Добірка наукової літератури з теми "XFEL Européen"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "XFEL Européen".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "XFEL Européen":

1

Chatterjee, Ruchira, Clemens Weninger, Anton Loukianov, Sheraz Gul, Franklin D. Fuller, Mun Hon Cheah, Thomas Fransson, et al. "XANES and EXAFS of dilute solutions of transition metals at XFELs." Journal of Synchrotron Radiation 26, no. 5 (August 7, 2019): 1716–24. http://dx.doi.org/10.1107/s1600577519007550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work has demonstrated that X-ray absorption spectroscopy (XAS), both Mn XANES and EXAFS, of solutions with millimolar concentrations of metal is possible using the femtosecond X-ray pulses from XFELs. Mn XAS data were collected using two different sample delivery methods, a Rayleigh jet and a drop-on-demand setup, with varying concentrations of Mn. Here, a new method for normalization of XAS spectra based on solvent scattering that is compatible with data collection from a highly variable pulsed source is described. The measured XANES and EXAFS spectra of such dilute solution samples are in good agreement with data collected at synchrotron sources using traditional scanning protocols. The procedures described here will enable XFEL-based XAS on dilute biological samples, especially metalloproteins, with low sample consumption. Details of the experimental setup and data analysis methods used in this XANES and EXAFS study are presented. This method will also benefit XAS performed at high-repetition-rate XFELs such as the European XFEL, LCLS-II and LCLS-II-HE.
2

Hagemann, Johannes, Malte Vassholz, Hannes Hoeppe, Markus Osterhoff, Juan M. Rosselló, Robert Mettin, Frank Seiboth, et al. "Single-pulse phase-contrast imaging at free-electron lasers in the hard X-ray regime." Journal of Synchrotron Radiation 28, no. 1 (January 1, 2021): 52–63. http://dx.doi.org/10.1107/s160057752001557x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump–probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet.
3

Mills, Grant, Richard Bean, and Adrian P. Mancuso. "First Experiments in Structural Biology at the European X-ray Free-Electron Laser." Applied Sciences 10, no. 10 (May 25, 2020): 3642. http://dx.doi.org/10.3390/app10103642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ultrabright pulses produced in X-ray free-electron lasers (XFELs) offer new possibilities for industry and research, particularly for biochemistry and pharmaceuticals. The unprecedented brilliance of these next-generation sources enables structure determination from sub-micron crystals as well as radiation-sensitive proteins. The European X-Ray Free-Electron Laser (EuXFEL), with its first light in 2017, ushered in a new era for ultrabright X-ray sources by providing an unparalleled megahertz-pulse repetition rate, with orders of magnitude more pulses per second than previous XFEL sources. This rapid pulse frequency has significant implications for structure determination; not only will data collection be faster (resulting in more structures per unit time), but experiments requiring large quantities of data, such as time-resolved structures, become feasible in a reasonable amount of experimental time. Early experiments at the SPB/SFX instrument of the EuXFEL demonstrate how such closely-spaced pulses can be successfully implemented in otherwise challenging experiments, such as time-resolved studies.
4

Dommach, Martin, Sven Lederer, and Lutz Lilje. "Die Vakuumsysteme des European XFEL." Vakuum in Forschung und Praxis 30, no. 2 (April 2018): 47–53. http://dx.doi.org/10.1002/vipr.201800673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, Ye, Frank Brinker, Winfried Decking, Matthias Scholz, Lutz Winkelmann, and Zihan Zhu. "Virtual commissioning of the European XFEL for advanced user experiments at photon energies beyond 25 keV using low-emittance electron beams." Journal of Physics: Conference Series 2420, no. 1 (January 1, 2023): 012026. http://dx.doi.org/10.1088/1742-6596/2420/1/012026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Growing interests in ultra-hard X-rays are pushing forward the frontier of commissioning the European X-ray Free-Electron Laser (XFEL) for routine operation towards the sub-ångström regime, where a photon energy of 25 keV (0.5 Å) and above is desired. Such X-rays allow for larger penetration depths and enable the investigation of materials in highly absorbing environments. Delivering the requested X-rays to user experiments is of crucial importance for the XFEL development. Unique capabilities of the European XFEL are formed by combining a high energy linac and the long variable-gap undulator systems for generating intense X-rays at 25 keV and pushing the limit even further to 30 keV. However, the FEL performance relies on achievable electron bunch qualities. Low-emittance electron bunch production, and the associated start-to-end modelling of beam physics thus becomes a prerequisite to dig into the XFEL potentials. Here, we present the obtained simulation results from a virtual commissioning of the XFEL for the user experiments at 25 keV and beyond, including the optimized electron bunch qualities and corresponding FEL lasing performance. Experimental results at 30 keV from the first test run are presented.
6

Juarez-Lopez, D. P., S. Lederer, S. Schreiber, F. Brinker, L. Monaco, and D. Sertore. "Photocathodes for the electron sources at FLASH and European XFEL." Journal of Physics: Conference Series 2687, no. 3 (January 1, 2024): 032009. http://dx.doi.org/10.1088/1742-6596/2687/3/032009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract FLASH at DESY (Hamburg, Germany) and the European XFEL photoinjectors are operated by laser driven RF-guns. For both user-facilities cesium telluride (Cs2Te) photocathodes are successfully used since several years. We present recent data on the lifetime and quantum efficiency (QE) of the current photocathode at FLASH #105.2, operated before and after a long shutdown. In addition, data for the cathodes that recently have been exchanged at the European XFEL will be presented.
7

Allahgholi, Aschkan, Julian Becker, Annette Delfs, Roberto Dinapoli, Peter Goettlicher, Dominic Greiffenberg, Beat Henrich, et al. "The Adaptive Gain Integrating Pixel Detector at the European XFEL." Journal of Synchrotron Radiation 26, no. 1 (January 1, 2019): 74–82. http://dx.doi.org/10.1107/s1600577518016077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Adaptive Gain Integrating Pixel Detector (AGIPD) is an X-ray imager, custom designed for the European X-ray Free-Electron Laser (XFEL). It is a fast, low-noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalent noise of less than 1 keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 104 photons of 12 keV. In burst mode the system is able to store 352 images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.
8

Yakopov, M., M. Calvi, S. Casalbuoni, U. Englisch, S. Karabekyan, X. Liang, and T. Schmidt. "Characterization of helical APPLE X undulators with 90 mm period for the European XFEL." Journal of Physics: Conference Series 2380, no. 1 (December 1, 2022): 012019. http://dx.doi.org/10.1088/1742-6596/2380/1/012019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract European XFEL is going to provide full polarization control in the soft X-ray SASE line (SASE3). For this purpose, four helical APPLE X undulators with 90 mm period are installed downstream with respect to the planar undulators of the SASE3 undulator line consisting of 21 planar undulators with 68 mm period. In this contribution, the measurement technique, as well as the results of the measurements and tuning of the APPLE X undulators performed at European XFEL are presented.
9

Lehmkühler, Felix, Francesco Dallari, Avni Jain, Marcin Sikorski, Johannes Möller, Lara Frenzel, Irina Lokteva, et al. "Emergence of anomalous dynamics in soft matter probed at the European XFEL." Proceedings of the National Academy of Sciences 117, no. 39 (September 15, 2020): 24110–16. http://dx.doi.org/10.1073/pnas.2003337117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 μs at high fluences. At short times up to 20 μs we observe that the dynamics do not obey the Stokes–Einstein predictions.
10

Molodtsov, S. L. "European XFEL: Soft X-Ray instrumentation." Crystallography Reports 56, no. 7 (November 19, 2011): 1217–23. http://dx.doi.org/10.1134/s1063774511070212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "XFEL Européen":

1

Jaisle, Nicolas. "Contraindre la fusion partielle dans les intérieurs planétaires en combinant les approches numériques et expérimentales." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALU013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’étude des processus de fusion partielle dans les intérieurs planétaires revêt une importance capitale dans la compréhension de l’évolution d’une planète. Ceci est d’autant plus important dans le contexte du nombre croissant de découvertes d’exoplanètes aux histoires potentiellement très variées. Un des outils expérimentaux majeurs pour l’étude des intérieurs planétaires est la cellule à enclume de diamant (DAC), permettant d’amener des échantillons de tailles micrométriques à des conditions de pression de l’ordre de dizaines à centaines de GPa et des températures de l’ordre de plusieurs milliers de Kelvins. L’étude des propriétés physiques de ces échantillons, tel que leur diagramme de phase, peuvent être analysés grâce à la diffraction des rayons X (XRD), des rayonnements générés en synchrotron. Ces expériences peuvent cependant souffrir de la technique de chauffage laser continu qui génère de forts gradients de température au sein des échantillons et peuvent mener à de la migration chimique au sein de la zone chauffée. L’analyse in situ des échantillons se fait alors sur une composition différente de la composition initiale, qui ne correspond pas forcément à celle envisagée. Cette thèse propose une nouvelle approche expérimentale, consistant à effectuer un chauffage laser court de 250 ns afin de limiter la migration chimique. Ce montage expérimental a été testé sur des alliages de Fer du système ternaire Fe-Si-O, les résultats pouvant par exemple s’appliquer dans le contexte de cristallisation du noyau externe liquide de la Terre. Nos expériences ont été menées au European X-ray Free Electron Laser (EuXFEL), une installation scientifique produisant une source pulsée de rayon X (série de pulses d’une durée individuelle de 30 fs constituant un train à une fréquence de 4.5 MHz (un pulse toutes les 221.5 ns) à forte brillance. Combiné au chauffage laser d’une fraction de µs, les expériences au EuXFEL permettent d’obtenir une résolution temporelle de l’évolution de l’échantillon lors de son refroidissement, permettant notamment d’observer la séquence de cristallisation. Une mesure de la température de surface par pyrométrie optique avec caméra streak (SOP) est effectuée simultanément aux autres mesures, avec une résolution temporelle inférieure à la µs. Les mesures effectuées au EuXFEL ne permettent pas de résoudre entièrement l’étendue des gradients de pression et de température ni d’appréhender tous phénomènes se produisant lors des expériences. Pour compenser ces lacunes, un modèle numérique basé sur l’analyse d’éléments finis (FEM) reproduisant les expériences a été développé. Ce modèle utilise les propriétés des matériaux aux conditions de pression et température sondées, notamment les équations d’état les dépendances en pression et température des propriétés de matériaux (ρ, K, G, κ, Cp, chaleur latente…). Pour reproduire les expériences, les valeurs du modèle sont ajustées en minimisant l’erreur moyenne par rapport aux mesures SOP. La FEM fournit des cartographies de température et de pression des échantillons. En combinant les données de XRD et les températures extraites du modèle, il est possible de remonter aux conditions précises de température et de pression des échantillons lors de leurs changements de phase. Cela permet aussi d’évaluer le degré d’homogénéité en température et en pression (évaluation de la pression thermique) au sein de la zone sondée par les rayons X. Les modèles permettent également l’étude des déformations en DAC et de calculer la répartition des contraintes qui peut être un facteur important dans certaines conditions. Enfin, des expériences utilisant les rayons X pour chauffer l’échantillon sont également reproduites avec les modèles et des pistes sont explorées pour remonter aux propriétés des matériaux tels que la conductivité thermique
The study of partial melting processes in planetary interiors is of prime importance to understand planetary evolution mechanisms. This is even more true when considering the increasing number of exoplanetary discoveries which likely acknowledged a high variety of histories. A main experimental tool for to study deep planetary interior conditions is the diamond anvil cell (DAC), allowing to raise pressures on micron-sized samples up to hundreds of GPa and at temperatures up to thousands of Kelvins. The study of sample’s physical properties such as their phase change pressures and temperatures (P,T) can be analyzed in X-ray generating synchrotron facilities, using the X-ray diffraction (XRD) properties of minerals. Those experiments may yet suffer from the continuous laser heating technique which generates strong temperature gradients within the samples and may lead to chemical migration in the heated zone. The sample in-situ analysis is then achieved on a composition diverging from the initial one which does not necessarily correspond to what was intended to be measured. This thesis suggests a new experimental approach consisting in using a short and intense (250 ns) laser heating pulse in order to limit that chemical migration. This experimental setup was tested on iron alloys of the Fe-Si-O ternary system, results on such compositions being for instance applicable on in the context of Earth’s liquid outer core crystallization. Our experiments are run at the European X-ray Free Electron Laser (EuXFEL) facility which generates a high brilliance pulsed X-ray source (series of 30 fs pulses at frequencies up to 4.5 MHz (one pulse each 221.5 ns). Combined to the µs fraction laser heating, the EuXFEL experiments allow to obtain a temporal resolution of the sample evolution during its cooling, allowing to observe crystallization sequences. A streak optical pyrometry (SOP) surface temperature measurement is achieved simultaneously to the XRD with time resolution below the µs-scale. However, measurements achieved at the EuXFEL do not allow to fully resolve the extent of the phenomena occurring during experiments. To compensate this lack of information, we developed a numerical model based on the finite element method (FEM) to reproduce the achieved experiments. This model uses the material properties (such as ρ, K, G, κ, Cp and latent heat) at the experimental pressure and temperature conditions including their P,T dependencies when available. Equations of state (EoS) related variations where included in the model for the related parameters. To reproduce the experiments, the model values are adjusted by minimizing the mean error compared to the SOP data. Combining experimental XRD with best-fitting model temperatures, it is possible to get back to the P, T conditions during the samples phase change. In addition, the FEM furnishes temperature and pressure maps highlighting e.g. sample internal gradients and allowing to evaluate the degree of homogeneity of P and T, both assumed to be critical parameter in chemical migration. Models allow as well to calculate the constraint distribution in the DAC assemblage which can be an important factor in certain conditions. Finally, experiments directly using X-rays to heat the sample were achieved, analyzed and reproduced by modelling. Using the models, the possibility of deducing material properties such as thermal conductivity from best fits to experimental data are explored
2

Bellandi, Andrea [Verfasser]. "LLRF Control Techniques for the European XFEL Continuous Wave Upgrade / Andrea Bellandi." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2021. http://d-nb.info/1239420641/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fahlström, Simon. "A Near-Infrared Diffraction Radiation Spectrometer for MHz Repetition Rate Electron Bunch Diagnostics at the European XFEL." Thesis, Uppsala universitet, Tillämpad kärnfysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have built a spectrometer to investigate the Near-Infrared (NIR) range of this radiation, which is used for bunch diagnostics at the European X-ray Free-Electron Laser. This could give information on the development of microbunching, periodic features in the longitudinal charge profile of the bunches which have a negative impact on the operation of the facility. In general it offers an ability to investigate the influences of the laser heater, the compression, and other factors that affect the structure of the bunches. The CDR is generated 1934 m after the injector, at full acceleration. The spectrometer is based around the KALYPSO detector system, able to read out from a 256 pixel linear array detector at MHz frequencies, making it possible to obtain single bunch readings during current user operation of the facility, at 1.1 MHz. KALYPSO has an InGaAs sensor, sensitive in the range 0.9 – 1.7 μm. A 40 mm N-SF11 equilateral prism is used for dispersion. First measurements have been taken, and CDR has been detected. The spectrometer needs further calibration and resolution was lacking, but it can offer insight in to relative changes, and bunch-to and can be used as for fingerprinting the beam. A reduction in signal in the sensitive range and a skew towards longer wavelengths was seen when going from uncompressed to compressed beam. When varying the power of the laser heater the behavior varied from run to run, with changing machine settings. In some cases the CDR was attenuated, while FEL intensity initially increased, until the induced energy spread from the laser heater was large enough to inhibit the FEL process. Another, less expected, behaviour was also observed, where the initially low CDR intensity at first increased, while FEL intensity stayed the same, before it then followed the same pattern as in the first case.
4

Gerlach, Thomas [Verfasser], and Reinhard [Akademischer Betreuer] Männer. "Development of the DAQ Front-end for the DSSC Detector at the European XFEL / Thomas Gerlach. Betreuer: Reinhard Männer." Mannheim : Universitätsbibliothek Mannheim, 2013. http://d-nb.info/1037076672/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schlee, Stephan A. [Verfasser], and Erika [Akademischer Betreuer] Garutti. "Methods for the system calibration of the DSSC detector for the European XFEL / Stephan A. Schlee ; Betreuer: Erika Garutti." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2018. http://d-nb.info/1167402545/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dinter, Hannes [Verfasser], and Florian [Akademischer Betreuer] Grüner. "Longitudinal Diagnostics for Beam-Based Intra Bunch-Train Feedback at FLASH and the European XFEL / Hannes Dinter ; Betreuer: Florian Grüner." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2018. http://d-nb.info/1164593412/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Donato, Mattia [Verfasser], and Erika [Akademischer Betreuer] Garutti. "Commissioning and Characterization of the first DSSC ladder X-ray camera prototype for the European XFEL / Mattia Donato ; Betreuer: Erika Garutti." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2019. http://d-nb.info/117670219X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuhl, Alexander [Verfasser], Thomas [Akademischer Betreuer] Weiland, and Jörg [Akademischer Betreuer] Roßbach. "Entwicklung und Realisierung eines 40 GHz Ankunftszeitmonitors für Elektronenpakete für FLASH und den European XFEL / Alexander Kuhl. Betreuer: Thomas Weiland ; Jörg Roßbach." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2015. http://d-nb.info/111191074X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kirchgessner, Manfred [Verfasser], and Peter [Akademischer Betreuer] Fischer. "Control, Readout and Commissioning of the Ultra-High Speed 1 Megapixel DSSC X-Ray Camera for the European XFEL / Manfred Kirchgessner ; Betreuer: Peter Fischer." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177690780/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ignatenko, Alexandr [Verfasser], Wolfgang [Akademischer Betreuer] Lohmann, Andreas [Akademischer Betreuer] Jankowiak, and Jürgen [Akademischer Betreuer] Reif. "Development of Beam Halo Monitors for the European XFEL using radiation hard sensors and demonstration of the technology at FLASH / Alexandr Ignatenko ; Wolfgang Lohmann, Andreas Jankowiak, Jürgen Reif." Cottbus : BTU Cottbus - Senftenberg, 2015. http://d-nb.info/1114283568/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "XFEL Européen":

1

Medvedev, N. "Modeling Diamond Irradiated with a European XFEL Pulse." In Springer Proceedings in Physics, 139–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35453-4_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cramer, Katharina C. "Establishing the European X-Ray Free-Electron Laser (European XFEL), 1992–2009." In A Political History of Big Science, 129–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50049-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Srivastava, Ajay Kumar. "Development of Radiation Hard Pixel Detectors for the European XFEL." In Si Detectors and Characterization for HEP and Photon Science Experiment, 59–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19531-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nawaz, A., S. Pfeiffer, G. Lichtenberg, and P. Rostalski. "Fault Detection Method for the SRF Cavities of the European XFEL." In Lecture Notes in Control and Information Sciences - Proceedings, 1353–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85318-1_78.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Srivastava, Ajay Kumar. "Development of Radiation Hard p+n Si Pixel Sensors for the European XFEL." In Si Detectors and Characterization for HEP and Photon Science Experiment, 73–100. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19531-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lu, W., B. Friedrich, T. Noll, K. Zhou, J. Hallmann, G. Ansaldi, T. Roth, et al. "Progresses of a Hard X-Ray Split and Delay Line Unit for the MID Station at the European XFEL." In Springer Proceedings in Physics, 131–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35453-4_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chevalier, B., J. Etourneau, and J. M. D. Coey. "Structural and Magnetic Properties of RE2Fe17Hx (RE = Nd,Sm) Hydrides and Iron-Rich Compounds Nd(Co1-xFex)9Si2 and Gd(FexAl1-x)12." In Concerted European Action on Magnets (CEAM), 134–45. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1135-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "XFEL Européen":

1

Tikhodeeva, E. O. "Six European XFEL scientific instruments." In 2022 International Conference Laser Optics (ICLO). IEEE, 2022. http://dx.doi.org/10.1109/iclo54117.2022.9839675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Molodtsov, S. L. "European XFEL: Status and research instrumentation." In 2016 International Conference Laser Optics (LO). IEEE, 2016. http://dx.doi.org/10.1109/lo.2016.7549927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Beutner, B., W. Decking, M. Dohlus, K. Flottmann, M. Krasilnikov, and T. Limberg. "Velocity bunching at the European XFEL." In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tschentscher, Thomas. "Starting up European XFEL (Conference Presentation)." In Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers, edited by Georg Korn and Luis O. Silva. SPIE, 2017. http://dx.doi.org/10.1117/12.2269814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nölle, D. "Commissioning for the European XFEL facility." In SPIE Optics + Optoelectronics, edited by Thomas Tschentscher and Luc Patthey. SPIE, 2017. http://dx.doi.org/10.1117/12.2268793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kapitza, Herbert, Hans-Jorg Eckoldt, and Markus Faesing. "Grounding for EMC at the European XFEL." In 2012 International Symposium on Electromagnetic Compatibility - EMC EUROPE. IEEE, 2012. http://dx.doi.org/10.1109/emceurope.2012.6396865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Geloni, Gianluca, Vitali Kocharyan, and Evgeni Saldin. "Self-seeding schemes for the European XFEL." In SPIE Optics + Optoelectronics, edited by Thomas Tschentscher and Daniele Cocco. SPIE, 2011. http://dx.doi.org/10.1117/12.885897.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bianco, Laura, J. Becker, R. D. Dinapoli, E. Fretwurst, P. Goettlicher, H. Graafsma, D. Greiffenberg, et al. "The AGIPD System for the European XFEL." In SPIE Optics + Optoelectronics, edited by Thomas Tschentscher and Kai Tiedtke. SPIE, 2013. http://dx.doi.org/10.1117/12.2017360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pucyk, Piotr, Wojciech Jalmuzna, and Stefan Simrock. "Real time cavity simulator for European XFEL." In 2007 15th IEEE-NPSS Real-Time Conference. IEEE, 2007. http://dx.doi.org/10.1109/rtc.2007.4382802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Molodtsov, S. L. "European XFEL in Operation: Status and First Experiments." In 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії