Статті в журналах з теми "Yang-Mills instantons"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Yang-Mills instantons.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Yang-Mills instantons".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lai, Sheng-Hong, Jen-Chi Lee, and I.-Hsun Tsai. "Extended complex Yang–Mills instanton sheaves." International Journal of Geometric Methods in Modern Physics 17, no. 04 (March 2020): 2050061. http://dx.doi.org/10.1142/s0219887820500619.

Повний текст джерела
Анотація:
In the search of Yang–Mills (YM) instanton sheaves with topological charge two, the rank of [Formula: see text] matrix in the monad construction can be dropped from the bundle case with rank [Formula: see text] to either rank [Formula: see text] [S. H. Lai, J. C. Lee and I. H. Tsai, Yang–Mills instanton sheaves, Ann. Phys. 377 (2017) 446] or 0 on some points of [Formula: see text] of the sheaf cases. In this paper, we first show that the sheaf case with rank [Formula: see text] does not exist for the previous construction of [Formula: see text] complex YM instantons [S. H. Lai, J. C. Lee and I. H. Tsai, Biquaternions and ADHM construction of concompact [Formula: see text] Yang–Mills instantons, Ann. Phys. 361 (2015) 14]. We then show that in the new “extended complex YM instantons” discovered in this paper, rank [Formula: see text] can be either 2 on the whole [Formula: see text] (bundle) with some given ADHM data or 1, 0 on some points of [Formula: see text] with other ADHM data (sheaves). These extended [Formula: see text] complex YM instantons have no real instanton counterparts. Finally, the potential applications to real physics systems are noted in the end of the paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kim, Hongsu, and Yongsung Yoon. "Yang–Mills instantons in the gravitational instanton backgrounds." Physics Letters B 495, no. 1-2 (December 2000): 169–75. http://dx.doi.org/10.1016/s0370-2693(00)01224-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MIYAGI, SAYURI. "YANG–MILLS INSTANTONS ON SEVEN-DIMENSIONAL MANIFOLD OF G2 HOLONOMY." Modern Physics Letters A 14, no. 37 (December 7, 1999): 2595–604. http://dx.doi.org/10.1142/s0217732399002728.

Повний текст джерела
Анотація:
We investigate Yang–Mills instantons on a seven-dimensional manifold of G2 holonomy. By proposing a spherically symmetric ansatz for the Yang–Mills connection, we have ordinary differential equations as the reduced instanton equation, and give some explicit and numerical solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kronheimer, Peter B., and Hiraku Nakajima. "Yang-Mills instantons on ALE gravitational instantons." Mathematische Annalen 288, no. 1 (December 1990): 263–307. http://dx.doi.org/10.1007/bf01444534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

OH, JOHN J., and HYUN SEOK YANG. "EINSTEIN MANIFOLDS AS YANG–MILLS INSTANTONS." Modern Physics Letters A 28, no. 21 (July 7, 2013): 1350097. http://dx.doi.org/10.1142/s0217732313500971.

Повний текст джерела
Анотація:
It is well known that Einstein gravity can be formulated as a gauge theory of Lorentz group where spin connections play a role of gauge fields and Riemann curvature tensors correspond to their field strengths. One can then pose an interesting question: What is the Einstein equation from the gauge theory point of view? Or equivalently, what is the gauge theory object corresponding to Einstein manifolds? We show that the Einstein equations in four dimensions are precisely self-duality equations in Yang–Mills gauge theory and so Einstein manifolds correspond to Yang–Mills instantons in SO (4) = SU (2)L × SU (2)R gauge theory. Specifically, we prove that any Einstein manifold with or without a cosmological constant always arises as the sum of SU (2)L instantons and SU (2)R anti-instantons. This result explains why an Einstein manifold must be stable because two kinds of instantons belong to different gauge groups, instantons in SU (2)L and anti-instantons in SU (2)R, and so they cannot decay into a vacuum. We further illuminate the stability of Einstein manifolds by showing that they carry nontrivial topological invariants.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Belitsky, A. V., S. Vandoren, and P. van Nieuwenhuizen. "Yang-Mills and D -instantons." Classical and Quantum Gravity 17, no. 17 (August 23, 2000): 3521–70. http://dx.doi.org/10.1088/0264-9381/17/17/305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Etesi, G�bor, and Tam�s Hausel. "On Yang-Mills Instantons over Multi-Centered Gravitational Instantons." Communications in Mathematical Physics 235, no. 2 (April 1, 2003): 275–88. http://dx.doi.org/10.1007/s00220-003-0806-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Colladay, Don, and Patrick McDonald. "Yang–Mills instantons with Lorentz violation." Journal of Mathematical Physics 45, no. 8 (August 2004): 3228–38. http://dx.doi.org/10.1063/1.1767624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Segert, Jan. "Frobenius manifolds from Yang-Mills instantons." Mathematical Research Letters 5, no. 3 (1998): 327–44. http://dx.doi.org/10.4310/mrl.1998.v5.n3.a6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Groisser, David, and Thomas H. Parker. "Semiclassical Yang-Mills theory I: Instantons." Communications in Mathematical Physics 135, no. 1 (December 1990): 101–40. http://dx.doi.org/10.1007/bf02097659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Lled�, M., I. Mart�n, A. Restuccia, and A. Mendoza. "Yang?Mills instantons over Riemann surfaces." Letters in Mathematical Physics 24, no. 4 (April 1992): 275–81. http://dx.doi.org/10.1007/bf00420487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Ivanova, Tatiana A. "Scattering of instantons, monopoles and vortices in higher dimensions." International Journal of Geometric Methods in Modern Physics 13, no. 03 (March 2016): 1650032. http://dx.doi.org/10.1142/s0219887816500328.

Повний текст джерела
Анотація:
In this paper, we consider Yang–Mills theory on manifolds [Formula: see text] with a [Formula: see text]-dimensional Riemannian manifold [Formula: see text] of special holonomy admitting gauge instanton equations. Instantons are considered as particle-like solutions in [Formula: see text] dimensions whose static configurations are concentrated on [Formula: see text]. We study how they evolve in time when considered as solutions of the Yang–Mills equations on [Formula: see text] with moduli depending on time [Formula: see text]. It is shown that in the adiabatic limit, when the metric in the [Formula: see text] direction is scaled down, the classical dynamics of slowly moving instantons corresponds to a geodesic motion in the moduli space [Formula: see text] of gauge instantons on [Formula: see text]. Similar results about geodesic motion in the moduli space of monopoles and vortices in higher dimensions are briefly discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

JIA, DUOJE, and YISHI DUAN. "TOPOLOGICAL EFFECTS OF INSTANTON DUE TO DEFECTS." Modern Physics Letters A 16, no. 29 (September 21, 2001): 1863–69. http://dx.doi.org/10.1142/s0217732301005163.

Повний текст джерела
Анотація:
A new doublet variable is proposed to decompose non-Abelian gauge field for describing the topological effects of instantons due to the defects in appropriate phase of SU(2) Yang–Mills theory. It is shown that the instanton number can be directly related to the isospin defects of the doublet order parameter and contributed from topological charges of these defects. The θ-term in instanton action is found to be the delta-function form of the doublet and the Lagrangian of instantons in terms of new variables is also presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Papoulias, Vasileios Ektor. "Spin(7) Instantons and Hermitian Yang–Mills Connections for the Stenzel Metric." Communications in Mathematical Physics 384, no. 3 (May 17, 2021): 2009–66. http://dx.doi.org/10.1007/s00220-021-04055-5.

Повний текст джерела
Анотація:
AbstractWe use the highly symmetric Stenzel Calabi–Yau structure on $$T^{\star }S^{4}$$ T ⋆ S 4 as a testing ground for the relationship between the Spin(7) instanton and Hermitian–Yang–Mills (HYM) equations. We reduce both problems to tractable ODEs and look for invariant solutions. In the abelian case, we establish local equivalence and prove a global nonexistence result. We analyze the nonabelian equations with structure group SO(3) and construct the moduli space of invariant Spin(7) instantons in this setting. This is comprised of two 1-parameter families—one of them explicit—of irreducible Spin(7) instantons. Each carries a unique HYM connection. We thus negatively resolve the question regarding the equivalence of the two gauge theoretic PDEs. The HYM connections play a role in the compactification of this moduli space, exhibiting a removable singularity phenomenon that we aim to further examine in future work.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Verbin, Y. "Yang-Mills instantons in closed Friedmann universes." Physics Letters B 223, no. 3-4 (June 1989): 296–99. http://dx.doi.org/10.1016/0370-2693(89)91605-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Taniguchi, Tadashi. "ADHM construction of super Yang–Mills instantons." Journal of Geometry and Physics 59, no. 9 (September 2009): 1199–209. http://dx.doi.org/10.1016/j.geomphys.2009.06.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

IVANOVA, TATIANA A., OLAF LECHTENFELD, and HELGE MÜLLER-EBHARDT. "NONCOMMUTATIVE MODULI FOR MULTI-INSTANTONS." Modern Physics Letters A 19, no. 32 (October 20, 2004): 2419–30. http://dx.doi.org/10.1142/s0217732304015464.

Повний текст джерела
Анотація:
There exists a recursive algorithm for constructing BPST-type multi-instantons on commutative ℝ4. When deformed noncommutatively, however, it becomes difficult to write down non-singular instanton configurations with topological charge greater than one in explicit form. We circumvent this difficulty by allowing for the translational instanton moduli to become noncommutative as well. Such a scenario is natural in the self-dual Yang–Mills hierarchy of integrable equations where the moduli of solutions are seen as extended spacetime coordinates associated with higher flows. By judicious adjustment of the moduli-noncommutativity we achieve the ADHM construction of generalized 't Hooft multi-instanton solutions with everywhere self-dual field strengths on noncommutative ℝ4.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

OCHIAI, TETSUYUKI. "MULTI-INSTANTON EFFECT IN TWO-DIMENSIONAL QCD." Modern Physics Letters A 10, no. 21 (July 10, 1995): 1549–63. http://dx.doi.org/10.1142/s0217732395001678.

Повний текст джерела
Анотація:
We analyze multi-instanton sector in two-dimensional U(N) Yang-Mills theory on a sphere. We obtain a contour integral representation of the multi-instanton amplitude and find “neutral” configurations of the even number instantons dominate in the large-N limit. Using this representation, we calculate the 1-, 2-, 3-, 4-body interactions and the free energies for N=3, 4, 5 numerically and find that the multi-instanton interaction effect essentially contributes to the large-N phase transition discovered by Douglas and Kazakov.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Correia, Filipe Paccetti. "Hermitian Yang-Mills instantons on Calabi-Yau cones." Journal of High Energy Physics 2009, no. 12 (December 1, 2009): 004. http://dx.doi.org/10.1088/1126-6708/2009/12/004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Figueroa-O'Farrill, J. M., C. Kohl, and B. Spence. "Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves." Nuclear Physics B 521, no. 3 (June 1998): 419–43. http://dx.doi.org/10.1016/s0550-3213(98)00285-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ivanova, Tatiana A., and Olaf Lechtenfeld. "Yang–Mills instantons and dyons on group manifolds." Physics Letters B 670, no. 1 (December 2008): 91–94. http://dx.doi.org/10.1016/j.physletb.2008.10.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Minasian, Ruben, Samson L. Shatashvili, and Pierre Vanhove. "Closed strings from SO(8) Yang–Mills instantons." Nuclear Physics B 613, no. 1-2 (October 2001): 87–104. http://dx.doi.org/10.1016/s0550-3213(01)00369-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Etesi, Gábor. "Spin(7)-manifolds and symmetric Yang–Mills instantons." Physics Letters B 521, no. 3-4 (November 2001): 391–99. http://dx.doi.org/10.1016/s0370-2693(01)01239-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Ivanova, Tatiana A., Olaf Lechtenfeld, Alexander D. Popov, and Thorsten Rahn. "Instantons and Yang–Mills Flows on Coset Spaces." Letters in Mathematical Physics 89, no. 3 (September 2009): 231–47. http://dx.doi.org/10.1007/s11005-009-0336-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Reinhardt, H., K. Langfeld, and L. v. Smekal. "Instantons in field strength formulated Yang-Mills theories." Physics Letters B 300, no. 1-2 (February 1993): 111–17. http://dx.doi.org/10.1016/0370-2693(93)90756-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Bianchi, Massimo, Stefano Kovacs, Giancarlo Rossi, and Michael B. Green. "Instantons in supersymmetric Yang-Mills and D-instantons in IIB superstring theory." Journal of High Energy Physics 1998, no. 08 (August 30, 1998): 013. http://dx.doi.org/10.1088/1126-6708/1998/08/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Poppitz, Erich. "Notes on Confinement on R3 × S1: From Yang–Mills, Super-Yang–Mills, and QCD (adj) to QCD(F)." Symmetry 14, no. 1 (January 17, 2022): 180. http://dx.doi.org/10.3390/sym14010180.

Повний текст джерела
Анотація:
This is a pedagogical introduction to the physics of confinement on R3×S1, using SU(2) Yang–Mills with massive or massless adjoint fermions as the prime example; we also add fundamental flavours to conclude. The small-S1 limit is remarkable, allowing for controlled semiclassical determination of the nonperturbative physics in these, mostly non-supersymmetric, theories. We begin by reviewing the Polyakov confinement mechanism on R3. Moving on to R3×S1, we show how introducing adjoint fermions stabilizes center symmetry, leading to abelianization and semiclassical calculability. We explain how monopole–instantons and twisted monopole–instantons arise. We describe the role of various novel topological excitations in extending Polyakov’s confinement to the locally four-dimensional case, discuss the nature of the confining string, and the θ-angle dependence. We study the global symmetry realization and, when available, present evidence for the absence of phase transitions as a function of the S1 size. As our aim is not to cover all work on the subject, but to prepare the interested reader for its study, we also include brief descriptions of topics not covered in detail: the necessity for analytic continuation of path integrals, the study of more general theories, and the ’t Hooft anomalies involving higher-form symmetries.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Shulyakovsky, Roman G., Alexander S. Gribowsky, Alexander S. Garkun, Maxim N. Nevmerzhitsky, Alexei O. Shaplov, and Denis A. Shohonov. "Classical instanton solutions in quantum field theory." Journal of the Belarusian State University. Physics, no. 2 (June 7, 2020): 78–85. http://dx.doi.org/10.33581/2520-2243-2020-2-78-85.

Повний текст джерела
Анотація:
Instantons are non-trivial solutions of classical Euclidean equations of motion with a finite action. They provide stationary phase points in the path integral for tunnel amplitude between two topologically distinct vacua. It make them useful in many applications of quantum theory, especially for describing the wave function of systems with a degenerate vacua in the framework of the path integrals formalism. Our goal is to introduce the current situation about research on instantons and prepare for experiments. In this paper we give a review of instanton effects in quantum theory. We find in stanton solutions in some quantum mechanical problems, namely, in the problems of the one-dimensional motion of a particle in two-well and periodic potentials. We describe known instantons in quantum field theory that arise, in particular, in the two-dimensional Abelian Higgs model and in SU(2) Yang – Mills gauge fields. We find instanton solutions of two-dimensional scalar field models with sine-Gordon and double-well potentials in a limited spatial volume. We show that accounting of instantons significantly changes the form of the Yukawa potential for the sine-Gordon model in two dimensions.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Volkov, Boris O. "Lévy Laplacians and instantons on manifolds." Infinite Dimensional Analysis, Quantum Probability and Related Topics 23, no. 02 (June 2020): 2050008. http://dx.doi.org/10.1142/s0219025720500083.

Повний текст джерела
Анотація:
The equivalence of the anti-selfduality Yang–Mills equations on the four-dimensional orientable Riemannian manifold and the Laplace equations for some infinite-dimensional Laplacians is proved. A class of modified Lévy Laplacians parameterized by the choice of a curve in the group [Formula: see text] is introduced. It is shown that a connection is an instanton (a solution of the anti-selfduality Yang–Mills equations) if and only if the parallel transport generalized by this connection is a solution of the Laplace equations for some three modified Lévy Laplacians from this class.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Lee, Jen-Chi. "Biquaternion Construction of SL(2,C) Yang-Mills Instantons." Journal of Physics: Conference Series 670 (January 25, 2016): 012032. http://dx.doi.org/10.1088/1742-6596/670/1/012032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

HELMKE, U. "Linear Dynamical Systems and Instantons in Yang-Mills Theory." IMA Journal of Mathematical Control and Information 3, no. 2-3 (1986): 151–66. http://dx.doi.org/10.1093/imamci/3.2-3.151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Loginov, E. K., and E. D. Loginova. "Yang-Mills like instantons in eight and seven dimensions." Journal of Mathematical Physics 55, no. 10 (October 2014): 101701. http://dx.doi.org/10.1063/1.4897444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Bianchi, Massimo, Francesco Fucito, Giancarlo Rossi, and Maurizio Martellini. "Explicit construction of Yang-Mills instantons on ALE spaces." Nuclear Physics B 473, no. 1-2 (August 1996): 367–404. http://dx.doi.org/10.1016/0550-3213(96)00240-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Bonini, G. F., S. Habib, E. Mottola, C. Rebbi, R. Singleton, and P. G. Tinyakov. "Periodic instantons in SU(2) Yang–Mills–Higgs theory." Physics Letters B 474, no. 1-2 (February 2000): 113–21. http://dx.doi.org/10.1016/s0370-2693(00)00022-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Paban, Sonia, Savdeep Sethi, and Mark Stern. "Summing up instantons in three-dimensional Yang–Mills theories." Advances in Theoretical and Mathematical Physics 3, no. 2 (1999): 343–61. http://dx.doi.org/10.4310/atmp.1999.v3.n2.a6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Yatsun, V. A. "Integrable model of Yang-Mills theory and quasi-instantons." Letters in Mathematical Physics 11, no. 2 (February 1986): 153–59. http://dx.doi.org/10.1007/bf00398427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

MAEDA, TAKASHI, and TOSHIO NAKATSU. "AMOEBAS AND INSTANTONS." International Journal of Modern Physics A 22, no. 05 (February 20, 2007): 937–83. http://dx.doi.org/10.1142/s0217751x07034970.

Повний текст джерела
Анотація:
We study a statistical model of random plane partitions. The statistical model has interpretations as five-dimensional [Formula: see text] supersymmetric SU (N) Yang–Mills on ℝ4 × S1 and as Kähler gravity on local SU (N) geometry. At the thermodynamic limit a typical plane partition called the limit shape dominates in the statistical model. The limit shape is linked with a hyperelliptic curve, which is a five-dimensional version of the SU (N) Seiberg–Witten curve. Amoebas and the Ronkin functions play intermediary roles between the limit shape and the hyperelliptic curve. In particular, the Ronkin function realizes an integration of thermodynamical density of the main diagonal partitions, along one-dimensional slice of it and thereby is interpreted as the counting function of gauge instantons. The radius of S1 can be identified with the inverse temperature of the statistical model. The large radius limit of the five-dimensional Yang–Mills is the low temperature limit of the statistical model, where the statistical model is frozen to a ground state that is associated with the local SU (N) geometry. We also show that the low temperature limit corresponds to a certain degeneration of amoebas and the Ronkin functions known as tropical geometry.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Kim, Seok, Ki-Myeong Lee, and Sungjay Lee. "Dyonic instantons in 5-dim Yang-Mills Chern-Simons theories." Journal of High Energy Physics 2008, no. 08 (August 19, 2008): 064. http://dx.doi.org/10.1088/1126-6708/2008/08/064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Deser, Andreas, Olaf Lechtenfeld, and Alexander D. Popov. "Sigma-model limit of Yang–Mills instantons in higher dimensions." Nuclear Physics B 894 (May 2015): 361–73. http://dx.doi.org/10.1016/j.nuclphysb.2015.03.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Lechtenfeld, Olaf, and Warren Siegel. "N = 2 worldsheet instantons yield cubic self-dual Yang-Mills." Physics Letters B 405, no. 1-2 (July 1997): 49–54. http://dx.doi.org/10.1016/s0370-2693(97)00595-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Wo-Jun, Zhong, and Duan Yi-Shi. "Topological Quantization of Instantons in SU (2) Yang–Mills Theory." Chinese Physics Letters 25, no. 5 (May 2008): 1534–37. http://dx.doi.org/10.1088/0256-307x/25/5/004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kovalev, A. G. "On the reduction of Yang-Mills instantons to Nahm's equations." Russian Mathematical Surveys 52, no. 6 (December 31, 1997): 1305–6. http://dx.doi.org/10.1070/rm1997v052n06abeh002170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Castro, Carlos. "Wgravity,N=2 strings, and 2+2SU*(∞) Yang–Mills instantons." Journal of Mathematical Physics 35, no. 6 (June 1994): 3013–24. http://dx.doi.org/10.1063/1.530500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Yang, Hyun Seok, and Sangheon Yun. "Calabi-Yau Manifolds, Hermitian Yang-Mills Instantons, and Mirror Symmetry." Advances in High Energy Physics 2017 (2017): 1–27. http://dx.doi.org/10.1155/2017/7962426.

Повний текст джерела
Анотація:
We address the issue of why Calabi-Yau manifolds exist with a mirror pair. We observe that the irreducible spinor representation of the Lorentz group Spin(6) requires us to consider the vector spaces of two forms and four forms on an equal footing. The doubling of the two-form vector space due to the Hodge duality doubles the variety of six-dimensional spin manifolds. We explore how the doubling is related to the mirror symmetry of Calabi-Yau manifolds. Via the gauge theory formulation of six-dimensional Riemannian manifolds, we show that the curvature tensor of a Calabi-Yau manifold satisfies the Hermitian Yang-Mills equations on the Calabi-Yau manifold. Therefore, the mirror symmetry of Calabi-Yau manifolds can be recast as the mirror pair of Hermitian Yang-Mills instantons. We discuss the mirror symmetry from the gauge theory perspective.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Morris, T. R., D. A. Ross, and C. T. Sachrajda. "Instantons and the renormalisation group in supersymmetric Yang-Mills theories." Nuclear Physics B 264 (January 1986): 111–53. http://dx.doi.org/10.1016/0550-3213(86)90476-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Chimento, Samuele, Tomás Ortín, and Alejandro Ruipérez. "Yang–Mills instantons in Kähler spaces with one holomorphic isometry." Physics Letters B 778 (March 2018): 371–76. http://dx.doi.org/10.1016/j.physletb.2018.01.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Bergvelt, M. J., and E. A. De Kerf. "The Hamiltonian structure of Yang-Mills theories and instantons I." Physica A: Statistical Mechanics and its Applications 139, no. 1 (November 1986): 101–24. http://dx.doi.org/10.1016/0378-4371(86)90007-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Bergvelt, M. J., and E. A. De Kerf. "The Hamiltonian structure of Yang-Mills theories and instantons II." Physica A: Statistical Mechanics and its Applications 139, no. 1 (November 1986): 125–48. http://dx.doi.org/10.1016/0378-4371(86)90008-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Billó, Marco, Pietro Fré, Riccardo D'auria, Sergio Ferrara, Paolo Soriani, and Antoine Van Proeyen. "R Symmetry and the Topological Twist of N = 2 Effective Supergravities of Heterotic Strings." International Journal of Modern Physics A 12, no. 02 (January 20, 1997): 379–418. http://dx.doi.org/10.1142/s0217751x97000475.

Повний текст джерела
Анотація:
We discuss R symmetries in locally supersymmetric N = 2 gauge theories coupled to hypermultiplets which can be thought of as effective theories of heterotic superstring models. In this type of supergravities a suitable R symmetry exists and can be used to topologically twist the theory: the vector multiplet containing the dilaton–axion field has different R charge assignments with respect to the other vector multiplets. Correspondingly a system of coupled instanton equations emerges, mixing gravitational and Yang–Mills instantons with triholomorphic hyperinstantons and axion instantons. For the tree level classical special manifolds ST(n) = SU(1,1)/U(1) × SO(2,n)/[SO(2) × SO(n)], R symmetry with the specified properties is a continuous symmetry, but for the quantum-corrected manifolds [Formula: see text] a discrete R group of electric–magnetic duality rotations is sufficient and we argue that it exists.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

DALLAGNOL, LLOHANN, and MARCOS JARDIM. "NONSINGULAR COMPLEX INSTANTONS ON EUCLIDEAN SPACETIME." International Journal of Geometric Methods in Modern Physics 05, no. 06 (September 2008): 963–71. http://dx.doi.org/10.1142/s0219887808003132.

Повний текст джерела
Анотація:
Building on a variation of 't Hooft's harmonic function ansatz for SU(2) instantons on ℝ4, we provide new explicit nonsingular solutions of the Yang–Mills anti-self-duality equations on Euclidean spacetime with gauge group SL(2, ℂ) and SL(3, ℝ).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії