de CdSe/ZnS/CdSe ont des plus basses énergies de liaisons de biexciton que les nanocrystaux de CdSe, contribuant à une amélioration de performance de gain. De plus, des caractéristiques de blanchiment à haute énergie dans les spectres d'absorption transitoire indiquent que les populations d'excitons demeurent à des états d'énergie plus élevés, permettant une émission double en couleur.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Jianpu. "Optoelectronic properties and memory effects of ZnO nanocrystals." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Kwang Jik. "Study of stability of ZnO nanoparticles and growth mechanisms of colloidal ZnO nanorods." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4303.

Повний текст джерела
Анотація:
After hydrolyzing zinc acetate in methanol solution, spherical ZnO nanoparticles in the size range from about 2.5 to 5 nm were synthesized by maintaining a ZnO concentration of 0.02M. Compared to ZnO nanoparticles prepared via other methods, the particles prepared using our novel colloidal chemistry exhibit narrow size distribution and a high sensitivity to the surrounding environment. The structure and composition of the white powders precipitated from the colloidal solution can vary, depending on how the powder samples are prepared. Factors such as desorption and adsorption of methanol, binding of water and exposure to humid air have been studied to correlate to the structure and composition observed from the precipitated powder. Methanol desorption rate and excess KOH on the particle surface have played an important role in the structural changes. Furthermore, upon annealing, the white precipitate is recovered to wurtize ZnO. XRD and TEM are used to study the structural transformation of ZnO nanoparticles.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Доброжан, Олександр Анатолійович, Александр Анатольевич Доброжан, Oleksandr Anatoliiovych Dobrozhan, Станіслав Ігорович Кахерський, Станислав Игорович Кахерский, Stanislav Ігорович Kakherskyi, Роман Миколайович Пшеничний та ін. "Cтруктурні та субструктурні характеристики нанокристалів і плівок ZnO для використання у сонячній енергетиці". Thesis, Дніпровський національний університет імені Олеся Гончара, 2020. https://essuir.sumdu.edu.ua/handle/123456789/80943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhou, Shengqiang. "Transition metal implanted ZnO: a correlation between structure and magnetism." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1209998012687-36583.

Повний текст джерела
Анотація:
Nowadays ferromagnetism is often found in potential diluted magnetic semiconductor systems. However, many authors question the origin of this ferromagnetism, i.e. if the observed ferromagnetism stems from ferromagnetic precipitates rather than from carriermediated magnetic coupling of ionic impurities, as required for a diluted magnetic semiconductor. In this thesis, this question will be answered for transition-metal implanted ZnO single crystals. Magnetic secondary phases, namely metallic Fe, Co and Ni nanocrystals, are formed inside ZnO. They are - although difficult to detect by common approaches of structural analysis - responsible for the observed ferromagnetism. Particularly Co and Ni nanocrystals are crystallographically oriented with respect to the ZnO matrix. Their structure phase transformation and corresponding evolution of magnetic properties upon annealing have been established. Finally, an approach, pre-annealing ZnO crystals at high temperature before implantation, has been demonstrated to sufficiently suppress the formation of metallic secondary phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Urgessa, Zelalem Nigussa. "Growth and characterization of ZnO nanorods using chemical bath deposition." Thesis, Nelson Mandela Metropolitan University, 2012. http://hdl.handle.net/10948/d1021124.

Повний текст джерела
Анотація:
Semiconductor devices are commonplace in every household. One application of semiconductors in particular, namely solid state lighting technology, is destined for a bright future. To this end, ZnO nanostructures have gained substantial interest in the research community, in part because of its requisite large direct band gap. Furthermore, the stability of the exciton (binding energy 60 meV) in this material, can lead to lasing action based on exciton recombination and possibly exciton interaction, even above room temperature. Therefore, it is very important to realize controllable growth of ZnO nanostructures and investigate their properties. The main motivation for this thesis is not only to successfully realize the controllable growth of ZnO nanorods, but also to investigate the structure, optical and electrical properties in detail by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy (steady state and time resolved) and X-ray diffraction (XRD). Furthermore, strong rectification in the ZnO/p-Si heterojunction is demonstrated. Nanorods have been successfully synthesized on silicon by a two-step process, involving the pre-coating of the substrate by a seed layer, followed by the chemical bath deposition of the nanorods. ZnO seed layers with particle sizes of about 5 nm are achieved by the thermal decomposition of zinc acetate dihydrate dissolved in ethanol. The effects of the seed layer density on the distribution, alignment and uniformity of subsequently grown nanorods were studied. The aspect ratio, orientation and distribution of nanorods are shown to be well controlled through adjusting the density of the ZnO nanoparticles pre-coated onto the substrates. It is shown that the seed layer is a prerequisite for the growth of well aligned ZnO nanorods on lattice mismatched Si substrate. The influence of various nanorod growth parameters on the morphology, optical and electrical properties of the nanorods were also systematically studied. These include the oxygen to zinc molar ratio, the pH of the growth solution, the concentration of the reactants, the growth temperature and growth time, different hydroxide precursors and the addition of surface passivating agents to the growth solution. By controlling these xii parameters different architectures of nanostructures, like spherical particles, well aligned nanorods, nanoflowers and thin films of different thicknesses are demonstrated. A possible growth mechanism for ZnO nanostructures in solution is proposed. XRD indicated that all the as-grown nanostructures produced above 45 C crystallize in the wurtzite structure and post growth annealing does not significantly enhance the crystalline quality of the material. In material grown at lower temperature, traces of zinc hydroxide were observed. The optical quality of the nanostructures was investigated using both steady-state PL and time-resolved (TR) PL from 4 K to room temperature. In the case of as-grown samples, both UV and defect related emissions have been observed for all nanostructures. The effect of post-growth annealing on the optical quality of the nanostructures was carefully examined. The effect of annealing in different atmospheres was also investigated. Regardless of the annealing environment annealing at a temperature as low as 300 C enhances the UV emission and suppresses defect related deep level emission. However, annealing above 500 C is required to out-diffuse hydrogen, the presence of which is deduced from the I4 line in the low temperature PL spectra of ZnO. TRPL was utilized to investigate lifetime decay profiles of nanorods upon different post growth treatments. The bound exciton lifetime strongly depends on the post-growth annealing temperature: the PL decay time is much faster for as grown rods, confirming the domination of surface assisted recombination. In general, the PL analysis showed that the PL of nanorods have the same characteristics as that of bulk ZnO, except for the stronger contribution from surface related bound excitons in the former case. Surface adsorbed impurities causing depletion and band bending in the near surface region is implied from both time resolved and steady state PL. Finally, although strong rectification in the ZnO/p-Si heterojunction is illustrated, no electroluminescence has been achieved. This is explained in terms of the band offset between ZnO and Si and interfacial states. Different schemes are proposed to improve the performance of ZnO/Si heterojunction light emitting devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tu, Wei-Lun Scharf Thomas W. "Processing, structure, and tribological property interrelationships in sputtered nanocrystalline ZnO coatings." [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/ark:/67531/metadc12207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhou, Shengqiang. "Transition metal implanted ZnO: a correlation between structure and magnetism." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23718.

Повний текст джерела
Анотація:
Nowadays ferromagnetism is often found in potential diluted magnetic semiconductor systems. However, many authors question the origin of this ferromagnetism, i.e. if the observed ferromagnetism stems from ferromagnetic precipitates rather than from carriermediated magnetic coupling of ionic impurities, as required for a diluted magnetic semiconductor. In this thesis, this question will be answered for transition-metal implanted ZnO single crystals. Magnetic secondary phases, namely metallic Fe, Co and Ni nanocrystals, are formed inside ZnO. They are - although difficult to detect by common approaches of structural analysis - responsible for the observed ferromagnetism. Particularly Co and Ni nanocrystals are crystallographically oriented with respect to the ZnO matrix. Their structure phase transformation and corresponding evolution of magnetic properties upon annealing have been established. Finally, an approach, pre-annealing ZnO crystals at high temperature before implantation, has been demonstrated to sufficiently suppress the formation of metallic secondary phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Lander, Sanna. "Rapid microwave assisted growth of ZnO nanocrystals: effects of heating power and zinc precursor." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-33269.

Повний текст джерела
Анотація:
The subject of this thesis is microwave assisted rapid growth of ZnO nanoparticles from an aqueous solution using different zinc precursors and heating powers, and characterization of these by scanning electron microscopy, atomic force microscopy and optical microscopy. The goal of the experiment performed was to study the effect of the heating power of the microwave oven as well as that of the zinc precursor used on the morphology and size of the grown particles. ZnO nanoparticles has many interesting possible applications in a wide range of areas, such as LED-technology, medicine, antibacterial applications, solar cells and more. Also, there is still a lot of knowledge missing concerning the growth mechanisms and properties of ZnO on the nano-scale. These two facts give good reasons to continue the research and investigations of nano-ZnO. Being able to use the microwave assisted growth method in large scale is highly interesting as it is relatively cheap, safe and easy compared to other presently used methods, so there are good reasons to learn more about this technique as well. In this project it was found that both the heating power and the zinc precursor used had significant effects on the morphology and size of the grown ZnO nanocrystals, and also that adding a zinc seed layer to the surface of the substrate before growth made a big difference in some cases.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Nannen, Ekaterina [Verfasser], Gerd [Akademischer Betreuer] Bacher, and Roland [Akademischer Betreuer] Schmechel. "All-inorganic White Light Emitting Devices Based on ZnO Nanocrystals / Ekaterina Nannen. Gutachter: Gerd Bacher ; Roland Schmechel." Duisburg, 2012. http://d-nb.info/1027669174/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chen, Wei. "Zn–based chalcogenide 1D semiconductor nanocrystals: synthesis and applications." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/81226.

Повний текст джерела
Анотація:
This research work reports a series of new colloidal approaches for the synthesis of uniform Zn-based chalcogenide semiconductor nanocrystals, including 0D and 1D ZnS, ZnSe, ZnSxSe1-x nanocrystals. The influence of precursor activity on nanoparticles growth was investigated by experiment and theoretical calculation. Novel Au-ZnSe hybrid structures with controlled Au domain growth were obtained and used for photocatalytic H2 generation.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Anwar, Monib. "Effect of X-ray Irradiation on the Blinking of CdSe/ZnS Nanocrystals." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227966.

Повний текст джерела
Анотація:
Different semiconductor nanocrystals exhibit size dependent properties due to confinement effect. Light emission from these nanocrystals may turn ON and OFF seemingly at random, an effect known as blinking. In this work blinking studies have been done to monitor the effect of X-ray exposure and to investigate the radiation hardness of CdSe/ZnS QD’s. Correct parameters to dilute and spin-coat the obtained sample were found to get access to individual single dots. Blinking of these dots was analyzed using Image J and MATLAB plug-in, where ON and OFF-times distribution power exponents Mon and Moff have been extracted to see the change in emission intermittency after a total cumulative dose of ~1026 Gy (absorbed by SiO2) in steps. It was observed that blinking was quenched and consequently the QD’s went permanently to off state as a result of X-ray exposure.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Tu, Wei-Lun. "Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings." Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc12207/.

Повний текст джерела
Анотація:
Solid lubricant coatings with controlled microstructures are good candidates in providing lubricity in moving mechanical assembly applications, such as orthopedics and bearing steels. Nanocrystalline ZnO coatings with a layered wurtzite crystal structure have the potential to function as a lubricious material by its defective structure which is controlled by sputter deposition. The interrelationships between sputtered ZnO, its nanocrystalline structure and its lubricity will be discussed in this thesis. The nanocrystalline ZnO coatings were deposited on silicon substrates and Ti alloys by RF magnetron sputtering with different substrate adhesion layers, direct current biases, and temperatures. X-ray diffraction identified that the ZnO (0002) preferred orientation was necessary to achieve low sliding friction and wear along with substrate biasing. In addition, other analyses such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were utilized to study the solid lubrication mechanisms responsible for low friction and wear.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Nygren, Kristian. "Solar cells based on synthesized nanocrystalline ZnO thin films sensitized by chlorophyll a and photopigments isolated from spinach." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-55032.

Повний текст джерела
Анотація:

The principles of dye-sensitized solar cells were studied and are outlined in this thesis. An overview of the basic steps needed to create a DSC isfollowed by detailed experimental information on how to assemble the solar cells that were fabricated in this project. They were based on synthesizednanocrystalline ZnO thin films sensitized by chlorophyll a as well as isolated photopigments from spinach leaves. The nanocrystals werestudied using XRD, and it was confirmed that three different methods of synthesis resulted in ZnO crystals of a few nanometers. The solar cellswere assembled with Au electrodes in a sandwich configuration and their photovoltaic properties were measured. Overall light-to-electricity conversionwas low with the highest efficiency being 0.21 %. An astonishingly low efficiency of 0.0003 % was noted for a thin film which was not thermallytreated, and it is suggested that heat-treatment is of great importance. It was also found that photopigments from spinach can be extractedeasily and used as molecular sensitizer without any demanding purification steps.

Стилі APA, Harvard, Vancouver, ISO та ін.
17

Silva, Alessandra dos Santos. "Estudo de propriedades físicas de nanocristais de ZnTe e Zn1-xAxTe (A = Mn; Co) no sistema vítreo P2O5 ZnO Al2O3 BaO PbO." Universidade Federal de Uberlândia, 2015. https://repositorio.ufu.br/handle/123456789/15620.

Повний текст джерела
Анотація:
Fundação de Amparo a Pesquisa do Estado de Minas Gerais
In this work, Zn1-xAxTe (A = Mn, Co) diluted magnetic semiconductors (DMS) nanocrystal (NCs) were successfully grown in the P2O5 ZnO Al2O3 BaO PbO glass system synthesized by the method of Fusion-Nucleation, after subjecting to appropriate thermal annealing. Various experimental techniques were used in this study in order to get a comprehensive understanding of the optical, morphological, structural and magnetic properties these NCs. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) images revealed the size of both of Zn1-xMnxTe and Zn1-xCoxTe NCs. From the vibrating sample magnetometer (VSM) technique, there was growth behavior of magnetization and magnetic susceptibility as a function of the Mn concentration in the samples containing Zn1-xMnxTe NCs. At lower Mn concentrations, the sp electrons of ZnTe host semiconductor interact with the d electrons of Mn2+ ions, resulting in the sp-d exchange interaction, which causes a small increase in susceptibility. At higher Mn concentrations, the d-d exchange interaction between Mn atoms dominates over the sp-d exchange interaction, resulting in an abrupt increase in susceptibility. The EPR spectra, in addition to prove the results exhibited the well-known sextet hyperfine lines of Mn2+ ions, since samples with low Mn concentrations revealed the presence of Mn2+ ions within and near the surface of the ZnTe NCs. From the optical absorption spectra (OA) and photoluminescence (PL), analyzed on the basis of crystal field theory (CFT) as well as of the diffraction X-ray (XRD), Raman scattering (RS) and electron microscopy transmission (TEM) techniques, the substitutional incorporation of Mn2+ ions was confirmed up to its solubility limit (x = 0.100) ZnTe NCs. Above this concentration, can observe the formation of manganese oxide NCs such as MnO and MnO2, since the nucleation rate for the formation of these NCs is greater than that of Zn1-xMnxTe NCs, at high concentrations. Furthermore, from the PL spectra, it was found that it is possible to tune the emission of energy related to transition 4T1(4G) → 6A1(6S) of Mn2+ ions, of the spectral orange region to the near infrared, depending on Mn concentration. This is possible due to the variation of the local crystal field, where these ions are inserted. From the OA spectra, analyzed on the basis of CFT, it showed that Co2+ ions are substitutionally incorporated in tetrahedral sites of ZnTe NCs, due to its characteristics transitions in visible and near infrared spectral region. This evidence has been enhanced from MFM images, since NCs doped with magnetic ions, magnetically respond when induced by the magnetization of the probe.
Neste trabalho, nanocristais semicondutores magnéticos diluídos (SMD) de Zn1-xAxTe (A = Mn; Co) foram crescidos com sucesso no sistema vítreo P2O5 ZnO Al2O3 BaO PbO, sintetizado pelo método de Fusão-Nucleação, após submetê-lo a tratamento térmico apropriado. Várias técnicas experimentais foram utilizadas neste estudo a fim de obter um entendimento compreensivo das propriedades ópticas, morfológicas, estruturais e magnéticas desses NCs. Imagens de microscopia eletrônica de transmissão (MET) e microscopia de força atômica (MFA) revelaram o tamanho tanto de NCs de Zn1-xMnxTe quanto de Zn1-xCoxTe. A partir da técnica de magnetometria de amostra vibrante (MAV), verificou-se o crescimento da magnetização e o comportamento da susceptibilidade magnética, em função da concentração de Mn, em amostras contendo NCs de Zn1-xMnxTe. Em baixas concentrações de Mn, os elétrons sp do semicondutor hospedeiro ZnTe, interagem com os elétrons d dos íons Mn2+, resultando na interação de troca sp-d, que provoca um pequeno aumento na susceptibilidade magnética. Já, em concentrações mais elevadas de Mn, a interação de troca d-d entre átomos de Mn domina a interação de troca sp-d, o que resulta em um aumento abrupto da susceptibilidade. Os espectros RPE, além de comprovar esses resultados, exibiram o bem conhecido sexteto de linhas hiperfinas de íons Mn2+, uma vez que amostras com baixas concentrações de Mn revelaram a presença de íons Mn2+ no interior e próximos à superfície dos NCs de ZnTe. A partir dos espectros de absorção óptica (AO) e fotoluminescência (FL), analisados com base na teoria do campo cristalino (TCC), bem como das técnicas de difração de raios-X (DRX), espalhamento Raman (ER) e microscopia eletrônica de transmissão (MET), confirmou-se a incorporação substitucional de íons Mn2+ até seu limite de solubilidade nominal (x = 0,100) em NCs de ZnTe. Acima dessa concentração, observa-se a formação de NCs de óxido de manganês, tais como MnO e MnO2, uma vez que a taxa de nucleação para a formação desses NCs é maior que a de NCs de Zn1-xMnxTe, em altas concentrações. Além disso, a partir dos espectros FL, verificou-se que é possível sintonizar a energia de emissão relacionada à transição 4T1(4G) → 6A1(6S) de íons Mn2+, da região espectral laranja ao infravermelho próximo, em função da concentração de Mn. Isso é possível devido à variação do campo cristalino local, onde esses íons estão inseridos. A partir dos espectros AO, analisados com base na TCC, evidenciou-se que íons Co2+ são incorporados substitucionalmente em sítios tetraédricos de NCs de ZnTe, devido às suas transições características na região espectral do visível e infravermelho próximo. Essa evidência foi reforçada a partir de imagens de MFM, uma vez que os NCs, dopados com íons magnéticos, respondem magneticamente quando induzidos pela magnetização da sonda.
Doutor em Física
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Hering, Vitor Renaux. "Interação entre proteínas fluorescentes e nanocristais de CdSe/ZnS." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-15082007-074551/.

Повний текст джерела
Анотація:
Foram utilizadas proteínas da famÌlia das GFPs e nanocristais fluorescentes de CdSe/ZnS para caracterização da interação e verificação de transferência de energia por ressonância (FRET) entre estes compostos. Formou-se dois pares doador-receptor onde ora uma proteína figurava como doadora, ora um nanocristal ocupava este papel. Verificou-se que, em ambos os casos, o doador sofre supressão da fluorescência após a formação de complexo com o receptor, complexo este motivado por interação eletrostática e dependente de pH. Foi possível comprovar, através da observação de emissão sensitizada e redução da anisotropia, que entre o par formado por nanocristal com emissão no verde e proteína HcRed1 como receptora, de fato ocorre FRET. As distâncias aparentes entre doador e receptor foram determinadas a partir da eficiência da supressão da fluorescência do doador e da distância de Förster. As distâncias assim obtidas são compatíveis com as dimensões das proteínas e dos nanocristais
Proteins belonging to the GFP family were used to characterize their interaction with fluorescent CdSe/ZnS nanocrystals and to verify the occurrence of resonance energy transfer (FRET) among these elements. Two donor-acceptor pairs were established, one having a protein as donor and the other having a nanocrystal as donor. In both cases the donor suffers quenching of its fluorescence after the formation of a complex with the acceptor. The complex formation is dependent on pH and is due to electrostatic interaction. It was possible to prove the occurrence of FRET between CdSe/ZnS nanocrystals emitting green fluorescence as donors and the protein HcRed1 as acceptor, through the detection of sensitized emission and anisotropy reduction. Apparent donor-acceptor distances were determined from efficiency measurements and Förster distances. The obtained distances agreed with the protein and nanocrystal dimensions
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Shen, Yaoming. "Photoluminescence spectral study of single CdSe/ZnS Colloidal Nanocrystals in Poly(methyl methacrylate) and Quantum Dots molecules." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3304209.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed June 17, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 91-99).
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Smirnova, T. N., J. Stumpe, О. V. Sakhno, L. M. Kokhtych, and P. V. Yezhov. "Stimulated emission of CdSe/ZnS nanocrystals in polymer dfb structure obtained by holographic ordering of polymer nanocomposite." Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/20586.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Chevallier, Théo. "Photoluminescence et couplage plasmonique des nanocristaux d'AgInS2-ZnS." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY092/document.

Повний текст джерела
Анотація:
Les nanocristaux d'AgInS2-ZnS sont des candidats prometteurs pour le développement de nano-luminophores non-toxiques et performants. Grâce à leur taille et à leur forte absorption, ces nano-luminophores permettent l'exploitation d'effets nano-optiques pouvant augmenter leur efficacité à l'absorption ou à l'émission. Ce document présente, dans un premier temps, une méthode d'analyse qui couple la mesure du rendement quantique à celle du temps de vie de luminescence et permet l'étude des contributions radiatives et non-radiatives des différents mécanismes de luminescence des nanocristaux d'AgInS2-ZnS. En modifiant la taille, la chimie de surface et la structure du cœur de ces nanocristaux, nous construisons un modèle global expliquant le rôle de leur composition et soulignant l'importance de leur surface. De nouvelles stratégies sont identifiées pour optimiser ces nanomatériaux. Leur application conjointe permet d'envisager des rendements quantiques proches de 90%. Dans un second temps, une méthode de simulation numérique générale a été développée pour prédire l'effet produit par le couplage nano-optique entre une particule plasmonique et un luminophore. Cette méthode a été appliquée au cas des structures cœur/coquille/coquille (métal/isolant/AgInS2-ZnS) et les configurations optimales du système ont été déterminées. Une nanostructure particulièrement performante permettant de combiner les effets du couplage à l'absorption et à l'émission a été identifiée. Une méthode de synthèse de ces nanostructures est développée. Les résultats expérimentaux obtenus sont en accord à la fois avec la compréhension de la fluorescence des nanocristaux d'AgInS2-ZnS et la prédiction obtenue par simulation
AgInS2-ZnS nanocrystals are promising materials for the development of non-toxic, highly efficient nano-phosphors. Their size and strong absorption allow them to exploit nano-optical effects potentially enhancing both their absorption and emission processes. This work presents a method combining quantum yield measurements with time resolved emission spectroscopy allowing for the study of both radiative and non-radiative properties of each recombination pathways. Modifying the size, surface chemistry, and core structure of the nanocrystals, we construct a global model explaining the role of their composition and emphasizing the critical aspect of their surface. New strategies are identified to increase the internal quantum yield of these materials. Combining these approaches, it is now possible to expect 90% efficiencies. In a second step, a simulation method was developed to predict the nano-optical effects induced by a plasmonic nanostructure on a given phosphor. We applied this method on core/shell/shell (metal/insulator/AgInS2-ZnS) nanostructures and theoretically determined optimal configurations of the system. A particularly efficient nanostructure achieving coupling on both absorbed and emitted light is identified. Hybrid plasmonic nanostructures are synthesized. Their performances are in accordance with both our understanding of the fluorescence mechanisms of AgInS2-ZnS nanocrystals and the predictions made via simulation
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Santos, Yane Honorato. "Síntese e caracterização de nanocristais de ZnO suportados e não suportados em diatomita e aplicação fotocatalítica." Universidade Federal de Sergipe, 2017. https://ri.ufs.br/handle/riufs/6076.

Повний текст джерела
Анотація:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Currently there are many studies involving Nanocrystals (NC) incorporated into different types of matrices, including, matrices with porous surface. However, little information is known about the incorporation of NC in Diatomite matrix, and there is a lack of studies on the use of this material. In this context, zinc oxide (ZnO) semiconductor nanoparticles were prepared using two sol-gel methods, microwave and autoclave, at 100 ºC and 180 ºC, respectively. The nanocrystals of ZnO obtained by microwaves were incorporated into a matrix of diatomite (DE) in natura and modified. The modifiers used were APTES (3- aminopropyltriethoxysilane) and MPTS (3-Mercaptopropyltrimetoxysilane) for the study. The material DE/ ZnO, in which ZnO was synthesized with mercaptoethanol (ZnO: ME), was applied for the degradation of Methylene Blue (AM) dye, while ZnO, synthesized with diethyleneglycol (ZnO: DEG), was used for degradation of Rhodamine 6G dye (R6G) by photocatalysis. The results of UV-vis and FTIR spectra show that synthesis carried out by heating under adsorption method is more efficient for the incorporation of ZnO in Diatomite matrix. The FTIR spectra showed that the use of modifiers had no significant influence on the structure. According to the UV-Vis spectra, the DE / ZnO material was successful for application to AM photocatalysis and follows a pseudo-first order kinetics. The ZnO:DEG material used for degradation of R6G obtained higher efficiency due to the wide absorption in the UV-Vis of the photocatalyst material.
Atualmente existem diversos estudos envolvendo Nanocristais (NC) incorporados em matrizes de diferentes tipos, incluindo matrizes com uma superfície porosa. Entretanto, pouco se conhece sobre a incorporação de NC em matriz de Diatomita, além de ser limitado a presença de estudos sobre aplicação desse material. Neste contexto, foram preparadas nanopartículas semicondutoras de óxido de Zinco (ZnO) utilizando dois métodos sol-gel, por micro-ondas e autoclave, numa temperatura de 100 ºC e 180 ºC, respectivamente. Os nanocristais de ZnO obtidos por micro-ondas foram incorporados em matriz de Diatomita (DE) in natura e modificada. Foram utilizados os modificadores APTES (3-Aminopropiltrietoxissilano) e MPTS (3- Mercaptopropiltrimetoxissilano) para o estudo. O material de DE/ZnO, no qual o ZnO foi sintetizado com mercaptoetanol (ZnO:ME), foi aplicado para a degradação do corante Azul de Metileno (AM), enquanto o ZnO, sintetizado com dietilenoglicol (ZnO:DEG), não incorporado foi utilizado para degradação do corante Rodamina 6G (R6G) por fotocatálise. Os resultados de UV-Vis e FTIR mostram que a síntese realizada pelo método de adsorção sob aquecimento é mais eficiente para a incorporação de ZnO na matriz de Diatomita. Os espectros de FTIR mostraram que a utilização de modificadores não exerceu influência significativa na estrutura da DE. Segundo os espectros de UV-Vis, o material de DE/ZnO foi bem-sucedido para aplicação em fotocatálise de AM e segue uma cinética de pseudo-primeira ordem. O material de ZnO:DEG utilizado para degradação de R6G obteve maior eficiência devido a ampla absorção no UV-Vis do material fotocatalisador.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ageh, Victor. "Processing, Structure and Tribological Property Relations of Ternary Zn-Ti-O and Quaternary Zn-Ti-Zr-O Nanocrystalline Coatings." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc699894/.

Повний текст джерела
Анотація:
Conventional liquid lubricants are faced with limitations under extreme cyclic operating conditions, such as in applications that require lubrication when changing from atmospheric pressure to ultrahigh vacuum and ambient air to dry nitrogen (e.g., satellite components), and room to elevated (>500°C) temperatures (e.g., aerospace bearings). Alternatively, solid lubricant coatings can be used in conditions where synthetic liquid lubricants and greases are not applicable; however, individual solid lubricant phases usually perform best only for a limited range of operating conditions. Therefore, solid lubricants that can adequately perform over a wider range of environmental conditions are needed, especially during thermal cycling with temperatures exceeding 500°C. One potential material class investigated in this dissertation is lubricious oxides, because unlike other solid lubricant coatings they are typically thermodynamically stable in air and at elevated temperatures. While past studies have been focused on binary metal oxide coatings, such as ZnO, there have been very few ternary oxide and no reported quaternary oxide investigations. The premise behind the addition of the third and fourth refractory metals Ti and Zr is to increase the number of hard and wear resistant phases while maintaining solid lubrication with ZnO. Therefore, the major focus of this dissertation is to investigate the processing-structure-tribological property relations of composite ZnO, TiO2 and ZrO2 phases that form ternary (ZnTi)xOy and quaternary (ZnTiZr)xOy nanocrystalline coatings. The coatings were processed by atomic layer deposition (ALD) using a selective variation of ALD parameters. The growth structure and chemical composition of as-deposited and ex situ annealed ternary and quaternary oxide coatings were studied by combined x-ray diffraction/focused ion beam microscopy/cross-sectional transmission electron microscopy, and x-ray photoelectron spectroscopy/Auger electron spectroscopy, respectively. It was determined that the structure varied from purely nanocrystalline (ternary oxides) to composite amorphous/nanocrystalline (quaternary oxides) depending on ALD parameters and annealing temperatures. In particular, the ZnTiO3 ilmenite phase with (104) textured nanocolumnar grains, exhibiting high stacking fault/partial dislocation densities >1012/cm2, was responsible for the excellent tribological behavior. Steady-state sliding friction coefficients down to 0.12 in humid air and 0.2 in dry nitrogen were measured along with sliding and fretting wear factors in the range of 10-6 to 10-7 mm3/N·m, even after ex situ annealing to 550°C. Additionally, the quaternary oxide phase Zn(Ti,Zr)O3 in solid solution exhibited a low fretting wear rate of 1x10-6 mm3/N·m. In contrast, certain phases, such as Zn2TiO4 cubic spinel, that form at annealing temperatures >550°C were responsible for high friction and wear. Mechanistic studies using the above techniques revealed low friction and wear-reducing surfaces and subsurfaces were due to different velocity accommodation modes (VAM). In the case of the ternary system, sliding-induced plastic deformation was possible when ZnTiO3 (104) stacking faults, bordered by partial dislocations, serve as a pathway for the dislocations to glide parallel to the sliding direction and hence achieve low friction and wear via an intrafilm shear VAM. It was evident that the individual nanocolumnar ZnTiO3 grains were plastically sheared as opposed to being fractured during wear. Conversely for the quaternary system, an interfacial sliding VAM between the counterface and a mechanically mixed layer (tribofilm) composed of the refined coating and counterface material, that also served as a source for the formation of cylindrical rolls, was responsible for wear reduction. Therefore, these lubricious oxides are a potential candidate for solid lubrication at high temperatures (up to 550 °C) and in space environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kim, Changsu. "Optical, laser spectroscopic, and electrical characterization of transition metal doped ZnSe and ZnS nano- and microcrystals." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009r/kim.pdf.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Alabama at Birmingham, 2009.
Title from PDF title page (viewed Feb. 3, 2010). Additional advisors: Renato Camata, Derrick Dean, Chris M. Lawson, Andrei Stanishevsky, Sergey Vyazovkin. Includes bibliographical references (p. 133-140).
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Biadala, Louis. "Propriétés optiques de nanocristaux de CdSe/ZnS individuels à basse température." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00654493.

Повний текст джерела
Анотація:
Les nanocristaux de CdSe font l'objet d'applications émergentes dans les domaines de la nanoélectronique, des technologies laser ou du marquage fluorescent de biomolécules. Pour ces applications, la détermination de la structure fi…ne de l'exciton de bord de bande et des mécanismes de relaxation entre sous-niveaux est d'un intérêt majeur. Cette thèse a été consacrée à l'étude spectroscopique à basse température et sous champ magnétique de nanocristaux individuels de CdSe/ZnS. La remarquable photostabilité des nanocristaux étudiés a permis de caractériser les propriétés optiques des deux états excitoniques de plus basse énergie : l'état excitonique fondamental noir, et l'état excitonique brillant situé quelques meV plus haut en énergie. Ces études ont aussi permis d'identi…er un état excitonique chargé (trion) et de caractériser ses propriétés photophysiques. La possibilité de générer une cascade radiative biexciton-exciton a également été démontrée dans ces systèmes.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Mao, Baodong. "Synthesis and Property Characterization of Novel Ternary Semiconductor Nanomaterials." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1334065821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Lemarchand, Alex. "Synthèse par chimie douce et étude structurale de nanocristaux d'oxydes métalliques." Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0110/document.

Повний текст джерела
Анотація:
Ce travail concerne la synthèse et la caractérisation structurale de nanocristaux de faible taille (~1-3 nm) d’oxydes métalliques simples, à savoir le dioxyde de titane (TiO2), le dioxyde d’étain (SnO2) et le monoxyde de zinc (ZnO). Les synthèses ont été réalisées au moyen de méthodes sol-gel non-aqueuses voire strictement non-hydrolytiques sous contrôle cinétique. La caractérisation structurale s’est principalement appuyée sur la diffraction des rayons X, la microscopie électronique en transmission et la méthode des fonctions de distribution de paires atomiques, obtenues grâce à la diffusion totale des rayons X, couplées à des méthodes de modélisation à l’échelle atomique. Dans le cas de TiO2, des nanoparticules d’anatase bien cristallisées de 4 nm à 8 nm ont été synthétisées. Le ratio molaire de donneur d’oxygène par rapport au titane s’est avéré être un paramètre influençant fortement la taille des particules. Nous avons également mis en évidence la formation d’une phase intermédiaire caractérisée par des nanoparticules faiblement cristallisées de très faible taille dont la structure pourrait s’apparenter à une structure brookite désordonnée. Pour SnO2, des nanocristaux présentant une structure rutile ont été obtenus avec des tailles comprises entre 2 nm et 4 nm. Dans le cas de l’utilisation d’un éther, nous avons mis en évidence la formation concomitante d’une phase organique polymérisée et de nanoparticules primaires dont la structure intermédiaire présente de fortes similitudes avec la structure rutile. L’utilisation de solvants possédant une fonction benzyle en présence de tétrachlorure d’étain a conduit à la formation d’eau dans le système. Dans le cas de ZnO, nous avons montré que l’utilisation d’une base organique pour initier la formation du réseau oxyde dans une solution méthanolique d’acétate de zinc en présence d’un agent complexant du zinc permettait d’obtenir des nanoparticules de l’ordre de 1 nm. Même pour les faibles valeurs de taille, les nanoparticules présentent une structure très proche de la wurtzite avec un désordre croissant au niveau du réseau cationique
The aim of this work was to synthesize small size (~1-3 nm) metal oxide nanocrystals namely titanium dioxide (TiO2), tin dioxide (SnO2) and zinc oxide (ZnO), and to study their structure. Syntheses were conducted via non-aqueous or even strictly non-hydrolytic sol-gel methods under kinetic control. The structural characterization was mainly carried out by X-Ray diffraction methods, transmission electronic microscopy and the study of pair distribution functions, obtained by X Ray total scattering, coupled with atomic scale modelling methods. In the case of TiO2, anatase nanocrystals were obtained with sizes ranging between 4 nm and 8 nm. The molar ratio of the oxygen donor with respect to titanium was shown to be an important parameter to control the nanoparticle size. In peculiar conditions we have been able to isolate an intermediate phase characterized by very small sized and poorly crystallized nanoparticles which the structure can be assimilated to a disordered brookite structure. Concerning SnO2, rutile-type nanocrystals were synthesized with sizes ranging between 2 nm and 4 nm. The use of an ether as oxygen donor led to the simultaneous formation of an organic polymeric phase and of primary nanoparticles characterized by an intermediate structure close but still different from the rutile-type structure. Moreover, the use of benzyl-type solvents in the presence of tin tetrachloride led to the formation of water in the system. Lastly, for ZnO, we have shown that using an organic base to induce the formation of the metal oxide network in a methanolic solution of zinc acetate in the presence of a strong complexing agent of the zinc allowed us to obtain wurtzite nanocrystals of ultrasmall sizes around 1 nm. Even for the smallest sizes, the nanoparticles exhibit a structure very close to that of wurtzite with an increasing disorder of the cationic network
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Trenkmann, Ines. "Mikroskopie und optische Spektroskopie an heterogenen Nano- und Mikrostrukturen: Halbleiter-Nanokristalle, molekulare Farbstofffilme und funktionalisierte Hybridstrukturen." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-175178.

Повний текст джерела
Анотація:
In dieser Arbeit wird die Abhängigkeit der Photolumineszenz (PL) von CdSe/ZnS-Nanokristallen von der Umgebung und der Einfluss der Filmdicke und -morphologie auf die optische Absorption von Farbstofffilmen untersucht sowie die Oberfläche von Hybridstrukturen durch Funktionalisierung mit Farbstoff analysiert. Untersuchungen von CdSe/ZnS-Nanokristallen in Toluol-Lösung zeigen, dass die PL-Intensität der Nanopartikel durch Zugabe des organischen Halbleiters TPD gequencht wird. Die zusätzliche Auswertung der PL-Lebensdauer verdeutlicht, dass die Abnahme (fast) vollständig durch statisches Quenchen, infolge der Abnahme der Anzahl der mittierenden Nanokristalle verursacht wird, bei einem Anstieg der langlebigsten Lebensdauerkomponente. Die Analyse der PL-Unterbrechung einzelner Nanokristalle auf PVA und Siliziumoxid sowie eingebettet in PS und TPD zeigt eine Ab- bzw. Zunahme der Häufigkeit langer An- bzw. Aus-Zeiten und somit eine deutliche Abhängigkeit der PL-Unterbrechung von den dielektrischen Eigenschaften der Umgebung. Bei Variation der Anregungsleistung zeigt sich für einzelne Nanokristalle auf Siliziumoxid und eingebettet in TPD eine lineare Zunahme der Blinkaktivität und eine Abnahme des An-Zeit-Anteils. Die Änderung der Verteilungen der An- und Aus-Zeiten zeigen eine deutliche Abhängigkeit von der Matrix. Die Untersuchung der optischen Absorption von aufgedampften MePTCDI- und Cl4MePTCDI-Filmen zeigt eine Verschiebung des energieärmsten optischen Überganges mit wachsender mittlere Filmdicke. Es wird ein (geometrisches) Schicht-Modell vorgestellt, das die energetische Verschiebung mit der mittleren Filmdicke korreliert und dabei die kristalline, nadelförmige Morphologie von MePTCDIFilmen und die amorphe Kugelkappen-Struktur von Cl4MePTCDI-Filmen berücksichtigt. Die Oberfläche von Hybridfilmen aus PMMA mit Siliziumoxid-Partikeln wird durch Anbindung von R6G an die Oxid-Partikel gezielt funktionalisiert. Die Ergebnisse von fluoreszenzmikroskopischen Untersuchungen zeigen, dass dadurch der Anteil der freien Oxid-Oberfläche bestimmt werden kann.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Grimes, Logan. "DEVELOPENT OF A PHOSPHOLIPID ENCAPSULATION PROCESS FOR QUANTUM DOTS TO BE USED IN BIOLOGIC APPLICATIONS." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1237.

Повний текст джерела
Анотація:
The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions of tissue via various forms of biopsies. Accurate assessment of cancerous cells via this method are subjective, and often unreliable in the early stages of cancer formation when only few cancer cells are forming. With fewer cancer cells, it is less likely that a cancer cell will appear in a biopsied tissue. This leads to a lower detection rate, even when cancer is present. This lack of detection when cancer is in fact present is referred to as a false negative. False negatives can have a highly detrimental effect on treating the cancer as soon as possible. More accurate methods of detecting cancer in early stages, in a nonsubjective form would alleviate these problems. A proposed alternative to visual examination of biopsied legions is to utilize fluorescent nanocrystalline biomarker constructs to directly attach to the abnormal markers found on cancerous tissues. Quantum dots (QDs) are hydrophobic nanoscale crystals composed of semiconducting materials which fluoresce when exposed to specific wavelengths of radiation, most commonly in the form of an ultraviolet light source. The QD constructs generated were composed of cadmium-selenium (CdSe) cores encapsulated with zinc-sulfide (ZnS) shells. These QDs were then encapsulated with phospholipids in an effort to create a hydrophilic particle which could interact with polar fluids as found within the human body. The goal of this thesis is to develop a method for the solubilization, encapsulation, and initial functionalization of CdSe/ZnS QDs. The first stage of this thesis focused on the generation of CdSe/ZnS QDs and the fluorescence differences between unshelled and shelled QDs. The second stage focused on utilizing the shelled QDs to generate hydrophilic constructs by utilizing phospholipids to bind with the QDs. Analysis via spectroscopy was performed in an effort to characterize the difference in QDs both prior to and after the encapsulation process. The method generated provides insight on fluorescence trends and the encapsulation of QDs in polar substances. Future research focusing on the repeatability of the process, introducing the QD constructs to a biological material, and eventual interaction with cancer cells are the next steps in generating a new technique to target and reveal skin cancer cells in the earliest possible stages without using a biopsy.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chi-HengChen and 陳佶亨. "ZnO-based Light Emitting Device with sputtering ZnO nanocrystal." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/78770327860966603623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Paramesh, Gadige. "Investigations into the Structural and Physical Properties of Li2O-M2O-2B2O3 (M=Li, Na & K), BaO-TiO2-B2O3 and 2Bi2O3-B2O3 Glass Systems." Thesis, 2013. http://etd.iisc.ernet.in/2005/3356.

Повний текст джерела
Анотація:
Borate glasses and glass-nano/microcrystal composite fabrication and investigations into their physical properties, have been interesting from their multifunctionalities view point. Certain borate structural units possess high hyperpolarizabilities and give rise to high nonlinear optical effects. High refractive index materials are important for photonic applications. Heavy metal oxide (Bi2O3) containing compounds have high refractive indices. Glasses embedded with wide band-gap semiconducting oxide crystals such as TiO2 received much attention due to their easy processing, stability and promising physical properties. Though TiO2 is used as nucleating agent to fabricate glass-ceramics of various phases, crystallization of TiO2 in glass matrices is difficult and the data are scarce in the literature. Therefore it was worth attempting to find glass compositions in which one can obtain TiO2 crystallization in large volume fractions. Towards this TiO2 crystallization was accomplished in BaO-TiO2-B2O3 glass matrix over wide composition ranges by tuning the concentration of BaO-TiO2 content in B2O3 network. The physical properties of these glasses of various compositions and glass-nanocrystal composites of TiO2 phase (anatase) were investigated. Interestingly BaO-TiO2-B2O3 glasses found to be hydrophobic in nature. The results obtained in the present research work are classified into five chapters apart from the Introduction, Materials and Methods chapters. Chapter 1 constitutes preface to oxide glasses, principles of glass formation and structural criteria followed by crystallization kinetics. In addition, principles of dielectric, optical and mechanical phenomena in glasses are discussed, since the present thesis focuses on the aforesaid physical properties. This chapter concludes with scope of the present thesis. Chapter 2 includes the detailed description concerning the fabrication techniques of materials under study and various characterization methods that have been employed at various stages of the present research work. The principles and experimental tools adopted for the structural and microstructural studies of materials were illustrated. Measurement techniques and experimental setup used to study physical parameters such as dielectric, optical, mechanical etc. were elaborated. Chapter 3 comprises structural, dielectric, electrical transport characteristics and optical studies of mixed alkali borate glasses in the 0.5Li2O-0.5M2O-2B2O3 (M=Li, Na and K) system. Transparent glasses in the Li2O-2B2O3 (LBO), 0.5Li2O-0.5Na2O-2B2O3 (LNBO) and 0.5Li2O-0.5K2O-2B2O3 (LKBO) were fabricated via the conventional melt quenching technique. Amorphous and glassy nature of the samples was confirmed via the X-ray powder diffraction and the differential scanning calorimetry, respectively. LKBO glass was found to have high thermal stability than that of LBO and LNBO. The frequency and temperature dependent characteristics of the dielectric relaxation and the electrical conductivity were investigated in the 100 Hz - 10 MHz frequency range. The relaxation and conductivity were rationalized using impedance and modulus formalism. Imaginary part of the electric modulus spectra was modelled using an approximate solution of Kohlrausch-Williams-Watts relation. The stretching exponent, β, was found to be temperature independent for LNBO glasses. Activation energies for conduction and relaxation process were calculated using the Arrhenius relation. The activation energy was found to be higher (1.25eV) for LKBO glasses than that of the other glass systems under study. This is attributed to the mixed cation effect. It has wide optical transmission window and optical band gap. Urbach energies were calculated for all these glasses. LBO, LNBO and LKBO glass compositions were found to crystallize in Li2B4O7, LiNaB4O7 and LiKB4O7 phases respectively upon heat treatment at appropriate temperatures. Transparent glass-micro crystal composites of LiKB4O7 were fabricated from LKBO glasses and found to be SHG active. BaO-TiO2-B2O3 Chapter 4 delineates the evolution of nanocrystalline TiO2 phase (Anatase) in BaO-TiO2-B2O3 (BTBO) glasses. Transparent colourless glasses in the ternary system were fabricated via conventional melt-quenching technique. The glasses with certain molar concentrations of BaO and TiO2 upon heat treatment at appropriate temperatures yielded nanocrystalline phase of TiO2 associated with the crystallite size in the 5-15 nm range. Nanocrystallized glasses exhibited high refractive index (no=2.15) at λ=543nm. These glasses were found to be hydrophobic in nature associated with the contact angle of 90o. These high index glass nanocrystal composites would be of potential interest for optical device applications. Crystallization kinetics of anatase phase in BTBO glasses were studied using non-isothermal Differential Scanning Calorimetry (DSC) at three different heating rates (10, 20 & 30 K/min). Scanning Electron Microscopy (SEM) carried out on heat treated (at 920 K) glasses confirmed bulk nucleation and three-dimensional growth. Johnson-Mehl-Avrami model could not be applied for this system suggesting considerable overlap of the nucleation and growth involving complex transformation process. However, modified Kissinger and Ozawa models were used to calculate the effective activation energy associated with anatase crystallization. The kinetic exponent n was found to be temperature dependent indicating the change in the crystallization mechanism. This is attributed to the high entropy fusion of anatase phase, fast crystallization rate and nano dimension of the anatase phase. Chapter 5 illustrates structural changes that occur in the x(BaO-TiO2)-B2O3 (x=0.25, 0.5, 0.75 &1 mol.) system on increasing the x apart from the details concerning some physical property correlations. Thermal stability and glass forming ability as determined by Differential Thermal Analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (Tg). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units present in the glass and their connectivity. These glasses exhibited low loss (tan δ≈0.002), frequency (10 kHz- 10 MHz) and temperature independent (or very weak temperature response) flat-dielectric response. Crossover temperature was encountered between flat response and Jonscher’s universal response. The cross-over temperature and cross-over energy barrier from flat dielectric response to Jonscher’s response was deduced for all the glasses in the present investigation. Electric modulus formalism was invoked to rationalize the relaxation phenomena. The observed dielectric response and conduction process in these glasses were attributed to the local vibration and switching of non-bridging oxygen ions in their potential cage and hopping over distributed energy barriers above the crossover temperature. Chapter 6 depicts the dielectric and mechanical properties of glasses embedded with TiO2 nanocrystals. BaO-TiO2-B2O3 glasses on subjecting to appropriate heat treatment temperature yielded TiO2 nano crystalline anatase phase. NMR studies carried out on the as-quenched glasses facilitated the estimation of fraction of tetrahedral and trigonal borate units. Poisson’s ratio and Young’s modulus were evaluated through theoretical expressions proposed by Makishima and Mackenzie. Nano-indentation and micro-indentation studies were carried out on the as-quenched glasses and glass-nanocrystal composites to examine mechanical characteristics. Estimated and indentation Young’s modulus of glasses were found to be in reasonable agreement. Hardness and Young’s modulus increased with increasing fraction of nano crystallites whereas fracture toughness was found to depend strongly on surface conditions. The results were corroborated by the structural units and particulates present in these glasses. Dielectric constant increased with increasing volume fraction of the nanocrystals which was rationalized via mixture rule. Chapter 7 describes the dielectric properties, electrical conduction and electric relaxation phenomena in 2Bi2O3-B2O3 (BBO) glasses followed by thier linear and nonlinear optical characteristics. Glasses in BBO system were obtained via melt-quenching technique. X-ray diffraction and differential scanning calorimetry were used to study the structural characteristics. Dielectric studies carried out on these glasses revealed near constant loss (NCL) response in the 1 kHz to 1 MHz frequency range at moderately high temperatures (300-450 K) accompanied by relatively low loss (tan δ=0.006, at 1 kHz & 300 K) and high dielectric constant (ε' =37, at 1 kHz & 300 K). The variation in AC conductivity with temperature at different frequencies showed a cross over from NCL response characterized by local ion vibration within the potential well to universal Jonscher’s power law dependence triggered by ion hopping between potential wells or cages. Thermal activation energy for single potential well was found to be 0.48±0.05 eV from cross over points. Ionic conduction and relaxation processes were rationalized by modulus formalism. The promising dielectric properties (relatively high ε' and low tan δ) of the BBO glasses were attributed to high density (93 % of its crystalline counterpart), high polarizability and low mobility associated with heavy metal cations, Bi3+. Optical band gap obtained for BBO glasses was found to be 2.6 eV. The refractive index measured for these glasses was 2.25±0.05 at λ=543 nm. Nonlinear refraction and absorption studies were carried out on BBO glasses using z-scan technique at λ=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n2=12.1x10-14 cm2/W and two-photon absorption coefficient was β=15.2 cm/GW. The n2 and β values of the BBO glasses were higher than that reported for high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two-photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory. Thesis ends with summary and conclusions followed by prospective views, though each chapter comprises conclusions associated with complete list of references. Patent, publications and conference proceedings that are listed below are largely based on the studies conducted as a part of the research work reported in the present thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Chitara, Basant. "Properties And Applications Of Semiconductor And Layered Nanomaterials." Thesis, 2012. http://hdl.handle.net/2005/2288.

Повний текст джерела
Анотація:
This thesis deals with the research work carried out on the properties and applications such as GaN nanoparticles, Graphene etc. Chapter 1 of the thesis gives introduction to nanomaterials and various aspects of the thesis. Chapter 2 of the thesis describes the synthesis of GaN nanocrystals and their use as white light sources and as room temperature gas sensors. It also discusses negative differential resistance above room temperature exhibited by GaN. Electroluminescence from GaN-polymer heterojunction forms the last section of this chapter. Chapter 3 demonstrates the role of defect concentration on the photodetecting properties of ZnO nanorods with different defects prepared at different temperatures. Chapter 4 presents remarkable infrared and ultraviolet photodetector properties of reduced graphene oxide and graphene nanoribbons. Chapter 5 presents the infrared detecting properties of graphene-like few-layer MoS2. The summary of the thesis is given at the end of the thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Liu, Kun-ho, and 劉昆和. "Growth process and physical characteristics of Zn-ZnO nanocrystals via thermal reduction." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/10340217199073828599.

Повний текст джерела
Анотація:
碩士
國立交通大學
材料科學與工程系
91
Novel hierarchical polygon prismatic nano-structures of wurtzite Zn-ZnO have been successfully grown on silicon by thermal vapor transport and condensation method. Generally, the crystalline phase and control of the seeds at the nucleating stage are critical for directing the intrinsic shapes of nanocrystals at the initial time. Thus, in this work, the organic solvent with zinc chemical compound was first coated and used as seeds on the patterned substrate. Subsequently, it was grown by thermal vapor transport with ZnO powder at 250°C (substrate) in Ar atmosphere. The samples were characterized using X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The as-synthesized Zn-ZnO polygon prismatic nano-structure consisted of hexagonal metallic nuclei (Zn) covered with an oxidation outer thin film (ZnO). Depending on different working temperature and reaction atmosphere, Zn- ZnO polygon prismatic structure having various morphologies can be developed. In order to recognize the growth mechanism of Zn-ZnO polygon prismatic structure and temperature effect, different heat-treatment were designed to observe the morphology and crystallization of Zn-ZnO polygon prismatic structure. The possible formation mechanism for the Zn-ZnO polygon prismatic crystal structure is identified and proposed as the Zn-ZnO mineral bridge mechanism. The non-perfect Zn-ZnO polygon prismatic structure shows weakly UV emission and strongly deep-level emission. However, the PL properties and crystallization of Zn-ZnO polygon prismatic nanocrystals could be improved by suitable post-treatment.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

李振銘. "Surface enhanced Raman scattering of ZnO Nanocrystals." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/01952674869145511890.

Повний текст джерела
Анотація:
碩士
國立彰化師範大學
光電科技研究所
101
This thesis is devoted to the study of surface enhanced Raman scattering of ZnO nanocrystals. The ZnO nanocrystals were synthesized by a sol-gel method. Their sizes were controlled by the pH value and temperature of synthetic solutions. The results of transmission electron microscope analysis showed that the particle sizes ranged between 2.5 and 4.9 nm. The synthesized ZnO nanocrystals were further used to grown ZnO/Ag aggregated nanostructures. The results of Raman measurement of these nanostructures showed that the signal intensity of ZnO was significantly enhanced by a factor of 1000 as the concentration of silver nitrate was 1.0 mM. The E2-low Raman signal shifted as the ZnO particle size decreased. A relationship between particle size and signal shift was obtained. It agreed well with the theoretical prediction.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

林昌麒. "Growth and Physical Properties of ZnO Nanocrystals." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/29261328384528619304.

Повний текст джерела
Анотація:
碩士
國立彰化師範大學
光電科技研究所
95
The purpose of the current study was to find out the most suitable conditions for the even-synthesized and highly-stabilized ZnO powder through various treatments. The various treatments manipulated in the study were through Sol-Gel method to synthesize ZnO Nanocrystals in different heating rates, synthesizing time, and the adding amount of capping agent (PVP).Moreover, techniques such as XRD, SEM, TEM, PL were also included in the study to measure the structures, surface state, and optic properties of ZnO Nanocrystal.According to the results of XRD, the samples were with the Wurtzite structures, with the particle size ranging between 3 ~ 4 nm. As for SEM, the results showed that the ZnO secondary particles were aggregated particles, with the particle size ranging from 200 ~ 500 nm. The pictures of TEM also proved that the real size of secondary particles ranged between 3 ~ 4 nm, and they were gathered by ZnO Nanocrystals. Its exact size was in accordance with the one calculated by X-ray diffraction. In the PL measurement, crystals were unstable under the excite of He-Cd laser, and the PL property would changed and emission effectiveness was lowered as time went by. Both the quality of X-ray diffraction and emission effectiveness had significant promotion after the change of process variables such as the addition of capping agent, which redeemed its surface state.In the study of PL spectrum, the impurity bound exciton of ZnO QDS( ~ 7.5 nm) was found out to be 18.31meV, while the activation energy of it was 94.5meV. In addition, three equations, Vashni, O'Donnell, and Pässler were employed to fit the different bandgaps in different temperature of quantum dots, blocks, and nanoparticles. Therefore, the found parameters may provide help to the further studies on ZnO.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Viswanatha, Ranjani. "Growth Kinetics And Electronic Properties Of Semiconducting Nanocrystals In The Quantum Confined Regime." Thesis, 2006. http://hdl.handle.net/2005/403.

Повний текст джерела
Анотація:
Properties of nanocrystals are extremely sensitive to their sizes when their sizes are smaller or of the order of the excitonic diameter due to the quantum confinement effect. The interest in this field has been concentrated basically in understanding the size-property relations of nanocrystals, for example, the pronounced variation in the bandgap of the material or the fluorescence emission properties, by tuning the sizes of the nanocrystals. Thus, the optical and electronic properties of semiconductor nanocrystals can be tailor-made to suit the needs of the specific application and hence is of immense importance. One of the major aspects necessary for the actual realization of the various applications is the ability to synthesize nanocrystals of the required size with a controlled size distribution. The growing demand to obtain such nanocrystals with the required size and controlled size distribution is met largely by the solution route synthesis of nanocrystals, that constitutes an important class of synthesis methods due to their ease of implementation and the high degree of flexibility. The main difficulty of this method is that the dependence of the average size and the size distribution of the generated particles on parameters of the reaction are not understood in detail and therefore, the optimal reaction conditions are arrived at essentially in an empirical and intuitive manner. From a fundamental point of view, understanding the growth kinetics of various nanocrystals can provide a deeper insight into the phenomena. The study of growth kinetics can be experimentally achieved by measuring the time evolution of diameter using several in-situ techniques like UV-absorption and small angle X-ray scattering. Having understood the mechanism of growth of nanocrystals, it is possible to obtain the required size of the nanocrystal using optimized synthesis conditions. The properties of these high quality nanocrystals can be further tuned by doping with a small percentage of magnetic ions. The optical and magnetic properties of these nanocrystals play an important role in the various technological applications. The first part of the thesis concentrates on the theoretical methods to study the electronic structure of semiconductor nanocrystals. The second part describes the studies performed on growth of various nanocrystal systems, both in the presence and absence of capping agents. The third part of the thesis describes the studies carried out on ZnO and doped ZnO nanocrystals, synthesized using optimal conditions that were obtained in the earlier part of the thesis. The thesis is divided into five chapters which are described below. Chapter 1 provides a brief overall perspective of various interesting properties of semiconductor nanocrystals, including various concepts relevant for the study of such systems. Chapter 2 describes experimental and theoretical methods used for the study of nanocrystals reported in this thesis. In Chapter 3 of this thesis, we report results of theoretical studies carried out on III-V and II-VI semiconductors using the tight-binding (TB) methodology. Chapter 4 presents the investigations on the growth kinetics of several nanocrystal systems. Chapter 5 presents experimental investigations carried out on undoped and various transition metal (TM) doped ZnO nanocrystals. In summary, we have performed electronic structure calculations on various nanocrystal systems, devised a novel method to obtain the size distribution from UV-absorption spectrum and studied the mechanism of growth in the presence and absence of capping agents in various II-VI semiconductors. Using the optimal conditions obtained from the growth studies, we prepare high quality ZnO nanocrystals of required size, both in free-standing and capped states and doped it with small percentages of various transition metals like Mn, Cu and Fe. We have then studied their optical and magnetic properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

徐意娟. "High-pressure raman study of wide-band gap ZnO-and GaN-nanocrystals." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/57435623963996277757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Rakshit, Sabyasachi. "Resonance Energy Transfer Using ZnO Nanocrystals And Magnetism In The Mixed Metal Layered Thiophosphates, Mn1-xFexPS3(0≤x≥1)." Thesis, 2009. http://etd.iisc.ernet.in/handle/2005/2156.

Повний текст джерела
Анотація:
This thesis consists of two parts. The first part deals with the visible emission of ZnO Nanocrystals and its possible application in Resonance Energy Transfer (RET) studies. The second part of the thesis is on the magnetic properties of the layered transition metal Thiophosphates MPS3 (M = Mn, Fe), their solid solutions and intercalation compounds. Recent advances in semiconductor nanocrystals or quantum dots (QDs) as inorganic fluorophores have pioneered a new direction in the fluorescent based techniques to investigate fundamental processes in lifesciences. Their broad absorption spectra with narrow, Size-tunable emissions with high quantum e±ciency and stability under relative harsh environments have made inorganic QD's the fluorophores of choice in many applications. Among inorganic fluorophores the II-VI semiconductors based on cadmium chalcogenides are the front-runners. The cytotoxicity associated with these QDs is, however, a major drawback and has lead to the search for new nanocrystalline fluorophores that are non-toxic and possess the same favorable fluorescence properties as the Cd based QDs, viz, tunability and narrow spectral profile. ZnO Nano particles are known to exhibit two emission bands; a narrow emission band in UV around 380 nm (3.25 eV) at a wavelength just below the onset of the band gap excitation in the absorption spectra and a broad emission band in the blue-green part of the visible spectrum, with a maximum between 500 and 550 nm (2.5-2.2 eV). The UV Emission originates from the recombination of bound excitons - excited electrons in the Conduction band with holes in the valence band. The visible emission of ZnO nanocrystals is known to involve deep trap states that lie approximately midway between the Conduction and valence bands and surface defects that exist as shallow traps. In principle, visible-light-emitting ZnO nanocrystals would be ideal candidates as replacement for Cd-based fluorescent labels since they are nontoxic, less expensive, and chemically stable in air. Nanoscale ZnO, however, tends to aggregate and/or undergo Ostwald ripening be-Cause of high surface free energy resulting in an increase in crystallite size and consequent Disappearance of the visible emission. Most attempts to stabilize the ZnO nanocrystals by Capping has usually resulted in the quenching of the visible trap emission. The objective of the present study was to stabilize the visible light emission of ZnO nanocrystals, to Understand the origin and mechanism of the visible emission and to explore the possibility Of using the visible emission of ZnO in RET studies. The stabilization of visible light emission in ZnO nanocrystals was achieved by forming ZnO:MgO core-shell nanocrystals. The nanocrystals were synthesized by a sequential preparative procedure that involved formation of a ZnO core followed by an MgO shell. The Nanocrystals were characterized by using XRD, TEM, optical absorption and photoluminescence spectroscopy. These are described in Chapter 2 of the thesis. The ZnO: MgO Core-shell nanostructures exhibit stable emission in the visible for extended periods. Application of the ZnO: MgO nanocrystals either as fluorescent probes or RET studies require that they be dispersible in both polar and non-polar solvents. This as realized by appropriate choice of the capping agents (Chapter 3). ZnO: MgO nanocrystals with hydrophobic surface were obtained by capping the nanocrystals with oleic acid. The oleate capped ZnO: MgO nanocrystals are soluble in a variety of non-polar organic solvents with no change in their emission properties. Water-soluble ZnO: MgO nanocrystals were obtained by capping the ZnO:MgO nanocrystals with carboxymethyl-β-cyclodextrin (CMCD). The hydroxyl groups located at the rim of the cyclodextrin cavity renders the surface hydrophilic. The integrity of the CMCD molecules are preserved on capping and their by hydrophobic cavities available for host-guest chemistry. The visible emission of The ZnO: MgO nanocrystals are unaltered by the nature of the capping agent. The origin and mechanism of the visible emission from ZnO: MgO nanocrystals has been Investigated using time-resolved emission spectroscopy technique (Chapter 4). The time-evolution of the photoluminescence spectra show that there are, in fact, two features in the visible emission whose relative importance and efficiencies vary with time. These features originate from recombination involving trapped electrons and holes, respectively, And with efficiencies that depend on the occupancy of the trap density of states. The application of the visible emission of ZnO: MgO nanocrystals as resonance energy transfer (RET) donors in water and hydrophobic media are demonstrated. In aqueous media, the carboxymethyl β-cyclodextrin (CMCD) capped ZnO: MgO nanocrystals is able to accommodate the organic dye Nile Red by an inclusion in the anchored hydrophobic cyclodextrin cavity forming a 1:1 complex. Nile Red was chosen as the guest molecule because its absorption has appreciable overlap with ZnO: MgO visible emission, a prerequisite for RET to occur. The resonance energy transfer on the band gap excitation of The ZnO core to included Red molecules in the CMCD-ZnO: MgO-Nile Red supramolecular assembly is demonstrated in aqueous media. A similar RET process is shown to occur in the non-polar media in the oleate capped ZnO: MgO nanocrystals when Nile Red is partitioned from the solvent into hydrophobic anchored oleate chains. The wavelength dependent energy transfer in the system has been studied using time-resolved emission spectroscopic technique. The importance of trap states in giving rise to non-Forster distance dependence for the RET is highlighted. The second part of the thesis deals with magnetism in low dimensional layered transition metal thiophophates, MPS3 (M = Mn, Fe). Low dimensional magnetic systems continue to be a fertile ground for discovering new phenomena and properties. Among two-dimensional magnetic systems the insulating transition metal thiophosphates are one of the few known layered systems, in which both magnetic and crystallographic lattices are two dimensional (2D). In the metal chalcogenophosphates, the magnetic MPX3 layers are separated by a van der Waals gap that effectively rules out interlayer exchange and hence these systems are nearly perfect 2D magnetic systems, with the magnetic ions forming a honeycomb arrangement within the layer. Due to the crystallographic two-dimensional nature these materials may be intercalated by variety of molecules or ions leading to change in magnetic properties. The objective of this thesis work is to try and modify the magnetic properties of the transition metal thiophosphates either by forming solid solutions of the type, M1-xMxPS3, (M, M = Mn, Fe) or by intercalating hydrated metal ions within the layers. The structure, Bonding, reactivity and magnetic properties are briefly introduced in Chapter 7. The Scope and nature of the present work in presented towards the end of the chapter. MnPS3 and FePS3 have identical crystal structures and both order antiferromagnetically at low temperatures, TN. The in-plane magnetic structures of the antiferromagnetically ordered the Neel state in the two compounds are, however, different. In MnPS3 the spins Alternate up-down whereas in FePS3 the spins are arranged as ferromagnetic chains with Alternate chains coupled antiferromagnetically. Since the crystal structures are identical, These two compounds can form solid solutions, Mn1-xFexPS3(0≤x≥1) over the entire concentration range. The magnetic properties of the single crystals of the solid solutions was measured by using a SQUID magnetometer. This system is of interest since the contrasting Neel states of the end-members may give rise to new magnetic phenomena at intermediate composition. It is shown that the magnetic behavior falls into three distinct categories. The Mn-rich compositions behave like a dilute MnPS3 lattice, the Fe-rich compositions behave like dilute FePS3 and in the intermediate compositions a spin-glass like phase appears. The phase boundaries for these regime in Mn1-xFexPS3, 0≤x≥1 is shown to be related to the percolation threshold for a honeycomb lattice. MnPS3 is known to undergo a unusual ion-exchange intercalation reaction. Intercalation occurs by the inclusion of hydrated metal ions in the galleries of MnPS3 with charge neutrality maintained by loss of the Mn2+ ions from the layer (Equation). MnPS3 + 2xG+ (aq) → Mn1-xPS3 [G (H2O) y] 2x + xMn2+ (aq) Where G is a neutral guest species. This chemistry has been exploited to intercalate hydrated Mn2+ ions in the interlamellar space to give Mn1-xPS3[Mn(H2O)6]x. the magnetic properties of this 3D analogue of MnPS3 has been investigated in Chapter 9.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Lin, Xi-Cong, and 林熙琮. "Synthesis and Optical Properties of Mn2+ Doped ZnS Nanocrystals." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/33984445122788205353.

Повний текст джерела
Анотація:
碩士
國立彰化師範大學
光電科技研究所
94
Mn2+ doped ZnS nanocrystals were synthesized by chemical method. The structure, morphology and optical properties of these nano-particles were studied by the means of X-ray diffraction (XRD), transmission electron microscope (TEM), photoluminescence (PL) and photoluminescence excitation (PLE) measurements. The XRD patterns showed the structure of the ZnS:Mn nanocrystals is zinc-blende. From the XRD and TEM results, the size of these narocrystals was estimated at about 3 ~4 nm. From the PL spectra, two emission peaks were observed. One is the orange emission (about 590 nm) which is due to the 4T1-6A1 characteristic transition in the Mn2+ ions, the other is the broad blue emission (from 410~500 nm) which can be attributed to the S vacancies in the ZnS nanocrystals. The PL spectra also showed that the emission intensity of samples increases as the Mn2+ concentration increases up to 4 % and then decreases. The surfactant effect on the luminescence intensity was also studied. It was found that the adding of surfactant in the synthesis process can increase the luminescence intensity efficaciously. The energy gap of the ZnS:Mn nanocrystals was determined by the PLE spectra. It was found to increase as the crystal size decreases. This blue shift of the PLE peaks is due to the quantum confinement effect of nanocrystals. Irradiation-induced luminescence enhancement effect was observed. The luminescence intensity of fresh samples was increased under irradiation by 325 nm He-Cd laser beam. From the temperature-dependent PL spectra, a blue shift of the Mn2+ ions emission peaks was observed as the temperature increased. This phenomenon could be attributed to the variation of crystal-field strength. The temperature dependence of the PL spectra of samples with surfactant was different to that without surfactant. The luminescence intensity of samples with surfactant increases as the temperatire increases. However, for the samples without surfactant, the luminescence intensity deccreaes as the temperature increases.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Lin, Jian-Hao, and 林建豪. "Study of luminescent mechanisms of silicon nanocrystals embedded in SiOX matrix、ZnO and In2Se3 semiconductors." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/85295411427980655551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Yang, Nai-Hao, and 楊乃豪. "Spontaneous growth and mechanism of stress-induced ZnO nanocrystals in ambient atmosphere at room temperature." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/06289895388974558473.

Повний текст джерела
Анотація:
博士
國立清華大學
材料科學工程學系
102
One-dimensional oxide-based nanostructures have been intensively studied because of their excellent optoelectronic properties. Due to the drawbacks of vapor-phase or aqueous solution growth, including complex processes, high synthesis temperatures, expensive precursors, and also preceding patterned seeding or subsequent patterning processes, there is an urgent need to grow patterned nanostructures by a simple and direct process at low temperatures. In the present study, stress-induced growths of one-dimensional single-crystalline ZnO and TiO2 nanostructures directly from ZnO and TiO2 films, respectively, in an ambient atmosphere at room temperature were developed by indentation or scratching without the use of any reaction precursors. Under large applied stresses oxide bonds broke assisted by hydrolysis in the presence of moisture, and subsequently were reconstructed (defined as a bond breaking-hydrolysis-reconstruction mechanism) leading to the spontaneous growth of one-dimensional nanocrystals. The direct growth at controlled locations provides an opportunity for the simple preparation of patterned nanostructures of oxide-based materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lu, Yi-Hsuan, and 路逸宣. "A Facile Green Antisolvent Approach to Cu2+-doped ZnO Nanocrystals with Visible-Light-Responsive Photoactivities." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/57993268221076207765.

Повний текст джерела
Анотація:
碩士
國立交通大學
材料科學與工程學系所
102
With the particular optoelectronic characteristics and excellent physicochemical properties, ZnO nanocrystals have been applied to extensive fields. However, the large band gap of ZnO (~3.35eV) prohibits it from effective light absorption under sunlight irradiation, which further limits its applicability in relevant photoelectric processes. To render visible light absorption thus becomes an essential task for the further advancement of ZnO. In this work, an environmentally benign antisolvent method has been developed to prepare transition metal ion-doped ZnO nanocrystals. A room-temperature ionic liquid, known as deep eutectic solvent (DES), was used as the solvent to dissolve ZnO powders. Upon the introduction of ZnO-containing DES into a bad solvent which shows no solvation to ZnO (e.g. water), ZnO was precipitated and grown due to the dramatic decrease of solubility. By adding transition metal ions such as Cu2+, Ni2+ and Co2+ in the bad solvent, the growth of ZnO in antisolvent process was accompanied by metal ion doping, resulting in the formation of metal ion-doped ZnO nanocrystals. The thus-obtained metal ion-doped ZnO showed additional absorption band in visible range (400-800 nm), attributable to the doped ions which invoke the interband transitions within the energy gap of ZnO to enable photoresponse to visible light. The doped ions may generate dopant states to trap charge carriers in the charge transfer process, leading to a depressed photoconversion efficiency for ZnO. Photoelectrochemical water splitting experiments showed that the photoactivity of the Cu2+-doped ZnO achieved the highest at the Cu2+ concentration of 2.0 at%, above which the photocatalytic performance was declined as a result of the significant charge carrier trapping at the dopant states. Furthermore, owing to the significant sp-d interaction between Cu2+ and ZnO, the Cu2+-doped ZnO samples exhibited obvious hysteresis loop at 300K with the saturated magnetization increasing with the increase of Cu2+ concentration.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

黃國賓. "Applications of combining iron disulfide nanocrystals with P3HT, PCBM for inorganic/organic hybrid photovotaic device, and with ZnO nanocrystals for all-inorganic hybrid photovoltaic." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/31038130056779427529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Chang, Chun-Jung, and 張峻榮. "ZnO nanocrystals incorporating PEIE/polyfluorene electrolyte as electron transport layers for cesium-containing perovskite light-emitting devices." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/5bkvhq.

Повний текст джерела
Анотація:
碩士
國立交通大學
照明與能源光電研究所
107
In this work, we demonstrate inverted perovskite light-emitting devices (PeLEDs) based on ZnO nanocrystals (NCs) and cesium lead bromide (CsPbBr3) film as the electron transport and emission layers, respectively. A polyethyleneimine ethoxylated (PEIE) and/or an ionic polyfluorene electrolyte containing trimethylammonium hexafluorophosphate groups (namely P2-PF6) were introduced between ZnO NCs and CsPbBr3 film to enhance electron injection. The introduction of the PEIE/P2-PF6 bilayer can effectively improve CsPbBr3 coverage and morphology, thereby reducing current leakage in PeLEDs. Meanwhile, the improved CsPbBr3 film showed better photoluminescence, owing to anti-quenching capability of the PEIE/P2-PF6 and prolonged carrier lifetime. Herein, the PeLEDs with the structure ITO/ZnO NCs/ PEIE/P2-PF6/CsPbBr3 film/poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine) (TFB)/Au were fabricated, employing TFB as the hole transport layer. The PeLED based on the PEIE/P2-PF6 showed a turn-on voltage of 2.8 V, a max luminance of 3,927 cd/m2 and max current efficiency of 0.2 cd/A that was significantly higher than those without PEIE/P2-PF6 bilayer.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

鄭綿綿. "Stochastic reorientaion processes of defect-free surface-stabilized ferroelectric liquid crystal with and without doping of ZnO nanocrystals." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/59386089246203271952.

Повний текст джерела
Анотація:
碩士
國立交通大學
光電工程系所
97
The fluctuation-dissipation theorem unveils the importance of thermal molecular motion which always exists, even in thermal equilibrium, as a fluctuation. However, the underlying information of thermal fluctuation which appears to be random noise is a huge question mark that had been overlooked for years. This thesis study focuses on the discussion about the dynamics of molecular fluctuations in a specific condensed matter- the ferroelectric liquid crystals (FLC) with and without doping of nanocrystal ZnO. The dynamics of orientation director fluctuations is governed by the material properties of the liquid crystal. In this thesis, we first derive the relation between the scattered light intensity and fluctuations of the FLC director which, through some reasonable assumption, could be described as a stochastic equation of motion. After performing autocorrelation technique to the scattered light signals, we have come to realize that the internal fluctuation is characterized by a correlation function of relevant physical quantities of the FLC system fluctuating in thermal equilibrium. The measurement results lead to the fact of improved molecular alignment and faster response time in the SSFLC cell doped with ZnO nanocrystals.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Lin, Tai-Wei, and 林泰瑋. "Synthesis of ZnO tetrapod nanocrystals on FTO glass substrate by furnace method and their application of dye-sensitized solar cells." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/67505275597859558614.

Повний текст джерела
Анотація:
碩士
國立臺灣海洋大學
光電科學研究所
98
Zinc oxide (ZnO) nano-tetrapods were deposited on FTO glass substrate at 500 ℃ by furnace method. The samples were used to combine with N-719 or N3 dyes to fabricate two kinds of dye-sensitized solar cells (DSSCs). Under the optimal conditions, an AM1.5 power conversion efficiency of 0.40% was achieved for N3 immersed DSSC and 0.68% was achieved for N-719 immersed DSSC, respectively. SEM images showed that we successfully grew the ZnO nano-tetrapods on FTO glass substrate at 500℃. The X-ray diffraction patterns confirm that the ZnO tetrapods are quasi-aligned predominantly with (002) orientation. The photoluminescence (PL) spectra of the ZnO tetrapods exhibit the near band-edge emission at 3.2 eV with no discernible defect emission, and this confirmed that our ZnO tetrapods are of good crystallinity. The ZnO nano-tetrapods grown at 500 ℃ have larger surface area than the simple one dimensional nanostructures, and then offer the lager area for dye adsorptions. With the larger surface area and higher crystalline quality, the DSSCs based on our ZnO nano-tetrapods show the good overall conversion efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Chen, Hsiang-Yun. "Energy Transfer Dynamics and Dopant Luminescence in Mn-Doped CdS/ZnS Core/Shell Nanocrystals." Thesis, 2012. http://hdl.handle.net/1969.1/148167.

Повний текст джерела
Анотація:
Mn-doped II-VI semiconductor nanocrystals exhibit bright dopant photoluminescence that has potential usefulness for light emitting devices, temperature sensing, and biological imaging. The bright luminescence comes from the 4T1→6A1 transition of the Mn2+ d electrons after the exciton-dopant energy transfer, which reroutes the exciton relaxation through trapping processes. The driving force of the energy transfer is the strong exchange coupling between the exciton and Mn2+ due to the confinement of exciton in the nanocrystal. The exciton-Mn spatial overlap affecting the exchange coupling strength is an important parameter that varies the energy transfer rate and the quantum yield of Mn luminescence. In this dissertation, this correlation is studied in radial doping location-controlled Mn-doped CdS/ZnS nanocrystals. Energy transfer rate was found decreasing when increasing the doping radius in the nanocrystals at the same core size and shell thickness and when increasing the size of the nanocrystals at a fixed doping radius. In addition to the exciton-Mn energy transfer discussed above, two consecutive exciton-Mn energy transfers can also occur if multiple excitons are generated before the relaxation of Mn (lifetime ~10^-4 - 10^-2 s). The consecutive exciton-Mn energy transfer can further excite the Mn2+ d electrons high in conduction band and results in the quenching of Mn luminescence. The highly excited electrons show higher photocatalytic efficiency than the electrons in undoped nanocrystals. Finally, the effect of local lattice strain on the local vibrational frequency and local thermal expansion was observed via the temperature-dependent Mn luminescence spectral linewidth and peak position in Mn-doped CdS/ZnS nanocrystals. The local lattice strain on the Mn2+ ions is varied using the large core/shell lattice mismatch (~7%) that creates a gradient of lattice strain at various radial locations. When doping the Mn2+ closer to the core/shell interface, the stronger lattice strain softens the vibrational frequency coupled to the 4T1→6A1 transition of Mn2+ (Mn luminescence) by ~50%. In addition, the lattice strain also increases the anharmonicity, resulting in larger local thermal expansion observed from the nearly an order larger thermal shift of the Mn luminescence compared to the Mn-doped ZnS nanocrystals without the core/shell lattice mismatch.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Chen, Yi-Han, and 陳弈翰. "Effect of Zn Content on Optical Properties of ZnxCd1-xSe Nanocrystals." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/5zu2ve.

Повний текст джерела
Анотація:
碩士
國立虎尾科技大學
材料科學與綠色能源工程研究所
99
In the recent two decades, II-VI semiconductor nanocrystals (NCs) have been researched widely due to their controllable emission wavelength and high theoretical quantum yield (QY). The optical properties of the binary NCs are the main stream in the past, however, ternary alloying process become more and more important because the different color-emitting NCs can be prepared not only by changing the particle size but composition in recent years. In this study, one-step synthesis route is used and a series of high quality ZnxCd1-xSe (x=0, 0.2, 0.5, 0.8 and 1) alloyed NCs are prepared by changing the molar ratios of ZnO and CdO. The effect of Zn content and the mechanism of QY decay are discussed. The results show that emission wavelength of NCs are shifted from 510 (x=0) to 545 nm (x=0.8) and particle size are 3.1±0.32, 3.1±0.27, 3.2±0.31, and 3.3±0.28 nm with increasing Zn content, however, ZnSe NCs cannot be prepared under this condition. In addition, the QYs of samples are 64, 89, 81, and 45 %, respectively. The result reveals that the emission wavelength of NCs is increased with increasing the amount of Zn under the same particle size. It means that the nonlinear optical properties can be observed and the red shift phenomenon is not caused by the particle size. In order to confirm the effect of Zn, the actual element compositions are measured by ICP-AES. The result shows that the actual compositions of samples are CdSe, Zn0.03Cd0.97Se, Zn0.11Cd0.89Se, Zn0.38Cd0.62Se, respectively. We can conclude that the red shift of emission position is caused by composition rather than particle size. Furthermore, QY can be promoted by partial replaced Cd with Zn and a high QY can be obtained under lower Zn content. When prolonging reaction time to 5 min, an obvious blue shift of emission wavelength is observed and a lower QY can be obtained. When the samples are aging for two months, the average particle sizes is 4.2±0.53, 5.8±1.26, 4.3±0.56, and 4.2±0.57 nm and QYs is 15, 30, 18, and 9 %, respectively. However, the emission position for all aging samples is not changed compared with as-prepared samples. The QYs decrease with increasing time due to surfactant, which capped on the surface of NCs, is flopped. Besides, the particle size distribution becomes wider, which is caused by Ostwald ripening effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Hazarika, Abhijit. "Photophysical Properties of Manganese Doped Semiconductor Nanocrystals." Thesis, 2015. http://etd.iisc.ernet.in/2005/3675.

Повний текст джерела
Анотація:
Electronic and optical properties of semiconducting nanocrystals, that can be engineered and manipulated by various ways like varying size, shape, composition, structure, has been a subject of intense research for more than last two decades. The size dependency of these properties in semiconductor nanocrystals is direct manifestation of the quantum confinement effect. Study of electronic and optical properties in smaller dimensions provides a platform to understand the evolution of fundamental bulk properties in the semiconductors, often leading to realization and exploration of entirely new and novel properties. Not only of fundamental interests, the semiconductor nanocrystals are also shown to have great technological implications in diverse areas. Besides size tunable properties, introduction of impurities, like transition metal ions, gives rise to new functionalities in the semicon-ductor nanocrystals. These materials, termed as doped semiconductor nanocrystals, have been the subject of great interest, mainly due to the their interesting optical properties. Among different transition metal doped semiconductor nanocrystals, manganese doped systems have drawn a lot on attention due to their certain advantages over other dopants. One of the major advantages of Mn doped semiconductor nanocrystals is that they do not suffer from the problem of self-absorption of emission, which quite often, is consid-ered detrimental in their undoped counterparts. The doped nanocrystals are known to produce a characteristic yellow-orange emission upon photoexcitation of the host that is relatively insensitive to the surface degradation of the host. This emission, originating from an atomic d-d transition of Mn2+ ions, has been a subject of extensive research in the recent past. In spite of the spin forbidden nature of the specific d-d transition, namely 6A1 −4 T1, these doped nanocrystals yield intense phosphorescence. However, one major drawback of utilizing this system for a wide range application has been the substantial inability of the community to tune the emission color of Mn-doped systems in spite of an intense effort over the years; the relative constancy of the emission color in these systems has been attributed to the essentially atomic nature of the optical transition involving localized Mn d levels. Interestingly, however, the Mn emission has a very broad spectral line-width in spite of its atomic-like origin. While the long (∼ 1 ms) emission life-time of the de-excitation process is well-studied and understood in terms of the spin and orbitally forbidden nature of the transition, there is little known concerning the process of energy transfer to the Mn from the host in the excitation step. In this thesis, we have studied the ultrafast dynamic processes involved in Mn emission and addressed the issues related to its tunability and spectral purity. Chapter 1 provides a brief introduction to the fundamental concepts relevant to the studies carried out in the subsequent chapters of this thesis. This chapter is started with a small preview of the nanomaterials in general, followed by a discussion on semiconducting nanomaterials, evolution of their electronic structure with dimensions and size as well as the effect of quantum confinement on their optical properties. As all the semiconducting nanomaterials studied in the thesis are synthesized via colloidal synthesis routes, a separate section is devoted on colloidal semiconducting nanomaterials, describing various ways of modifying or tuning their optical properties. This is followed by an introduction to the important class of materials “doped semiconductor nanocrystals”. With a general overview and brief history of these materials, we proceed to discuss about various aspects of manganese doped semiconductor nanocrystals in great details, highlighting the origin of the manganese emission and the associated carrier dynamics as well as different reported synthetic strategies to prepare these materials. The chapter is closed with the open questions related to manganese doped semiconductor nanocrystals and the scope of the present work. Chapter 2 describes different experimental and theoretical methods that have been employed to carry out different studies presented in the thesis. It includes common experimental techniques like UV-Vis absorption spectroscopy, steady-state and time-resolved photoluminescence spectroscopy used for optical measurements, X-ray diffraction, trans-mission electron microscopy and atomic absorption spectroscopy used for structural and elemental analysis. Experimental tools to perform special studies like transient absorption and single nanocrystal spectroscopy are also discussed. Finally, theoretical fitting method used to analyse various spectral data has been discussed briefly. Chapter 3 deals with the dynamic processes involved in the photoexcitation and emission in manganese doped semiconductor nanocrystals. For this study, Mn doped ZnCdS alloyed nanocrystal has been chosen as a model system. There are various radiative and nonrdiative recombination pathways of the photogenerated carriers and they often compete with each other. We have studied the dynamics of all possible pathways of carrier relaxation, viz. excitonic recombination, surface state emission and Mn d-d transition. The main highlight of this chapter is the determination of the time-scale to populate surface states and the Mn d-states after the photoexcitation of the host. Employing femtosecond pump-probe based transient absorption study we have shown that the Mn dopant states are populated within sub-picosecond of the host excitation, while it takes a few picoseconds to populate the surface states. Keeping in mind the typical life-time of the excitonic emission (∼ a few ns), the ultra-fast process of energy transfer from the host to the Mn ions explains why the presence of Mn dopant ions quenches the excitonic as well as the surface state emissions so efficiently. Chapter 4 presents a study of manganese emission in ZnS nanocrystals of different sizes. By varying the size of the ZnS host nanocrystal, we show that one can tune the Mn emission over a limited range. In particular, with a decrease in host size, the Mn emission has been observed to red-shift. We have attributed this shift in Mn emission to the change in the ratio of surface to bulk dopant ions with the variation of the host size, noting that the strength of the ligand field at the Mn site should depend on the position of the Mn ion relative to the surface due to a systematic lattice relaxation in such nanocrystals. The ligand field affects the emission wavelength directly by controlling the splitting of the t2 and e levels of Mn2+ ions. The surface dopant ions experience a strong ligand field due to distorted tetrahedral environment which leads to larger splitting of these t2 and e states. We further corroborated these results by performing doping concentration dependent emission and life-time studies. In Chapter 5 addresses two fundamental challenges related to manganese photolumines-cence, namely the lack of a substantial emission tunability and presence of a very broad spectral width (∼ 180-270 meV). The large spectral width is incompatible with atomic-like manganese 4T1 −6 A1 transition. On the other hand, if this emission is atomic in nature, it should be relatively unaffected by the nature of the host, though it can be manipulated to some extent as discussed in Chapter 3. The lack of Mn emission tunability and spectral purity together seriously limit the usefulness of Mn doped semiconductor nanocrystals. To understand why the Mn emission tunability range is very limited (typically 565-630 nm) and to understand the true nature of this emission, we carried out single nanocrystal imaging and spectroscopy on Mn doped ZnCdS alloyed nanocrystals. This study reveals that Mn emission, in fact, can vary over a much wider range (∼ 370 meV) and exhibits widths substantially lower (∼ 60-75 meV) than reported so far. We explained the occur-rence of Mn emission in this broad spectral range in terms of the possibility of a large number of symmetry inequivalent sites resulting from random substitution of Cd and Zn ions that leads to differing extent of ligand field contributions towards the splitting of Mn d-levels. The broad Mn emission observed in ensemble-averaged measurements is the result of contribution from Mn ions at different sites of varying ligand field strengths inside the NC. Chapter 6 presents a synthetic strategy to strain-engineer a nanocrystal host lattice for a controlled tuning of the ligand field effect of the doped Mn sites. It is realized synthesizing a strained quantum dot system with the structure ZnSe/CdSe/ZnSe. A larger lattice parameter of CdSe compared to that of ZnSe causes a strain field that is maximum near the interface, gradually decreasing towards the surface. We control the positioning of Mn dopant ions at different distances from the interface, thereby doping Mn at different predetermined strain fields. With the help of this strain engineering, we are able to tune Mn emission across the entire range of the visible spectrum. This strain induced tuning of Mn emission is accompanied by life-times that is dependent on the emission energy which has been explained in terms of perturbation effect on the Mn center due to the strain generated inside the quantum dot. The spectacular emission tuning has been explained by modelling the quantum dot system as an elastic continuum containing three distinct layers under hydrostatic pressure. From this modelling, we found that the strain is max-imum at the interface and decreases continuously as one goes away from the interface. We also show that the Mn emission maximum red shifts with increasing distance of the dopants from the maximum strained region. In summary, we have performed a study on the photophysical processes in manganese doped semiconductor nanocrystals. We have emphasized in understanding of different dynamic processes associated with the manganese emission and tried to understand the true nature of manganese emission in a nanocrystal. This study has brought out some new aspects of manganese emission and opened up possibilities to tune and control manganese emission by proper design of the host material.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Huynh, Uyen Nguyen Phuong. "Hybrid Photovolvoltaic Devices Based on Nanocrystals and Conducting Metallopolymers Using the Seeded Growth Method." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-3917.

Повний текст джерела
Анотація:
Described herein are two projects focusing on developing and investigating two types of nanoparticles (NPs) grown by the seeded growth method from a conducting metallopolymer for photovoltaic (PV) applications. Core/shell CdS/ZnS NPs are proven to resist the photo-oxidation of PV devices, while CuInxGa(1-x)Se2 (CIGS) NPs are expected to optimize the efficiency of PV devices.
text
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії