Добірка наукової літератури з теми "YAE1"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "YAE1".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "YAE1"
Merlin, Christophe, Gregory Gardiner, Sylvain Durand, and Millicent Masters. "The Escherichia coli metD Locus Encodes an ABC Transporter Which Includes Abc (MetN), YaeE (MetI), and YaeC (MetQ)." Journal of Bacteriology 184, no. 19 (October 1, 2002): 5513–17. http://dx.doi.org/10.1128/jb.184.19.5513-5517.2002.
Повний текст джерелаPrusty, Nihar Ranjan, Francesca Camponeschi, Simone Ciofi-Baffoni, and Lucia Banci. "The human YAE1-ORAOV1 complex of the cytosolic iron-sulfur protein assembly machinery binds a [4Fe-4S] cluster." Inorganica Chimica Acta 518 (April 2021): 120252. http://dx.doi.org/10.1016/j.ica.2021.120252.
Повний текст джерелаWiatrowski, Heather A., and Marian Carlson. "Yap1 Accumulates in the Nucleus in Response to Carbon Stress in Saccharomyces cerevisiae." Eukaryotic Cell 2, no. 1 (February 2003): 19–26. http://dx.doi.org/10.1128/ec.2.1.19-26.2003.
Повний текст джерелаBen, Chi, Xiaojing Wu, Atsushi Takahashi-Kanemitsu, Christopher Takaya Knight, Takeru Hayashi, and Masanori Hatakeyama. "Alternative splicing reverses the cell-intrinsic and cell-extrinsic pro-oncogenic potentials of YAP1." Journal of Biological Chemistry 295, no. 41 (August 6, 2020): 13965–80. http://dx.doi.org/10.1074/jbc.ra120.013820.
Повний текст джерелаGál, József, Attila Szvetnik, Róbert Schnell, and Miklós Kálmán. "The metDd-Methionine Transporter Locus of Escherichia coli Is an ABC Transporter Gene Cluster." Journal of Bacteriology 184, no. 17 (September 1, 2002): 4930–32. http://dx.doi.org/10.1128/jb.184.17.4930-4932.2002.
Повний текст джерелаKawauchi, Daisuke, Kristian Pajtler, Yiju Wei, Konstantin Okonechnikov, Patricia Silva, David Jones, Mikio Hoshino, Stefan Pfister, Marcel Kool, and Wei Li. "TB-06 MOLECULAR MECHANISM OF BRAIN TUMOUR FORMATION DRIVEN BY SUPRATENTORIAL EPENDYMOMA-SPECIFIC YAP1 FUSION GENES." Neuro-Oncology Advances 1, Supplement_2 (December 2019): ii11. http://dx.doi.org/10.1093/noajnl/vdz039.048.
Повний текст джерелаKim, Yong Sook, Mira Kim, Dong Im Cho, Soo Yeon Lim, Ju Hee Jun, Mi Ra Kim, Bo Gyeong Kang, et al. "PSME4 Degrades Acetylated YAP1 in the Nucleus of Mesenchymal Stem Cells." Pharmaceutics 14, no. 8 (August 9, 2022): 1659. http://dx.doi.org/10.3390/pharmaceutics14081659.
Повний текст джерелаHartley, A. D., M. P. Ward, and S. Garrett. "The Yak1 protein kinase of Saccharomyces cerevisiae moderates thermotolerance and inhibits growth by an Sch9 protein kinase-independent mechanism." Genetics 136, no. 2 (February 1, 1994): 465–74. http://dx.doi.org/10.1093/genetics/136.2.465.
Повний текст джерелаZeng, Cheng, Pei-Li Wu, Zhao-Tong Dong, Xin Li, Ying-Fang Zhou, and Qing Xue. "YAP1 inhibits ovarian endometriosis stromal cell invasion through ESR2." Reproduction 160, no. 3 (September 2020): 481–90. http://dx.doi.org/10.1530/rep-19-0565.
Повний текст джерелаSzulzewsky, Frank, Pia Hoellerbauer, Hua-Jun Wu, P. J. Cimino, Franziska Michor, Patrick Paddison, Valeri Vasioukhin, and Eric Holland. "GENE-04. THE ONCOGENIC FUNCTIONS OF YAP1-GENE FUSIONS CAN BE INHIBITED BY DISRUPTION OF YAP1-TEAD INTERACTION." Neuro-Oncology 21, Supplement_6 (November 2019): vi98. http://dx.doi.org/10.1093/neuonc/noz175.406.
Повний текст джерелаДисертації з теми "YAE1"
Shah, Nupur R. "Functional studies of YAP1 in cancer and embryonic development." Thesis, University of Aberdeen, 2018. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=238733.
Повний текст джерелаSchlegelmilch, Karin [Verfasser]. "YAP1 and the Hippo Signaling Pathway Regulate Progenitor Proliferation / Karin Schlegelmilch." Berlin : Freie Universität Berlin, 2013. http://d-nb.info/1042186170/34.
Повний текст джерела金原, 和江. "膜結合型プロテアーゼYaeLの機能解析". 京都大学 (Kyoto University), 2003. http://hdl.handle.net/2433/148589.
Повний текст джерелаCaetano, Soraia Cristina Marques. "O Yap1 no stress causado pelo excesso de cobalto em S. cerevisiae." Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/8214.
Повний текст джерелаA capacidade dos organismos em alterar os seus padrões de expressão de genes em resposta a perturbações do meio ambiente é essencial para a sua viabilidade. Neste trabalho, utilizando Saccharomyces cerevisiae como organismo eucariota modelo, foi estudada a relevância do factor de transcrição da família Yap, o Yap1, na desintoxicação do excesso de cobalto. Os resultados obtidos neste trabalho demonstram que, após a incubação das células com cobalto, o factor de transcrição Yap1 é acumulado no núcleo, através de um mecanismo independente de Orp1/Gpx3. Verificámos que o cobalto tem a capacidade de ligar-se directamente ao Yap1, sugerindo que, à semelhança do que acontece com outros metais, seja este o mecanismo de retenção nuclear após o stress. Confirmámos que uma vez no núcleo, o Yap1 medeia a indução de genes envolvidos na regulação do stress oxidativo em levedura (tais como GPX2, SOD1, TRR1 e TRX2) e constatámos que a presença de cobalto aumenta os níveis de carbonilação das proteínas, sendo esse aumento mais acentuado na ausência de Yap1. Verificámos ainda que os níveis de cobalto estão levemente diminuídos no mutante yap1 ao contrário do ferro que está em concentrações mais elevadas neste mutante relativamente à estirpe selvagem, quer na presença como na ausência de cobalto. Este facto leva-nos a propor que o cobalto altere a homeostase do ferro e que em consequência, conjuntamente com a diminuição das defesas anti-oxidantes, gere stress oxidativo. Foi descrito que a glutationa (GSH) é importante na homeostase do ferro e o excesso de cobalto leva ao aumento dos níveis de ferro intracelulares. Verificámos não só que a expressão de GSH1 está diminuída aos 30 minutos de tratamento do mutante yap1 com cobalto mas também que a adição de GSH faz recuperar os fenótipos de crescimento na presença deste metal. Finalmente apresentámos um modelo de acção do factor Yap1 no stress provocado pelo cobalto.
The ability of organisms to reprogram gene expression in response to changes in the environment is essential for their viability. In this work, using Saccharomyces cerevisiae as a eukaryotic model organism, we studied the relevance of the transcription factor, Yap1, in the detoxification of cobalt excess. The results here reported show that after incubation of cells with cobalt, Yap1 accumulates in the nucleus, through a mechanism independent of the peroxidase Orp1/Gpx3. We found that cobalt has the ability to directly bind to Yap1, suggesting that this is the mechanism for its nuclear retention after cobalt treatment. We confirmed that, once in the nucleus, Yap1 mediates the induction of genes involved in the regulation of oxidative stress in yeast (such as GPX2, SOD1, TRX2 and TRR1). Moreover, we found that the presence of cobalt increases the levels of protein carbonylation, being the damage more pronounced in the absence of Yap1. It was also found that cobalt levels are slightly decreased in the yap1 mutant. In contrast, the iron concentration is higher in this mutant than in the wild type, in the presence and absence of cobalt. This led us to propose that the cobalt alters iron homeostasis and iin consequence generate oxidative stress. It was reported that glutathione (GSH) is important in the homeostasis of iron. As the excess of cobalt leads to increased levels of intracellular iron, we found not only that in the yap1 mutant GSH1 expression is decreased after 30 minutes of treatment with cobalt but also, the addition of GSH can recover the growth phenotypes in the presence of this metal. . Finally we present a working model of the transcription factor Yap1 in stress caused by cobalt.
Sha, Wei. "Microarray data analysis methods and their applications to gene expression data analysis for Saccharomyces cerevisiae under oxidative stress." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/27840.
Повний текст джерелаPh. D.
Fechtner, Tim [Verfasser]. "Charakterisierung der neuen, potentiellen Adhäsine Yaa1, Yaa2 und Yaa3 von Chlamydia pneumoniae / Tim Fechtner." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2013. http://d-nb.info/1036261921/34.
Повний текст джерелаHegerfeldt, Yael [Verfasser], and Peter [Akademischer Betreuer] Friedl. "Kollektive Invasion in Melanomexplantaten: Bedeutung von Zell-Matrix-Interaktionen / Yael Hegerfeldt. Betreuer: Peter Friedl." Würzburg : Universitätsbibliothek der Universität Würzburg, 2012. http://d-nb.info/1028326785/34.
Повний текст джерелаMolina-Castro, Silvia. "Study of the Hippo/YAP1 signaling pathway in gastric carcinogenesis induced by Helicobacter pylori." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0623/document.
Повний текст джерелаGastric cancer (GC) is a multifactorial disease, most frequently associated to chronic infection with CagA-positive Helicobacter pylori strains. Epithelial-to-mesenchymal transition (EMT) is reversible process in which polarized epithelial cells acquire a mesenchymal phenotype. EMT is at the origin of cancer stem cells (CSC). In GC, CSCs express CD44 and high aldehyde-dehydrogenase (ALDH) activity. Infection with H. pylori of human gastric cancer cell lines (hGECs) in vitro induces the emergence of a population of CD44+ cells with CSC-properties through an EMT process in a CagA-dependent manner. The Hippo pathway is composed by the kinases MST and LATS, and their phosphorylation targets,YAP1 and TAZ. Upon phosphorylation by LATS, YAP1 and TAZ are inhibited. Active YAP1 and TAZ bind to TEAD transcription factors to promote the expression of genes that regulate cell growth and apoptosis.The first aim of this work was to investigate whether H. pylori affects the activation state of the Hippo pathway, and its effect on the EMT process and the CSCs. Second, we intended to characterize the role of YAP1/TEAD in gastric CSC properties in vitro and the consequences of its pharmacological inhibition on tumor growth in vivo.To study the Hippo pathway regulation during infection, LATS2, YAP1 and CD44 were evaluated in gastric mucosae of non-infected or H. pylori-infected patients. They were upregulated in infected mucosae and were associated to pathology. Hippo pathway regulation by H. pylori infection has biphasic kinetics and is CagA-dependent. Early in infection, H. pylori transiently triggered YAP1 expression and co-transcriptional activity, along with LATS2. This period of Hippo pathway inactivity is followed by a progressive activation, sustained by LATS2 accumulation and inhibitory YAP1Ser127-phosphorylation. LATS2 siRNA-mediated repression accelerated the acquisition of the EMT-phenotype upon infection, the up-regulation of EMT-markers ZEB1 and Snail1, and the decrease of the epithelial miR-200. H. pylori-induced CD44 upregulation, invasion and sphere-forming capacity were further enhanced upon LATS2 knockdown, suggesting that LATS2 restricts the EMT and CSC-like phenotype in hGECs upon H. pylori infection. Inhibition of either LATS2 or YAP1 reduced the expression of both proteins, revealing a positive feedback loop. In tissue sections of GC, LATS2 and YAP1 were heterogeneous and co-expressed. The positive correlation between LATS2 and YAP1 was confirmed in the 38 hGECs of the CCLE. The expression of CTGF and CYR61 was also strongly correlated to LATS2, suggesting that LATS2 could also be a YAP1/TEAD target gene.hGECs of the CCLE. The expression of CTGF and CYR61 was also strongly correlated to LATS2, suggesting that LATS2 could also be a YAP1/TEAD target gene.Verteporfin (VP) disrupts the YAP1/TEAD interaction inhibiting its transcriptional activity. In vitro, using hGECs and cells from patient derived primary tumor xenogratfs (PDXs), we showed that treatment with VP decreased cell growth, expression of YAP1/TAZ/TEAD target genes, TEAD-luciferase reporter activity and sphere-forming capacity. The activity of VP was tested in vivo, by peritumoral injection in a model of subcutaneous graft of hGECs (MKN45 and MKN74) and PDX (GC10) in NGS mice. Tumor growth was followed and a decrease was observed. Tumor weight measurement, IHC analysis (CD44, ALDH and Ki67), and CSCs were decreased in treated tumors. These results show the CSC-inhibitory activity of VP both in vitro and in vivo.We showed for the first time that the LATS2/YAP1/TEAD axis is early activated during the carcinogenesis process induced by chronic H. pylori infection and controls the subsequent EMT and CSC-like features. Targeting the Hippo pathway efficiently prevented tumor growth in a PDX model, highlighting the potential of its inhibition to be implemented in gastric cancer therapy
Stegmeier, Johannes Friedrich. "Study of Omp85 family proteins YaeT and YtfM and multidrug export machineries in Escherichia coli." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980586682.
Повний текст джерелаGuzzo, Cristiane Rodrigues. "Estudo estrutural e funcional das proteínas PilZ e YaeQ do fitopatógeno Xanthomonas axonopodis pv citri." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-26042010-134457/.
Повний текст джерелаThe aim of the project was to perform structural and functional studies of different Xanthomonas axonopodis pv citri (Xac) proteins including the hypothetical proteins YaeQ and SufE; RpfC, RpfF and RpfG involved in the quorum sensing and PilZ, FimX and PilB that play roles in type IV pilus (T4P) biogenesis. Several experimental techniques were employed including cloning, expression and purification of recombinant proteins, thermal denaturation, protein crystallography, X-ray diffraction, NMR, two-hybrid assays, Western- and Far-Western Blotting assays, site direct mutagenesis, and the production of Xac knockouts strains. The most important results include the determination of the three-dimensional crystal structures of PilZ and YaeQ using the MAD technique. In both cases, the structures reveled new protein topologies. The comparison of the YaeQ structure with others deposited in public databases revealed that YaeQ proteins represent a new variation within the PD-(D/E)XK magnesium dependent endonucleases superfamily. Functional assays suggest that YaeQ may be envolved in DNA repair in Xac. The PilZ three-dimensional structure revealed an unexpected structural variation within the PilZ domain superfamily and showed why PilZ orthologs are not able to bind the important bacterial second messenger, c-diGMP. We assigned the PilZ main chain by NMR and used this information to demonstrate that the PilZ secondary structure in solution is consistent with the PilZ crystal structure. We identified two proteins that interact with PilZ: PilB and FimX. As with PilZ, both PilB and FimX are involved in T4P biogenesis. PilZ binds specifically to the EAL domain of FimX and the conserved residues located in the PilZ unstructured C-terminal region contribute to binding with PilB but not with FimX. Site direct mutagenesis studies showed that PilZ residue Y22 is necessary for its capability to interact with both PilB and FimX. Although PilZ does not bind c-diGMP, her partner, FimX, does. We present evidence that PilZ can bind simultaneously to FimX and PilB, forming a ternary complex that is independent of c-diGMP. These results allow us to propose possible mechanisms by which PilZ and FimX control T4P biogenesis. Other results obtained during this period include the resolution of the crystal structure of the SufE protein from Xac using the molecular replacement technique. We show that SufE induces a 10-fold increase in the cysteine desulfurase activity of SufS, similar to that observed for the SufE-SufS complex from E. coli. Several proteins involved in quorum sensing and c-di-GMP signaling were cloned, expressed and submitted to crystallization trials. Crystals of the HPT (histidine phophotransferase) domain) of the RpfC sensor histidine kinase were obtained
Книги з теми "YAE1"
Cócora: La historia de Yael. Panamá, República de Panamá: Puello's Books, 2015.
Знайти повний текст джерелаeditor, Yoneda Yūsuke 1936, ed. Yae no zanka. Tōkyō: Chūō Kōron Bijutsu Shuppan, 2018.
Знайти повний текст джерелаYura, Yayoi. Niijima Yae to Ishin: Aizu ni saita yae no sakura. Tōkyō: Bungeisha, 2013.
Знайти повний текст джерелаYae, Kurō. Yae Kurō no denshō. Sapporo-shi: Hokkaidō Kyōiku Iinkai, 1993.
Знайти повний текст джерелаAsano, Yae. Asano Yae yusai, 1955-nen-1982-nen =: Yae Asano paintings, 1955-1982. Nagoya: Sakura Gallery, 1985.
Знайти повний текст джерелаYael and the party of the year. New York: Simon & Schuster, 2018.
Знайти повний текст джерелаThe Geneva option: A Yael Azoulay novel. New York, NY: HarperCollins Publishers, 2013.
Знайти повний текст джерелаDōsōkai, Dōshisha. Niijima Yae: Hansamu na joketsu no shōgai = The life history of Yae Neesima. Kyōto-shi: Tankōsha, 2012.
Знайти повний текст джерелаTah zamā ṭolah shāʻirī yae! Peṣhawar: Dānish Khparandūyah Ṭolanah, 2013.
Знайти повний текст джерелаYae-san, onorini narimasu ka. Kyōto-shi: Shibunkaku Shuppan, 2012.
Знайти повний текст джерелаЧастини книг з теми "YAE1"
Leavy, Patricia, and Victoria Scotti. "Yael." In Low-Fat Love Stories, 105–10. Rotterdam: SensePublishers, 2017. http://dx.doi.org/10.1007/978-94-6300-818-1_14.
Повний текст джерелаMolos, Dimitrios. "Tamir, Yael." In Encyclopedia of Global Justice, 1057–58. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9160-5_131.
Повний текст джерелаWilmer, S. E. "Yael Ronen." In Dramaturgies of Interweaving, 176–96. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003187233-17.
Повний текст джерелаKoch, Roberta Maria. "Wie innovative Start-ups zu Kapital kommen." In Die Wirtschaft im Wandel, 59–63. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-31735-5_10.
Повний текст джерелаAssis, Elie. "“THE HAND OF A WOMAN”: DEBORAH AND YAEL (JUDGES 4)." In Perspectives on Hebrew Scriptures II, 363–70. Piscataway, NJ, USA: Gorgias Press, 2007. http://dx.doi.org/10.31826/9781463212834-025.
Повний текст джерелаSudol, Marius, Irwin H. Gelman, and Jianmin Zhang. "YAP1 Uses Its Modular Protein Domains and Conserved Sequence Motifs to Orchestrate Diverse Repertoires of Signaling." In The Hippo Signaling Pathway and Cancer, 53–70. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6220-0_4.
Повний текст джерелаHutchison, Yvette. "Women Playwrights in Post-Apartheid South Africa: Yael Farber, Lara Foot-Newton, and the Call for Ubuntu." In Contemporary Women Playwrights, 148–63. London: Macmillan Education UK, 2013. http://dx.doi.org/10.1007/978-1-137-27080-1_10.
Повний текст джерела"YAP1." In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 2123. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_18310.
Повний текст джерелаGarrett, S. "Yak1." In The Protein Kinase FactsBook, 254–55. Elsevier, 1995. http://dx.doi.org/10.1016/b978-012324719-3/50076-5.
Повний текст джерела"54 Yael." In Jews in East Norse Literature, 1109–10. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110775747-066.
Повний текст джерелаТези доповідей конференцій з теми "YAE1"
Bölöni, Ladislau, and Damla Turgut. "YAES." In the 8th ACM international symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1089444.1089473.
Повний текст джерелаDouze, Matthijs, and Hervé Jégou. "The Yael Library." In MM '14: 2014 ACM Multimedia Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2647868.2654892.
Повний текст джерелаBotelho Paz, Giovanni Scataglia, and Solange Wagner Locatelli. "METACOGNITIVE INCIDENTS MANIFESTED BY STUDENTS OF YOUTH AND ADULT EDUCATION IN AN INVESTIGATIVE ACTIVITY." In 3rd International Baltic Symposium on Science and Technology Education (BalticSTE2019). Scientia Socialis Ltd., 2019. http://dx.doi.org/10.33225/balticste/2019.158.
Повний текст джерелаCalvet, Loreley, Odette Dos Santos, Véronique Jean-Baptiste, Emmanuel Spanakis, Yvette Ruffin, Isabelle Sanchez, Jessica Mestadier, et al. "Abstract 4858: Oncogenic HIPPO-YAP1:in vivotarget validation of YAP1 in malignant mesothelioma." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4858.
Повний текст джерелаZhu, Ming, Ruiqing Peng, Xin Liang, Zhengdao Lan, Meng Tang, Pingping Hou, Jian H. Song, et al. "Yap1 Hydroxylation Suppress Prostate Cancer Metastasis." In Leading Edge of Cancer Research Symposium. The University of Texas at MD Anderson Cancer Center, 2022. http://dx.doi.org/10.52519/00102.
Повний текст джерела"Session YA1: Signal Processing 3." In 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings. IEEE, 2005. http://dx.doi.org/10.1109/imtc.2005.1604434.
Повний текст джерелаMarino, Gloria, Shuai Ye, Koreana Pak, Jennifer Shah, Jason Godfrey, Susan Chor, Shaun Egolf, and T. S. Karin Eisinger-Mathason. "Abstract 3531: YAP1-mediated circadian oscillation in sarcoma." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3531.
Повний текст джерелаMarino, Gloria, Shaun Egolf, Shuai Ye, Koreana Pak, Jenn Shah, Adrian Rivera-Reyes, Susan Chor, and T. S. Karin Eisinger-Mathason. "Abstract B21: YAP1-mediated circadian oscillation in sarcoma." In Abstracts: Advances in Sarcomas: From Basic Science to Clinical Translation; May 16-19, 2017; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.sarcomas17-b21.
Повний текст джерелаLiu, Ying, Gabrielle Ciotti, and T. S. Karin Eisinger-Mathason. "Abstract A02: YAP1 opposes differentiation in mesenchymal tumors." In Abstracts: AACR Special Conference on the Hippo Pathway: Signaling, Cancer, and Beyond; May 8-11, 2019; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3125.hippo19-a02.
Повний текст джерелаBiagioni, Francesca, Ottavio Croci, Elisa Donato, Silvia Sberna, Serena De Fazio, Arianna Sabò, Bruno Amati, and Stefano Campaner. "Abstract B37: Genomic view of YAP1 dependent transcription." In Abstracts: AACR Special Conference on the Hippo Pathway: Signaling, Cancer, and Beyond; May 8-11, 2019; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3125.hippo19-b37.
Повний текст джерелаЗвіти організацій з теми "YAE1"
Camargo, Fernando, and Betty Diamond. Yap1 as a New Therapeutic Target in Neurofibromatosis Type 2. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada606101.
Повний текст джерелаCamargo, Fernando. Yap1 as a New Therapeutic Target in Neurofibromatosis Type 2. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada611708.
Повний текст джерелаIs infant empathy linked with later externalizing problems? ACAMH, November 2020. http://dx.doi.org/10.13056/acamh.13959.
Повний текст джерела