Добірка наукової літератури з теми "ZINC OXIDE NANOPARTICLE"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "ZINC OXIDE NANOPARTICLE".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "ZINC OXIDE NANOPARTICLE"
Rajan Abhinaya, Shymala, and Ramakrishnan Padmini. "BIOFABRICATION OF ZINC OXIDE NANOPARTICLES USING PTEROCARPUS MARSUPIUM AND ITS BIOMEDICAL APPLICATIONS." Asian Journal of Pharmaceutical and Clinical Research 12, no. 1 (January 7, 2019): 245. http://dx.doi.org/10.22159/ajpcr.2018.v12i1.28682.
Повний текст джерелаRajan Abhinaya, Shymala, and Ramakrishnan Padmini. "BIOFABRICATION OF ZINC OXIDE NANOPARTICLES USING PTEROCARPUS MARSUPIUM AND ITS BIOMEDICAL APPLICATIONS." Asian Journal of Pharmaceutical and Clinical Research 12, no. 1 (January 7, 2019): 245. http://dx.doi.org/10.22159/ajpcr.2019.v12i1.28682.
Повний текст джерелаWang, Dongyue, Yuhang Meng, Aidong Tang, and Huaming Yang. "Dehydroxylation of Kaolinite Tunes Metal Oxide–Nanoclay Interactions for Enhancing Antibacterial Activity." Minerals 12, no. 9 (August 29, 2022): 1097. http://dx.doi.org/10.3390/min12091097.
Повний текст джерелаMikhailov, M. M., S. A. Yuryev, A. N. Lapin, and V. A. Goronchko. "The effect of high-temperature nanoparticle-based modification on the structure of zinc oxide powders." Journal of Physics: Conference Series 2291, no. 1 (July 1, 2022): 012019. http://dx.doi.org/10.1088/1742-6596/2291/1/012019.
Повний текст джерелаBasharat, Muhammad Haseeb, Muhammad Tariq, Riaz Mustafa, Amar Akash, Hafiza Hira Talib, Muhammad Nouman Aziz, Anadil Noel, et al. "Biologically Synthesized Zinc Oxide Nanoparticles and Carbon Tetrachloride as an Anti Cancer Drug: A Review." Pakistan Journal of Medical and Health Sciences 16, no. 6 (June 30, 2022): 1046–49. http://dx.doi.org/10.53350/pjmhs221661046.
Повний текст джерелаDavid, S. Begila. "ANTIBACTERIAL ACTIVITY OF ZINC OXIDE NANOPARTICLE BY SONOCHEMICAL METHOD AND GREEN METHOD USING ZINGIBER OFFICINALE." Green Chemistry & Technology Letters 2, no. 1 (March 10, 2016): 11–15. http://dx.doi.org/10.18510/gctl.2016.212.
Повний текст джерелаBaiee, Noor Al-Huda, and Ayad F. Alkaim. "Photocatalytic Degradation of Methylene Blue Dye from Aqueous Solutions in the Presence of Synthesized ZnO Nanoparticles." NeuroQuantology 19, no. 8 (September 4, 2021): 53–58. http://dx.doi.org/10.14704/nq.2021.19.8.nq21112.
Повний текст джерелаChang, Sheng-Po, and Kuan-Jen Chen. "Zinc Oxide Nanoparticle Photodetector." Journal of Nanomaterials 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/602398.
Повний текст джерелаJamnongkan, Tongsai, Sathish K. Sukumaran, Masataka Sugimoto, Tomijiro Hara, Yumiko Takatsuka, and Kiyohito Koyama. "Towards novel wound dressings: antibacterial properties of zinc oxide nanoparticles and electrospun fiber mats of zinc oxide nanoparticle/poly(vinyl alcohol) hybrids." Journal of Polymer Engineering 35, no. 6 (August 1, 2015): 575–86. http://dx.doi.org/10.1515/polyeng-2014-0319.
Повний текст джерелаRaja, Mohan, A. M. Shanmugaraj, and Sung Hun Ryu. "Preparation of Template Free Zinc Oxide Nanoparticles Using Sol–Gel Chemistry." Journal of Nanoscience and Nanotechnology 8, no. 8 (August 1, 2008): 4224–26. http://dx.doi.org/10.1166/jnn.2008.an24.
Повний текст джерелаДисертації з теми "ZINC OXIDE NANOPARTICLE"
Lennox, Martin. "Synthesis of zinc / zinc oxide nanoparticle-carbon nanotube composites." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121192.
Повний текст джерелаCette thèse présente un nouveau procédé de synthèse de nanotubes de carbone décorés de nanoparticules de zinc et oxyde de zinc. Le procédé combine la condensation d'un aérosol pour la synthèse de nanoparticules avec le traitement des particules en vol dans une décharge luminescente par radiofréquence. Cette méthode facilite le dépôt de nanoparticules sur ces surfaces nanostructurées telles que des nanotubes de carbone formés directement sur des substrats en acier inoxydable dans le cas présent. La conception, la construction et l'optimisation des processus sont décrits. Une vitesse de dépôt maximale de 500 nm/min a été observée lorsque les couches de nanoparticules ont été déposées sur des plaquettes de silicium. On a également observé une variation significative dans le taux de dépôt de nanoparticules; les intervalles de confiance à 95% pour le prédictions de l'épaisseur de la couche de nanoparticules étaient approximativement ±225 nm et ±550 nm pour la plage de température de la source d'évaporation de 575 à 625 °C tandis que le taux d'évaporation moyen mesuré variait de 0,009 à 0,048 g/min, respectivement. À partir des données de diffraction des électrons, de diffraction des rayons X ainsi que de spectroscopie photoélectronique aux rayons X, il a été possible de déduire que les nanoparticules ont une structure coeur-écorce composée de zinc et d'oxyde de zinc. L'utilité des nanocomposites synthétisés comme matériaux pour une cathode est évaluée dans un système de décharge luminescente en courant continu. Aucune réduction significative des tensions nécessaires au maintien de la décharge luminescente a été observée lorsque les nanocomposites synthétisés ont été testés, par rapport aux cathodes formées de surfaces nanostructurées de nanotube de carbone ou aux cathodes en acier inoxydable non-traité.
McQuillan, Jonathan. "Bacterial-nanoparticle interactions." Thesis, University of Exeter, 2010. http://hdl.handle.net/10036/3101.
Повний текст джерелаWalker, Nicholas David Leyland. "The role of the nano-environmental interface in ZnO and CeO2 nanoparticle ecotoxicology." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/3734.
Повний текст джерелаKhoza, Phindile Brenda. "Phthalocyanine-nanoparticle conjugates for photodynamic therapy of cancer and phototransformation of organic pollutants." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1017918.
Повний текст джерелаGunti, Srikanth. "Enhanced Visible Light Photocatalytic Remediation of Organics in Water Using Zinc Oxide and Titanium Oxide Nanostructures." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6852.
Повний текст джерелаLouka, Chrysovalanto. "Controlling the toxicity of zinc oxide nanowires in vitro skin models." Thesis, Université Grenoble Alpes, 2020. https://thares.univ-grenoble-alpes.fr/2020GRALU004.pdf.
Повний текст джерелаZinc oxide nanowires (ZnONWs) are attracting a lot of scientific attention due to their optoelectrical, piezoelectrical and semiconducting properties, which make them a good candidate for sensors and wearable electronics. These applications increase the chance of skin exposure, hence the investigation of their safety is crucial, especially since studies on ZnONWs show a zinc ion related toxicity due to their dissolution. Unfortunately, understanding of ZnONWs impact on skin is limited. Therefore, it is the objective of this project to gain an insightful understanding of the potential hazard of ZnONWs upon (human) skin in vitro and how their physicochemical properties are related to this.Herein, an extensive ZnONWs physicochemical characterisation was performed in media with and without serum, and in milli Q water (mQ H2O) suspensions. Results showed the stock dissolution, where both ZnO nanomaterials (ZnONMs) are in mQ H2O, reached a zinc ion concentration at equilibrium of 15 µg/mL immediately, while size studies showed high aggregation in GlutaMAX without serum and reduced aggregation in GlutaMAX media with serum. Incubator storing conditions of 5% CO2 and 37oC were shown to have an impact on the dissolution by lowering the pH of the milli Q water suspension and possibly forming zinc carbonate complexes in media.Examining the cytotoxicity of ZnONWs in skin monoculture and comparing it to ZnO nanoparticles (ZnONPs) and zinc chloride (ZnCl2), showed that ZnONMs induced a significant cytotoxicity and cell death from 40.2 µg/mL zinc equivalent, with less than 40% viable cells. Comparison with the ZnCl2 showed a clear association between dissolution and cell cytotoxicity.To assess further the actual impact of ZnONWs in the skin, a co-culture system in Air-Liquid-Interface (ALI) consisting of epidermis and dermis skin cells was developed after monoculture optimisation of each cell type. The 3D skin model system was exposed to ZnONPs, ZnONWs and ZnCl2. To prevent the dissolution of ZnONWs, a 5.75±SD 1.06 nm Titanium dioxide (TiO2) shell was deposited via Atomic layer deposition (ALD) on the ZnONWs. The TiO2 coated ZnONWs were also tested for their toxicity on the co-culture system.Results of the exposures showed a significant cell death with only 20% alive cells, after ZnONMs and ZnCl2 treatment at 80.4 µg whilst the TiO2 coated ZnONWs treatment maintained at least 75% cell viability even at 80.4 µg. However, further examination of (pro-) inflammatory mediators after treatment showed that TiO2 coated ZnONWs increased levels of (pro-)inflammatory Interleukin (IL) 8 and 6 compared to bare ZnONWs. This could raise further safety issues
Wong, Ka-kan, and 黃嘉勤. "Investigation on the effect of ZnO nanoparticle properties on dye sensitized solar cell performance." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49618246.
Повний текст джерелаpublished_or_final_version
Physics
Master
Master of Philosophy
Ruankham, Pipat. "Studies on Morphological Effects and Surface Modification of Nanostructured Zinc Oxide for Hybrid Organic/Inorganic Photovoltaics." Kyoto University, 2014. http://hdl.handle.net/2433/188820.
Повний текст джерелаCRAPANZANO, ROBERTA. "Insight into ZnO luminescence to engineer nanoparticles for X-Ray based cancer treatment." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/366193.
Повний текст джерелаLe nanoparticelle possiedono proprietà uniche che permettono il loro utilizzo in diversi settori, come la catalisi, l’opto-elettronica e la medicina. A livello nanometrico, il rapporto superficie-volume è alto, portando alla formazione di difetti che influenzano le proprietà del sistema, ad esempio le risposte catalitiche e ottiche. Inoltre, le elevate aree e reattività superficiali delle nanoparticelle consentono la loro funzionalizzazione con diversi leganti, incrementando la loro versatilità, soprattutto nell’ambito medico. L'accuratezza e l’efficacia di diagnosi e terapie può migliorare implementando le strategie tradizionali con nano-agenti. Tra i campi di ricerca in nanomedicina, nanoparticelle con alto numero atomico sono promettenti per innovare la radioterapia e per sviluppare nuove procedure oncologiche, come la terapia fotodinamica indotta dai raggi X, che sfrutta nanoscintillatori combinati a fotosensibilizzatori. In questo ambito, ZnO è di grande interesse. ZnO è un semiconduttore che mostra emissioni nello spettro del visibile, reattività superficiale e biocompatibilità. Inoltre, esposto ai raggi X, ZnO può generare specie citotossiche sia direttamente, grazie alla sua attività catalitica, sia indirettamente, attivando i vicini fotosensibilizzatori, grazie alla sua abilità di convertire i fotoni X in visibili. Questa tesi concerne lo studio di NPs di ZnO per l’innovazione di terapie oncologiche attivate dai raggi X. In dettaglio, un’analisi fondamentale delle proprietà ottiche e catalitiche di diversi campioni di ZnO è condotta e usata come base per progettare nanosistemi multicomponente a base di ZnO. In particolare, le proprietà ottiche di campioni di ZnO con diverse dimensioni (nanometriche, micrometriche e massive) e condizioni di crescita sono studiate con tecniche di fotoluminescenza e radioluminescenza con l’obiettivo di approfondire la comprensione del ruolo della morfologia sulla difettualità. L’analisi numerica di tutti gli spettri identifica nella luminescenza di ZnO un massimo di cinque bande di emissione (una attribuita agli eccitoni e quattro ai difetti), le cui forme spettrali e tempi di vita variano con la dimensione e la procedura di sintesi. Inoltre, lo studio dell’abilità di diversi campioni nanometrici di ZnO di produrre specie citotossiche rivela che la sua attività radio-catalitica dipende dal tipo e dalla concentrazione dei difetti di punto. Quindi, il controllo dei parametri di sintesi e della morfologia (dimensione, forma, interfacce) potrebbe permette l’ingegnerizzazione dei difetti e quindi delle proprietà ottiche e catalitiche. Per realizzare un nano-agente per la terapia fotodinamica indotta dai raggi X, nanoparticelle di ZnO, supportate su substrati nanometrici di silice con diversa porosità, sono funzionalizzate con varie concentrazioni di porfirine. Lo studio delle loro proprietà ottiche rivela che, sotto eccitazione ottica, la luminescenza della porfirina è attivata solo da un meccanismo di riassorbimento con efficienza limitata. Invece, sotto radiazione ionizzante, l’emissione della porfirina è ben sensibilizzata, specialmente a basse concentrazioni e alte energie del fascio di raggi X, grazie al locale aumento del deposito di energia favorito dalle nanoparticelle di ZnO, come confermato dalle simulazioni. Questi risultati evidenziano il ruolo sinergico dei raggi X e della funzionalizzazione, aprendo a ulteriori studi sull’impatto della progettazione del nano-agente sulle sue prestazioni. Questo progetto è stato condotto nel Dipartimento di Scienza dei Materiali dell’università di Milano-Bicocca e in collaborazione con il NanoMat@Lab per la preparazione dei campioni e con la Dottoressa Anne-Laure Bulin dell’università di Grenoble-Alpes per l’analisi computazionale.
Mileyeva-Biebesheimer, Olga. "An Investigation into Metal Oxide Nanoparticle Toxicity to Bacteria in Environmental Systems Using Fluorescence Based Assays." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302125170.
Повний текст джерелаКниги з теми "ZINC OXIDE NANOPARTICLE"
Roy, Nandini, Utshab Singha, Saurav Paul, Gaurav Kumar Pushp, Swagat Bardoloi, Maimy Debbarma, and Freeman Boro. Metal Oxide Nanomaterials. Edited by Sunayana Goswami (Ed.). Glasstree, 2020. http://dx.doi.org/10.20850/9781716360367.
Повний текст джерелаhouse, book, and Amelia Prosperity. Synthesis of Nano Particles Using Thermal Treatment Method: Step by Step Method on How to Synthesis Zinc Oxide Nanoparticles. Independently Published, 2022.
Знайти повний текст джерелаЧастини книг з теми "ZINC OXIDE NANOPARTICLE"
Sadasivam, Narendhran, Rajiv Periakaruppan, and Rajeshwari Sivaraj. "Lantana aculeata L.-Mediated Zinc Oxide Nanoparticle-Induced DNA Damage in Sesamum indicum and Their Cytotoxic Activity Against SiHa Cell Line." In Phytotoxicity of Nanoparticles, 347–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76708-6_15.
Повний текст джерелаSzőllősi, Réka, Árpád Molnár, Gábor Feigl, Dóra Oláh, Márk Papp, and Zsuzsanna Kolbert. "Physiology of Zinc Oxide Nanoparticles in Plants." In Plant Responses to Nanomaterials, 95–127. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-36740-4_4.
Повний текст джерелаCao, Yachao, Xiaoying Hui, Akram Elmahdy, Hanjiang Zhu, and Howard I. Maibach. "Zinc Oxide Nanoparticles In Vitro Human Skin Decontamination." In Dermal Absorption and Decontamination, 315–34. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09222-0_17.
Повний текст джерелаChauhan, Ravi, Amit Kumar, Ramna Tripathi, and Akhilesh Kumar. "Advancing of Zinc Oxide Nanoparticles for Cosmetic Applications." In Handbook of Consumer Nanoproducts, 1–16. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6453-6_100-1.
Повний текст джерелаChauhan, Ravi, Amit Kumar, Ramna Tripathi, and Akhilesh Kumar. "Advancing of Zinc Oxide Nanoparticles for Cosmetic Applications." In Handbook of Consumer Nanoproducts, 1057–72. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8698-6_100.
Повний текст джерелаThakur, Mansee, Smital Poojary, Kapil Singh Thakur, and Vinay Kumar. "Antimicrobial Potentials of Zinc and Iron Oxide Nanoparticles." In Nanotechnology in the Life Sciences, 353–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10220-2_10.
Повний текст джерелаChaudhary, Shrutika, Saurabh Shivalkar, and Amaresh Kumar Sahoo. "Biosynthesis of Zinc Oxide Nanoparticles and Major Applications." In Mycosynthesis of Nanomaterials, 172–92. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327387-10.
Повний текст джерелаPardeshi, Chandrakant V., Swapnil N. Jain, and Nitin R. Shirsath. "Fungal-mediated Zinc Oxide Nanoparticles and their Applications." In Myconanotechnology, 301–25. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327356-17.
Повний текст джерелаRajeshkumar, S., and D. Sandhiya. "Biomedical Applications of Zinc Oxide Nanoparticles Synthesized Using Eco-friendly Method." In Nanoparticles and their Biomedical Applications, 65–93. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0391-7_3.
Повний текст джерелаYung, Mana Man Na, Catherine Mouneyrac, and Kenneth Mei Yee Leung. "Ecotoxicity of Zinc Oxide Nanoparticles in the Marine Environment." In Encyclopedia of Nanotechnology, 1–17. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6178-0_100970-1.
Повний текст джерелаТези доповідей конференцій з теми "ZINC OXIDE NANOPARTICLE"
Schwabe, Tobias, Axel Balke, Petrone Bezuidenhout, Julia Reker, Thorsten Meyers, Trudi-Heleen Joubert, and Ulrich Hilleringmann. "Oxygen detection with zinc oxide nanoparticle structures." In Fifth Conference on Sensors, MEMS, and Electro-Optic Systems, edited by Monuko du Plessis. SPIE, 2019. http://dx.doi.org/10.1117/12.2501507.
Повний текст джерелаSeil, Justin T., and Thomas J. Webster. "Zinc oxide nanoparticle and polymer antimicrobial biomaterial composites." In 2010 36th Annual Northeast Bioengineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/nebc.2010.5458276.
Повний текст джерелаRUTHERFORD, David, Jaroslav JÍRA, Kateřina KOLÁŘOVÁ, Iva MATOLÍNOVÁ, Zdenek REMEŠ, Jaroslav KULIČEK, Dilli PADMANABAN, Paul MAGUIRE, Davide MARIOTTI, and Bohuslav REZEK. "Plasma-synthesised Zinc oxide nanoparticle behavior in liquids." In NANOCON 2021. TANGER Ltd., 2021. http://dx.doi.org/10.37904/nanocon.2021.4318.
Повний текст джерелаSaidi, S. A., M. H. Mamat, A. S. Ismail, M. M. Yusoff, M. F. Malek, N. D. Md Sin, A. S. Zoolfakar, Z. Khusaimi, and M. Rusop. "Effect of deposition speed on properties of zinc oxide nanoparticle decorated zinc oxide nanorod arrays." In 2016 IEEE Student Conference on Research and Development (SCOReD). IEEE, 2016. http://dx.doi.org/10.1109/scored.2016.7810066.
Повний текст джерелаMoratin, H., A. Scherzad, N. Kleinsasser, and S. Hackenberg. "Analysis of zinc oxide nanoparticle-induced mechanisms of toxicity." In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1685640.
Повний текст джерелаMoreno, Gilbert, Steven J. Oldenburg, Seung M. You, and Joo H. Kim. "Pool Boiling Heat Transfer of Alumina-Water, Zinc Oxide-Water and Alumina-Water+Ethylene Glycol Nanofluids." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72375.
Повний текст джерелаBecker, Thales E., Fabio F. Vidor, Gilson I. Wirth, Thorsten Meyers, Julia Reker, and Ulrich Hilleringmann. "Time domain electrical characterization in zinc oxide nanoparticle thin-film transistors." In 2018 IEEE 19th Latin-American Test Symposium (LATS). IEEE, 2018. http://dx.doi.org/10.1109/latw.2018.8349695.
Повний текст джерелаMulijani, Sri, Galang Rizky, Armi Wulanawati, Ayu Wuri Handayani, and Felah Nur Asih. "Synthesis of zinc oxide nanoparticle as corrosion resistance of steel metal." In THE 9TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY ICICS 2021: Toward a Meaningful Society. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0103996.
Повний текст джерелаNiyuki, Ryo, Yoshie Ishikawa, Naoto Koshizaki, Takeshi Tsuji, Hideki Fujiwara, and Keiji Sasaki. "Realization of single-mode random lasing within a zinc oxide nanoparticle film." In 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2013. http://dx.doi.org/10.1109/cleopr.2013.6600473.
Повний текст джерелаPearce, Ruth, Fredrik Soderlind, Alexander Hagelin, Per-Olov Kall, Rositza Yakimova, Anita Lloyd Spetz, Elin Becker, and Magnus Skoglundh. "Effect of water vapour on gallium doped zinc oxide nanoparticle sensor gas response." In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398276.
Повний текст джерелаЗвіти організацій з теми "ZINC OXIDE NANOPARTICLE"
Gladfelter, Wayne L., David A. Blank, and Kent R. Mann. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1365392.
Повний текст джерелаMoormann, Garrett, and George Bachand. Biosynthesis of Zinc Oxide Nanoparticles using Fungal Filtrates. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1817833.
Повний текст джерела