Добірка наукової літератури з теми "Wound healing monitoring"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Wound healing monitoring".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Wound healing monitoring"
Greenwood, J. E., B. A. Crawley, S. L. Clark, P. R. Chadwick, D. A. Ellison, B. A. Oppenheim, and C. N. McCollum. "Monitoring wound healing by odour." Journal of Wound Care 6, no. 5 (May 2, 1997): 219–21. http://dx.doi.org/10.12968/jowc.1997.6.5.219.
Повний текст джерелаDelode, J., E. Rosow, C. Roth, J. Adams, and F. Langevin. "A wound-healing monitoring system." ITBM-RBM 22, no. 1 (February 2001): 49–52. http://dx.doi.org/10.1016/s1297-9562(01)90046-4.
Повний текст джерелаPatel, Shubham, Faheem Ershad, Min Zhao, Roslyn Rivkah Isseroff, Bin Duan, Yubin Zhou, Yong Wang, and Cunjiang Yu. "Wearable electronics for skin wound monitoring and healing." Soft Science 2, no. 2 (2022): 9. http://dx.doi.org/10.20517/ss.2022.13.
Повний текст джерелаPasche, Stéphanie, Silvia Angeloni, Réal Ischer, Martha Liley, Jean Luprano, and Guy Voirin. "Wearable Biosensors for Monitoring Wound Healing." Advances in Science and Technology 57 (September 2008): 80–87. http://dx.doi.org/10.4028/www.scientific.net/ast.57.80.
Повний текст джерелаSattar, Hina, Imran Sarwar Bajwa, Riaz ul Amin, Jan Muhammad, Muhammad Faheem Mushtaq, Rafaqut Kazmi, Muhammad Akram, Muhammad Ashraf, and Umar Shafi. "Smart Wound Hydration Monitoring Using Biosensors and Fuzzy Inference System." Wireless Communications and Mobile Computing 2019 (December 12, 2019): 1–15. http://dx.doi.org/10.1155/2019/8059629.
Повний текст джерелаHOFFMANN, K., K. WINKLER, S. EL-GAMMAL, and P. ALTMEYER. "A wound healing model with sonographic monitoring." Clinical and Experimental Dermatology 18, no. 3 (May 1993): 217–25. http://dx.doi.org/10.1111/j.1365-2230.1993.tb02174.x.
Повний текст джерелаComino-Sanz, Inés María, Rafael Cabello Jaime, Josefina Arboledas Bellón, Juan Francisco Jiménez-García, Mercedes Muñoz-Conde, María José Díez Requena, Francisco Javier García Díaz, Begoña Castro, and Pedro Luis Pancorbo-Hidalgo. "A Digital Tool for Measuring Healing of Chronic Wounds Treated with an Antioxidant Dressing: A Case Series." International Journal of Environmental Research and Public Health 20, no. 5 (February 25, 2023): 4147. http://dx.doi.org/10.3390/ijerph20054147.
Повний текст джерелаSattar, Hina, Imran Sarwar Bajwa, Riaz Ul-Amin, Aqsa Mahmood, Waheed Anwar, Bakhtiar Kasi, Rafaqut Kazmi, and Umar Farooq. "An Intelligent and Smart Environment Monitoring System for Healthcare." Applied Sciences 9, no. 19 (October 5, 2019): 4172. http://dx.doi.org/10.3390/app9194172.
Повний текст джерелаMallick, Sourav, Moinul Hasan, Nasrin Juyena, Dhriti Biswas, Mohammad Shoriotullah, and Md Alam. "Ultrasonographic monitoring of abdominal wound healing in ewes." Journal of Advanced Veterinary and Animal Research 4, no. 3 (2017): 261. http://dx.doi.org/10.5455/javar.2017.d221.
Повний текст джерелаPakolpakçıl, Ayben, Bilgen Osman, Elif Tümay Özer, Yasemin Şahan, Behçet Becerir, Gökhan Göktalay, and Esra Karaca. "Halochromic composite nanofibrous mat for wound healing monitoring." Materials Research Express 6, no. 12 (January 6, 2020): 1250c3. http://dx.doi.org/10.1088/2053-1591/ab5dc1.
Повний текст джерелаДисертації з теми "Wound healing monitoring"
McHugh, Jolene. "Sensors for monitoring wound healing." Thesis, Ulster University, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686440.
Повний текст джерелаGoswami, Tushar. "Chondroitin Sulfate Hydrogels for Total Wound Care Devices." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1578587475393225.
Повний текст джерелаDean, Zachary S. "Collective Migration Models: Dynamic Monitoring of Leader Cells in Migratory/Invasive Disease Processes." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/560817.
Повний текст джерелаMun, Kyu-Shik. "Monitoring Cell Behaviors on Variety of Micropatterns Created with Biodegradable Polymer." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1457426363.
Повний текст джерелаTing, Chia Chi, and 丁家麒. "Quantitative monitoring of the wound healing process of fractional laser photothermolysis using optical coherence tomography." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/20417209320235020611.
Повний текст джерела長庚大學
電機工程學系
101
Fractional photo-thermolysis induced by ablative fractional lasers (AFLs) or non-ablative fractional lasers (NAFLs) can remodel the skin, regenerate collagen, and remove tumor tissue. However, fractional laser treatments may result in severe side effects, and multiple treatments are required to achieve the expected outcome. Thus, the downtime and treatment outcome after fractional laser treatments are key issues to consider when developing a treatment strategy. In this study, an optical coherence tomography (OCT) system was implemented for in vivo studies of wound healing after AFL and NAFL treatments. According to the OCT scanning results, the laser-induced micro-thermal zones (MTZs) could also be morphologically identified and quantitatively evaluated. To continue monitoring the wound healing process, the treated regions were scanned using OCT at different time points, and the en-face images at various tissue depths were extracted from three-dimensional OCT images. Furthermore, to quantitatively evaluate the morphological changes at different tissue depths during wound healing, an algorithm was developed to distinguish the backscattering properties of untreated and treated tissues. The results showed that the coagulation damage induced by the NAFLs could be rapidly healed in 6 days. In contrast, the tissue volatilization induced by AFLs required a longer recovery time of 14 days. In conclusion, this study establishes the feasibility of this methodology as a means of clinically monitoring treatment outcomes and wound healing after fractional laser treatments.
Wu, Yi-Chen, and 吳怡臻. "Electrically Monitoring Effects of Transforming Growth Factor-Beta on Wound Healing Migration of Breast Cancer Cells." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/66617851856129409213.
Повний текст джерела國立陽明大學
醫學工程研究所
100
Abstract Previous studies evidence that transforming growth factor-beta (TGF-β) could induce breast carcinoma cells to activate down-stream signaling pathways, resulting in cellular changes on facilitating invasion and metastasis in vivo. The purpose of this study is to monitor and examine the effects of transforming growth factor-beta on cell micromotion and wound migration of two of specific lines of human breast carcinoma cells, the non-invasive cells named MCF-7 and the invasive cells called MDA-MB-231. MCF-7 and MDA-MB-231 cells were treated with fixed concentrations of TGF-β for different time periods and the effects on cell migration with time-dependent treatment would be analyzed. In this study Electric Cell-substrate Impedance Sensing (ECIS) technique was applied to examine the electrical resistance of the cells cultured on micro-electrodes. This approach offers quantification of cell migration activity in response to drugs via morphological changes of the cell layers, including junctional resistance, membrane capacitance, and cell-substrate separation. The experimental results show that the invasive breast carcinoma cells, MDA-MB-231, promotes the wound migration and micromotion in response to TGF-β, and the responses are related to the time periods of TGF-β treatment as well.
Ferreira, Ana Vanessa Fernandes. "Monitoring Human Neutrophil Elastase (HNE) in chronic wounds." Doctoral thesis, 2018. http://hdl.handle.net/1822/59040.
Повний текст джерелаThe inflammatory response is an important step in wound healing, however if there is an imbalance between the immune response and tissue regeneration, a delay on the healing process will occur, resulting in a chronic wound. Chronic wounds are a significant problem for health care system, accounting for almost 4% of its total budget, and currently increasing. Early detection of incipient wound infection and chronic inflammation reduces the severity of the disease and decreases health care expenses. Currently, it is difficult, expensive and time consuming to accurately assess a wound status, hence, there is an urgent need for a new diagnostic that would give the medical staff a fast and reliable method to determine inflammation/infection of a chronic wound at an early stage. Human neutrophil elastase (HNE) is one of the most abundant proteinases in wounds and its activity was found to be elevated in case of infection and chronic inflammation, making this enzyme a suitable marker for impaired healing. This PhD thesis intends to explore new strategies for the detection of HNE through the development of chromogenic and fluorogenic sensors that when embedded in a dressing may provide an in situ and real-time assessment of the wound status. For that, a specific cleavage sequence for HNE was designed by molecular docking studies and then confirmed in vitro. Then, this substrate was associated to chromogenic or fluorogenic detection systems. Regarding the chromogenic detection systems, two strategies were followed using ultramarine (UM), a GFP-like chromoprotein. The rationale of this approach was to use this protein’s ability to regenerate its dark blue colour (hysteresis) upon HNE cleavage, turning it into a switch-on sensor, or to lose its colour upon proteolysis, thus making a switch-off sensor. In a first attempt to convert ultramarine into a HNE substrate switch was based on a split protein strategy which would signal as a gain of colour sign. We were able to detect an absorbance increase upon HNE cleavage, but this effect was not long lasting due to an instability of the interaction between the signalling and sensing fragments. Indeed, this strategy proved it to be extremely challenging. The main motivation to pursue this work resided in its innovative aspect, as GFP-like chromogenic sensors were never reported. Then, a second strategy was investigated through sitedirected mutagenesis of ultramarine. In this latter strategy we were able to obtain sensors with an opposite signal, switch-off. To provide a better understanding regarding UM’s chromogenic environment, molecular dynamics studies coupled to protein expression were implemented to each of the seven produced UM-mutants. Our findings provided new information regarding the effect of certain mutations in UM protein conformation and allowed us to explore its application as a switch sensor. Here, we explored for the first time the development of a colour switch-on sensor based on chromogenic GFP-like proteins. Even though, we were unable to fully accomplish the regeneration of a stable chromophore environment for colour appearance, this work may serve as a starting point for advances in switch-on chromogenic sensors using non-fluorescent GFP-like proteins. For the fluorogenic detection system, the strategy studied resulted in the successful development of a FRET (Förster resonance energy transfer) peptide to monitor HNE. Upon HNE action, this peptide proved to be more effective than the traditional peptides coupled to fluorophores. Its visual detection was possible using an UV-portable light source. The embedding of this sensor in dressings would provide advantages for its application as a wearable sensor. The methods here used for the FRET-peptide immobilization onto a dressing compromised its detection. However, we envision that with the proper method of integration into a dressing, this FRET peptide could be used as a new strategy of smart materials. The strategies explored in this thesis can be further investigated and possibly implemented as point-of-care medical devices for wound control. As wound care tools, these devices would allow a prompt detection of chronic wounds, contributing to their proper and effective care and, consequently, granting a better outcome for the millions of people that suffer from non-healing wounds.
A resposta inflamatória é um importante passo no processo de cicatrização de feridas. No entanto, desequilíbrios entre a resposta do sistema imunitário e a regeneração celular podem desencadear um atraso significativo no processo de cicatrização, resultando numa ferida crónica. As feridas crónicas apresentam um problema significativo para o sistema de saúde, contabilizando 4% do orçamento total de saúde, sendo que se estima um aumento destes números nas próximas décadas. A deteção antecipada de infeção e inflamação crónica numa ferida reduz a severidade da doença, consequentemente diminuindo o seu impacto nas despesas de saúde. Atualmente, a avaliação do estado de uma ferida de forma exata e precisa é um processo difícil, dispendioso e demoroso. Por esta razão, existe uma necessidade urgente de desenvolvimento de novas ferramentas de diagnóstico que possibilitem a deteção precoce de infeção/inflamação em feridas crónicas de forma rápida e eficaz. A elastase neutrofílica humana (HNE) é uma das proteinases mais abundantes em feridas, estando os seus elevados níveis de atividade em feridas correlacionados com a ocorrência de infeção e inflamação crónica. De facto, esta enzima é considerada um excelente biomarcador para feridas cujo processo de cicatrização se encontra comprometido. O objetivo principal desta tese de doutoramento foi e exploração de novas estratégias para a deteção da HNE através do desenvolvimento de sensores cromogénicos e fluorogénicos que possam ser incorporados em pensos para feridas, possibilitando uma avaliação in situ e em temporeal do estado da ferida. Para tal, primeiramente desenharam-se sequências de clivagem específicas para HNE cuja afinidade para a enzima foi analisada através de estudos de acoplamento molecular e posteriormente foram confirmados com ensaios in vitro. Depois, o substrato foi associado a sistemas de deteção cromogénico ou fluorogénico. Relativamente aos sistemas de deteção cromogénicos, desenvolveram-se duas estratégias usando a ultramarina (UM), uma cromoproteína do tipo GFP, como substrato sinalizador. A competência desta proteína em regenerar a sua cor azul (devido à capacidade de histerese) permitiu transformá-la num sensor que se liga (switch-on) ou que se desliga (switch-off) após a sua clivagem com a HNE. A primeira tentativa para converter a proteína ultramarina num substrato comutador de sinal para a HNE consistiu na produção de uma proteína segmentada em duas partes que quando em interação resultam num sinal com ganho de cor (sensor switch-on). Após clivagem com HNE do fragmento substrato, conseguiu-se obter um aumento da absorvância, embora transiente, devido à interação com o fragmento sinalizador. De facto, esta estratégia foi muito desafiante. No entanto, a principal motivação em seguir esta linha de trabalho prendeu-se principalmente com o seu carácter inovador, visto que nunca tinham sido reportados sensores usando proteínas cromogénicas do tipo GFP. Neste seguimento, explorou-se uma segunda estratégia para o desenvolvimento de substratos sensores switch-on para a HNE através da mutagénese direcionada da proteína ultramarina. Esta abordagem permitiu também obter sensores com o sinal oposto – switch-off. Com o objetivo de melhor compreender as condições que proporcionam o ambiente cromogénico da proteína UM, foram implementados estudos de simulação de dinâmica molecular complementares à expressão das proteínas para cada um dos sete mutantes produzidos. A partir deste trabalho conseguiu-se recolher novos dados acerca do efeito de certas mutações na conformação da proteína UM e possibilitou-nos também explorar a sua aplicação como sensor comutador de sinal. Nestes trabalhos investigou-se pela primeira vez o desenvolvimento de sensores cromogénicos switch-on baseados em proteínas do tipo GFP. Embora não se tenha conseguido obter a regeneração estável do cromóforo que permite o aparecimento de cor, estes resultados poderão servir como ponto de partida para outros trabalhos em sensores cromogénicos switch-on usando proteínas não fluorescentes do tipo GFP. Em relação aos sistemas de deteção fluorogénicos, a abordagem explorada resultou no desenvolvimento bem-sucedido de um péptido FRET para monitorização de HNE. Após proteólise, este péptido provou ser mais eficaz do que os tradicionais péptidos fluorescentes (acoplados a fluoróforos). A deteção visual da fluorescência foi possível recorrendo a uma luz UV portátil. A incorporação deste sensor em pensos de feridas trará vantagens relativamente à sua aplicação como sensores wearable. Os métodos aqui descritos para a imobilização do péptido FRET em têxteis usados como material de penso comprometeram a deteção do seu sinal. No entanto, prevêse que a utilização de um método de integração mais apropriado possa permitir a sua aplicação em novas estratégias no desenvolvimento de tecidos inteligentes. A implementação da investigação aqui descrita em dispositivos médicos para a monitorização do processo de cicatrização de feridas poderá complementar o leque de ferramentas usadas no cuidado das feridas. Estes dispositivos possibilitarão a deteção atempada da cronicidade de uma ferida, contribuindo para o seu cuidado apropriado e eficaz. Consequentemente irá garantir uma melhor qualidade de vida para milhões de doentes que sofrem de feridas de difícil cicatrização.
Fundação para a Ciência e Tecnologia (FCT) e à Tecminho pelo financiamento da minha bolsa de doutoramento (SFRH/BD/113247/2015). Ao projeto da comissão europeia INFACT (FP7-NMP-2013-SME-7 - Grant agreement no. 604278)
Mars, Maurice. "An evaluation of the use of transcutaneous oxygen pressure measurement in the non-invasive vascular laboratory : with special reference to selection of amputation level." Thesis, 2001. http://hdl.handle.net/10413/7444.
Повний текст джерелаThesis (M.D.)-University of Natal, 2001.
Milanesi, Alessio, Moreno Lelli, Fulvio Ratto, Sonia Centi, and Boris Khlebtsov. "Development and Spectroscopic Characterization of Plasmonic Materials for Biomedical Applications - Sviluppo e Caratterizzazione Spettroscopica di Materiali Plasmonici per Applicazioni Biomediche." Doctoral thesis, 2022. http://hdl.handle.net/2158/1263338.
Повний текст джерелаЧастини книг з теми "Wound healing monitoring"
Pasche, Stéphanie, Silvia Angeloni, Réal Ischer, Martha Liley, Jean Luprano, and Guy Voirin. "Wearable Biosensors for Monitoring Wound Healing." In Advances in Science and Technology, 80–87. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-14-1.80.
Повний текст джерелаSchlereth, Maja, Daniel Stromer, Yash Mantri, Jason Tsujimoto, Katharina Breininger, Andreas Maier, Caesar Anderson, Pranav S. Garimella, and Jesse V. Jokerst. "Initial Investigations Towards Non-invasive Monitoring of Chronic Wound Healing Using Deep Learning and Ultrasound Imaging." In Informatik aktuell, 261–66. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-36932-3_56.
Повний текст джерелаShen, Wei-Cheng, Yih-Kuen Jan, Chi-Wen Lung, Aqo Anastian, Chang-Wei Hsieh, Hsu-Tang Cheng, Yin-Yin Liao, and Ben-Yi Liau. "Analysis of Moisture and Sebum of the Skin for Monitoring Wound Healing in Older Nursing Home Residents." In Advances in Intelligent Systems and Computing, 177–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51549-2_23.
Повний текст джерела"ACTIVITY MONITORING." In Wound Healing, 216–18. CRC Press, 2005. http://dx.doi.org/10.1201/b14164-53.
Повний текст джерелаKekonen, Atte, and Jari Viik. "Monitoring wound healing." In Bioimpedance and Spectroscopy, 221–70. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-818614-5.00001-1.
Повний текст джерелаHardwicke, Joseph, and Naiem Moiemen. "Burn wound dressings." In Burns (OSH Surgery), 145–50. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780199699537.003.0017.
Повний текст джерелаDaneshkhah, Ali, Amanda P. Siegel, and Mangilal Agarwal. "Volatile organic compounds: Potential biomarkers for improved diagnosis and monitoring of diabetic wounds." In Wound Healing, Tissue Repair, and Regeneration in Diabetes, 491–512. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-816413-6.00023-x.
Повний текст джерелаAlgahtani, Saeed Fahad, Fahad M. Alqahtani, and Mohammed Qahl. "Therapeutic Drug Monitoring of Gentamicin in a Patient with Delayed Wound Healing." In Perspective of Recent Advances in Medical Research Vol. 12, 72–79. B P International (a part of SCIENCEDOMAIN International), 2023. http://dx.doi.org/10.9734/bpi/pramr/v12/18292d.
Повний текст джерелаChakraborty, Chinmay. "Performance Analysis of Compression Techniques for Chronic Wound Image Transmission Under Smartphone-Enabled Tele-Wound Network." In Research Anthology on Telemedicine Efficacy, Adoption, and Impact on Healthcare Delivery, 345–64. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8052-3.ch018.
Повний текст джерелаZhao, Qingliang, and Lin Chen. "Integrated Optical Coherence Tomography and Deep Learning for Evaluating of the Injectable Hydrogel on Skin Wound Healing." In Wound Healing - Recent Advances and Future Opportunities [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.106006.
Повний текст джерелаТези доповідей конференцій з теми "Wound healing monitoring"
Papazoglou, Elisabeth S., Michael S. Weingarten, Leonid Zubkov, Michael Neidrauer, Linda Zhu, and Kambiz Pourrezaei. "Monitoring of Acute Wound Healing." In Biomedical Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.pdpbsue1.
Повний текст джерелаKönig, Karsten, Martin Weinigel, Rainer Bückle, Martin Kaatz, Christina Hipler, Katharina Zens, Stefan W. Schneider, and Volker Huck. "Monitoring wound healing by multiphoton tomography/endoscopy." In SPIE BiOS, edited by Bernard Choi, Nikiforos Kollias, Haishan Zeng, Hyun Wook Kang, Brian J. F. Wong, Justus F. Ilgner, Alfred Nuttal, et al. SPIE, 2015. http://dx.doi.org/10.1117/12.2078882.
Повний текст джерелаPapazoglou, E. S., L. Zubkov, L. Zhu, M. S. Weingarten, S. Tyagi, and K. Pourrezaei. "Monitoring Diabetic Wound Healing by NIR Spectroscopy." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1616030.
Повний текст джерелаPan, Chia-Pin, Yihui Shi, Charles S. Greenberg, Zishan Haroon, and Gregory W. Faris. "Wound Healing Monitoring Using Near-Infrared Fluorescent Fibrinogen." In Biomedical Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/biomed.2014.bs3a.30.
Повний текст джерелаHowle, Christopher R., Abigail M. Spear, Ehsan Gazi, and Nicole J. Crane. "Monitoring combat wound healing by IR hyperspectral imaging." In SPIE BiOS, edited by Robert R. Alfano and Stavros G. Demos. SPIE, 2016. http://dx.doi.org/10.1117/12.2213330.
Повний текст джерелаEssen, Helmut, Jan Markus Essen, Dirk Nuessler, Alexander Hommes, Christian Krebs, Nadia Fatihi, and Thorsten Buzug. "Monitoring of wound healing by millimetre wave imaging." In 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010). IEEE, 2010. http://dx.doi.org/10.1109/icimw.2010.5612311.
Повний текст джерелаKekonen, Atte, Mikael Bergelin, Jan-Erik Eriksson, Mikko Vesa, Max Johansson, and Jari Viik. "Long-term monitoring of acute wound healing from beneath the primary wound dressings." In 2018 16th Biennial Baltic Electronics Conference (BEC). IEEE, 2018. http://dx.doi.org/10.1109/bec.2018.8600956.
Повний текст джерелаLee, Sang-Won, Jung-Taek Oh, Youn-Soo Kim, and Beop-Min Kim. "Polarization-sensitive optical coherence tomography for monitoring wound healing process." In Biomedical Optics 2005, edited by Valery V. Tuchin, Joseph A. Izatt, and James G. Fujimoto. SPIE, 2005. http://dx.doi.org/10.1117/12.592511.
Повний текст джерелаZhang, Lai, Alistair D. Bounds, James P. Fleming, and John M. Girkin. "Monitoring of surgical wound healing using spatial frequency domain imaging." In Biomedical Applications of Light Scattering XII, edited by Adam Wax and Vadim Backman. SPIE, 2022. http://dx.doi.org/10.1117/12.2608558.
Повний текст джерелаLu, Minta, Adam Yee, Frank Meng, John Harmon, Saurabh Hinduja, and Steven Yi. "Enhance wound healing monitoring through a thermal imaging based smartphone app." In Imaging Informatics for Healthcare, Research, and Applications, edited by Jianguo Zhang and Po-Hao Chen. SPIE, 2018. http://dx.doi.org/10.1117/12.2293674.
Повний текст джерелаЗвіти організацій з теми "Wound healing monitoring"
Elster, Eric, and Nicole Crane. Spectroscopic Biomarkers for Monitoring Wound Healing and Infection in Wounds. Fort Belvoir, VA: Defense Technical Information Center, June 2015. http://dx.doi.org/10.21236/ada621819.
Повний текст джерелаElster, Eric, and Nicole Crane. Spectroscopic Biomarkers for Monitoring Wound Healing and Infection in Combat Wounds. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada576382.
Повний текст джерела