Статті в журналах з теми "XGBOOST MODEL"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "XGBOOST MODEL".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Yang, Hao, Jiaxi Li, Siru Liu, Xiaoling Yang, and Jialin Liu. "Predicting Risk of Hypoglycemia in Patients With Type 2 Diabetes by Electronic Health Record–Based Machine Learning: Development and Validation." JMIR Medical Informatics 10, no. 6 (June 16, 2022): e36958. http://dx.doi.org/10.2196/36958.
Повний текст джерелаOUKHOUYA, HASSAN, HAMZA KADIRI, KHALID EL HIMDI, and RABY GUERBAZ. "Forecasting International Stock Market Trends: XGBoost, LSTM, LSTM-XGBoost, and Backtesting XGBoost Models." Statistics, Optimization & Information Computing 12, no. 1 (November 3, 2023): 200–209. http://dx.doi.org/10.19139/soic-2310-5070-1822.
Повний текст джерелаGu, Kai, Jianqi Wang, Hong Qian, and Xiaoyan Su. "Study on Intelligent Diagnosis of Rotor Fault Causes with the PSO-XGBoost Algorithm." Mathematical Problems in Engineering 2021 (April 26, 2021): 1–17. http://dx.doi.org/10.1155/2021/9963146.
Повний текст джерелаLiu, Jialin, Jinfa Wu, Siru Liu, Mengdie Li, Kunchang Hu, and Ke Li. "Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model." PLOS ONE 16, no. 2 (February 4, 2021): e0246306. http://dx.doi.org/10.1371/journal.pone.0246306.
Повний текст джерелаJi, Shouwen, Xiaojing Wang, Wenpeng Zhao, and Dong Guo. "An Application of a Three-Stage XGBoost-Based Model to Sales Forecasting of a Cross-Border E-Commerce Enterprise." Mathematical Problems in Engineering 2019 (September 16, 2019): 1–15. http://dx.doi.org/10.1155/2019/8503252.
Повний текст джерелаZhu, Yiming. "Stock Price Prediction based on LSTM and XGBoost Combination Model." Transactions on Computer Science and Intelligent Systems Research 1 (October 12, 2023): 94–109. http://dx.doi.org/10.62051/z6dere47.
Повний текст джерелаXiong, Shuai, Zhixiang Liu, Chendi Min, Ying Shi, Shuangxia Zhang, and Weijun Liu. "Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm." Materials 16, no. 1 (December 28, 2022): 308. http://dx.doi.org/10.3390/ma16010308.
Повний текст джерелаWang, Yu, Li Guo, Yanrui Zhang, and Xinyue Ma. "Research on CSI 300 Stock Index Price Prediction Based On EMD-XGBoost." Frontiers in Computing and Intelligent Systems 3, no. 1 (March 17, 2023): 72–77. http://dx.doi.org/10.54097/fcis.v3i1.6027.
Повний текст джерелаHarriz, Muhammad Alfathan, Nurhaliza Vania Akbariani, Harlis Setiyowati, and Handri Santoso. "Enhancing the Efficiency of Jakarta's Mass Rapid Transit System with XGBoost Algorithm for Passenger Prediction." Jambura Journal of Informatics 5, no. 1 (April 27, 2023): 1–6. http://dx.doi.org/10.37905/jji.v5i1.18814.
Повний текст джерелаSiringoringo, Rimbun, Resianta Perangin-angin, and Jamaluddin Jamaluddin. "MODEL HIBRID GENETIC-XGBOOST DAN PRINCIPAL COMPONENT ANALYSIS PADA SEGMENTASI DAN PERAMALAN PASAR." METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi 5, no. 2 (October 31, 2021): 97–103. http://dx.doi.org/10.46880/jmika.vol5no2.pp97-103.
Повний текст джерелаGu, Zhongyuan, Miaocong Cao, Chunguang Wang, Na Yu, and Hongyu Qing. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model." Sustainability 14, no. 16 (August 22, 2022): 10421. http://dx.doi.org/10.3390/su141610421.
Повний текст джерелаLee, Jong-Hyun, and In-Soo Lee. "Hybrid Estimation Method for the State of Charge of Lithium Batteries Using a Temporal Convolutional Network and XGBoost." Batteries 9, no. 11 (November 5, 2023): 544. http://dx.doi.org/10.3390/batteries9110544.
Повний текст джерелаZhang, Kun. "Transmission Line Fault Diagnosis Method Based on SDA-ISSA-XGBoost under Meteorological Factors." Journal of Physics: Conference Series 2666, no. 1 (December 1, 2023): 012006. http://dx.doi.org/10.1088/1742-6596/2666/1/012006.
Повний текст джерелаXiaobing Lin, Xiaobing Lin, Zhe Wu Xiaobing Lin, Jianfa Chen Zhe Wu, Lianfen Huang Jianfa Chen, and Zhiyuan Shi Lianfen Huang. "A Credit Scoring Model Based on Integrated Mixed Sampling and Ensemble Feature Selection: RBR_XGB." 網際網路技術學刊 23, no. 5 (September 2022): 1061–68. http://dx.doi.org/10.53106/160792642022092305014.
Повний текст джерелаHe, Wenwen, Hongli Le, and Pengcheng Du. "Stroke Prediction Model Based on XGBoost Algorithm." International Journal of Applied Sciences & Development 1 (December 13, 2022): 7–10. http://dx.doi.org/10.37394/232029.2022.1.2.
Повний текст джерелаGuo, RuYan, MinFang Peng, ZhenQi Cao, and RunFu Zhou. "Transformer graded fault diagnosis based on neighborhood rough set and XGBoost." E3S Web of Conferences 243 (2021): 01002. http://dx.doi.org/10.1051/e3sconf/202124301002.
Повний текст джерелаOgunleye, Adeola, and Qing-Guo Wang. "XGBoost Model for Chronic Kidney Disease Diagnosis." IEEE/ACM Transactions on Computational Biology and Bioinformatics 17, no. 6 (November 1, 2020): 2131–40. http://dx.doi.org/10.1109/tcbb.2019.2911071.
Повний текст джерелаYin, Yilan, Yanguang Sun, Feng Zhao, and Jinxiang Chen. "Improved XGBoost model based on genetic algorithm." International Journal of Computer Applications in Technology 62, no. 3 (2020): 240. http://dx.doi.org/10.1504/ijcat.2020.10028423.
Повний текст джерелаChen, Jinxiang, Feng Zhao, Yanguang Sun, and Yilan Yin. "Improved XGBoost model based on genetic algorithm." International Journal of Computer Applications in Technology 62, no. 3 (2020): 240. http://dx.doi.org/10.1504/ijcat.2020.106571.
Повний текст джерелаZhao, Haolei, Yixian Wang, Xian Li, Panpan Guo, and Hang Lin. "Prediction of Maximum Tunnel Uplift Caused by Overlying Excavation Using XGBoost Algorithm with Bayesian Optimization." Applied Sciences 13, no. 17 (August 28, 2023): 9726. http://dx.doi.org/10.3390/app13179726.
Повний текст джерелаXu, Bing, Youcheng Tan, Weibang Sun, Tianxing Ma, Hengyu Liu, and Daguo Wang. "Study on the Prediction of the Uniaxial Compressive Strength of Rock Based on the SSA-XGBoost Model." Sustainability 15, no. 6 (March 15, 2023): 5201. http://dx.doi.org/10.3390/su15065201.
Повний текст джерелаFeng, Dachun, Bing Zhou, Shahbaz Gul Hassan, Longqin Xu, Tonglai Liu, Liang Cao, Shuangyin Liu, and Jianjun Guo. "A Hybrid Model for Temperature Prediction in a Sheep House." Animals 12, no. 20 (October 17, 2022): 2806. http://dx.doi.org/10.3390/ani12202806.
Повний текст джерелаZheng, Jiayan, Tianchen Yao, Jianhong Yue, Minghui Wang, and Shuangchen Xia. "Compressive Strength Prediction of BFRC Based on a Novel Hybrid Machine Learning Model." Buildings 13, no. 8 (July 29, 2023): 1934. http://dx.doi.org/10.3390/buildings13081934.
Повний текст джерелаLin, Nan, Jiawei Fu, Ranzhe Jiang, Genjun Li, and Qian Yang. "Lithological Classification by Hyperspectral Images Based on a Two-Layer XGBoost Model, Combined with a Greedy Algorithm." Remote Sensing 15, no. 15 (July 28, 2023): 3764. http://dx.doi.org/10.3390/rs15153764.
Повний текст джерелаWu, Kehe, Yanyu Chai, Xiaoliang Zhang, and Xun Zhao. "Research on Power Price Forecasting Based on PSO-XGBoost." Electronics 11, no. 22 (November 16, 2022): 3763. http://dx.doi.org/10.3390/electronics11223763.
Повний текст джерелаYuan, Jianming. "Predicting Death Risk of COVID-19 Patients Leveraging Machine Learning Algorithm." Applied and Computational Engineering 8, no. 1 (August 1, 2023): 186–90. http://dx.doi.org/10.54254/2755-2721/8/20230122.
Повний текст джерелаHa, Jinbing, and Ziyi Zhou. "Subway Energy Consumption Prediction based on XGBoost Model." Highlights in Science, Engineering and Technology 70 (November 15, 2023): 548–52. http://dx.doi.org/10.54097/hset.v70i.13958.
Повний текст джерелаWan, Zhi, Yading Xu, and Branko Šavija. "On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance." Materials 14, no. 4 (February 3, 2021): 713. http://dx.doi.org/10.3390/ma14040713.
Повний текст джерелаUbaidillah, Rahmad, Muliadi Muliadi, Dodon Turianto Nugrahadi, M. Reza Faisal, and Rudy Herteno. "Implementasi XGBoost Pada Keseimbangan Liver Patient Dataset dengan SMOTE dan Hyperparameter Tuning Bayesian Search." JURNAL MEDIA INFORMATIKA BUDIDARMA 6, no. 3 (July 25, 2022): 1723. http://dx.doi.org/10.30865/mib.v6i3.4146.
Повний текст джерелаLiu, Yuan, Wenyi Du, Yi Guo, Zhiqiang Tian, and Wei Shen. "Identification of high-risk factors for recurrence of colon cancer following complete mesocolic excision: An 8-year retrospective study." PLOS ONE 18, no. 8 (August 11, 2023): e0289621. http://dx.doi.org/10.1371/journal.pone.0289621.
Повний текст джерелаZhu, Mini, Gang Wang, Chaoping Li, Hongjun Wang, and Bin Zhang. "Artificial Intelligence Classification Model for Modern Chinese Poetry in Educatio." Sustainability 15, no. 6 (March 16, 2023): 5265. http://dx.doi.org/10.3390/su15065265.
Повний текст джерелаLi, Dan, Delan Zhu, Tao Tao, and Jiwei Qu. "Power Generation Prediction for Photovoltaic System of Hose-Drawn Traveler Based on Machine Learning Models." Processes 12, no. 1 (December 22, 2023): 39. http://dx.doi.org/10.3390/pr12010039.
Повний текст джерелаSong, Weihua, Xiaowei Han, and Jifei Qi. "Prediction of Gas Emission in the Working Face Based on LASSO-WOA-XGBoost." Atmosphere 14, no. 11 (October 30, 2023): 1628. http://dx.doi.org/10.3390/atmos14111628.
Повний текст джерелаWang, Jiayi, and Shaohua Zhou. "CS-GA-XGBoost-Based Model for a Radio-Frequency Power Amplifier under Different Temperatures." Micromachines 14, no. 9 (August 27, 2023): 1673. http://dx.doi.org/10.3390/mi14091673.
Повний текст джерелаM.I., Omogbhemhe, and Momodu I.B.A. "Model for Predicting Bank Loan Default using XGBoost." International Journal of Computer Applications 183, no. 32 (October 16, 2021): 1–4. http://dx.doi.org/10.5120/ijca2021921705.
Повний текст джерелаZhang, Huimin, Renshuang Ding, Qi Zhang, Mingxing Fang, Guanghua Zhang, and Naiwen Yu. "An ARDS Severity Recognition Model based on XGBoost." Journal of Physics: Conference Series 2138, no. 1 (December 1, 2021): 012009. http://dx.doi.org/10.1088/1742-6596/2138/1/012009.
Повний текст джерелаKang, Yunxiang, Minsheng Tan, Ding Lin, and Zhiguo Zhao. "Intrusion Detection Model Based on Autoencoder and XGBoost." Journal of Physics: Conference Series 2171, no. 1 (January 1, 2022): 012053. http://dx.doi.org/10.1088/1742-6596/2171/1/012053.
Повний текст джерелаJiang, Hui, Zheng He, Gang Ye, and Huyin Zhang. "Network Intrusion Detection Based on PSO-Xgboost Model." IEEE Access 8 (2020): 58392–401. http://dx.doi.org/10.1109/access.2020.2982418.
Повний текст джерелаAlim, Mirxat, Guo-Hua Ye, Peng Guan, De-Sheng Huang, Bao-Sen Zhou, and Wei Wu. "Comparison of ARIMA model and XGBoost model for prediction of human brucellosis in mainland China: a time-series study." BMJ Open 10, no. 12 (December 2020): e039676. http://dx.doi.org/10.1136/bmjopen-2020-039676.
Повний текст джерелаLi, Xiangcheng, Jialong Wang, Zhirui Geng, Yang Jin, and Jiawei Xu. "Short-term Wind Power Prediction Method Based on Genetic Algorithm Optimized XGBoost Regression Model." Journal of Physics: Conference Series 2527, no. 1 (June 1, 2023): 012061. http://dx.doi.org/10.1088/1742-6596/2527/1/012061.
Повний текст джерелаTang, Jinjun, Lanlan Zheng, Chunyang Han, Fang Liu, and Jianming Cai. "Traffic Incident Clearance Time Prediction and Influencing Factor Analysis Using Extreme Gradient Boosting Model." Journal of Advanced Transportation 2020 (June 9, 2020): 1–12. http://dx.doi.org/10.1155/2020/6401082.
Повний текст джерелаNoorunnahar, Mst, Arman Hossain Chowdhury, and Farhana Arefeen Mila. "A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh." PLOS ONE 18, no. 3 (March 27, 2023): e0283452. http://dx.doi.org/10.1371/journal.pone.0283452.
Повний текст джерелаJiang, Jinyang, Zhi Liu, Pengbo Wang, and Fan Yang. "Improved Crow Search Algorithm and XGBoost for Transformer Fault Diagnosis." Journal of Physics: Conference Series 2666, no. 1 (December 1, 2023): 012040. http://dx.doi.org/10.1088/1742-6596/2666/1/012040.
Повний текст джерелаWang, Jun, Wei Rong, Zhuo Zhang, and Dong Mei. "Credit Debt Default Risk Assessment Based on the XGBoost Algorithm: An Empirical Study from China." Wireless Communications and Mobile Computing 2022 (March 19, 2022): 1–14. http://dx.doi.org/10.1155/2022/8005493.
Повний текст джерелаLe, Le Thi, Hoang Nguyen, Jian Zhou, Jie Dou, and Hossein Moayedi. "Estimating the Heating Load of Buildings for Smart City Planning Using a Novel Artificial Intelligence Technique PSO-XGBoost." Applied Sciences 9, no. 13 (July 4, 2019): 2714. http://dx.doi.org/10.3390/app9132714.
Повний текст джерелаLuo, Xiong, Lijia Xu, Peng Huang, Yuchao Wang, Jiang Liu, Yan Hu, Peng Wang, and Zhiliang Kang. "Nondestructive Testing Model of Tea Polyphenols Based on Hyperspectral Technology Combined with Chemometric Methods." Agriculture 11, no. 7 (July 16, 2021): 673. http://dx.doi.org/10.3390/agriculture11070673.
Повний текст джерелаAdmassu, Tsehay. "Evaluation of Local Interpretable Model-Agnostic Explanation and Shapley Additive Explanation for Chronic Heart Disease Detection." Proceedings of Engineering and Technology Innovation 23 (January 1, 2023): 48–59. http://dx.doi.org/10.46604/peti.2023.10101.
Повний текст джерелаYang, Tian. "Sales Prediction of Walmart Sales Based on OLS, Random Forest, and XGBoost Models." Highlights in Science, Engineering and Technology 49 (May 21, 2023): 244–49. http://dx.doi.org/10.54097/hset.v49i.8513.
Повний текст джерелаMeng, Yunxiang, Qihong Duan, Kai Jiao, and Jiang Xue. "A screened predictive model for esophageal squamous cell carcinoma based on salivary flora data." Mathematical Biosciences and Engineering 20, no. 10 (2023): 18368–85. http://dx.doi.org/10.3934/mbe.2023816.
Повний текст джерелаZong, Jing, Xin Xiong, Jianhua Zhou, Ying Ji, Diao Zhou, and Qi Zhang. "FCAN–XGBoost: A Novel Hybrid Model for EEG Emotion Recognition." Sensors 23, no. 12 (June 17, 2023): 5680. http://dx.doi.org/10.3390/s23125680.
Повний текст джерела