Дисертації з теми "Wind Forecasts"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Wind Forecasts".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Mason, Jesse Cheyenne. "On improving wind-turbine hub-height wind-speed forecasts." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46558.
Повний текст джерелаSiuta, David. "Improving hub-height wind forecasts in complex terrain." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/61055.
Повний текст джерелаScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Welsh, David J. S. "The improvement of wind-wave forecasts in the Great Lakes /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487948807587679.
Повний текст джерелаNchaba, Teboho. "Verification of gridded seasonal wind speed forecasts over South Africa." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/4970.
Повний текст джерелаIncludes bibliographical references.
The Climate System Analysis Group (CSAG) at the University of Cape Town produces provisional global and Southern African seasonal wind forecasts generated using the United Kingdom Meteorological Office Atmospheric General Circulation Model (AGCM) HadAM3P (non-standard version of HadAM3). This study examines the quality of the seasonal wind speed forecasts through a forecast verification process for continuous variables using reanalysis products of the National Centers for Environmental Prediction and the Department of Energy (NCEP-DOE) as observations data. The verification analyses are performed using summary measures Mean Error (ME), Mean Absolute Error (MAE), Mean Squared Error (MSE), correlation coefficients, Linear Error in Probability Space (LEPS) and exploratory methods, scatter and conditional quantile plots. These methods are used to determine the aspects of forecast quality namely, bias, accuracy, reliability, resolution, and skill over a 20 year period (1991 to 2010). The results of the study have determined that the use of both accuracy and skill measures for the verification analyses provide more information about the quality of the forecasts, as opposed only one of these. In all provinces, the highest quality seasonal wind speed forecasts are made at 500 hPa and the lowest quality forecasts at 1000 hPa. Furthermore regions, pressure levels, and seasons with the highest forecast quality share the common characteristic that their wind speeds are relatively high. The forecasts add value to the climatology and thus are a useful tool for wind assessment at a seasonal scale. It is suggested that adding spatial resolution to the forecasts through downscaling may prepare them for use in applications such as wind power output forecasting.
Lau, Ada. "Probabilistic wind power forecasts : from aggregated approach to spatiotemporal models." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:f5a66568-baac-4f11-ab1e-dc79061cfb0f.
Повний текст джерелаde, Almeida Francisco M. S. C. "The influence of wind on HF radar surface current forecasts." Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Dec/08Dec%5Fde%5FAlmeida.pdf.
Повний текст джерелаThesis Advisor(s): Paduan, Jeffrey. "December 2008." Description based on title screen as viewed on January 29, 2009. Includes bibliographical references (p. 67-69). Also available in print.
Sjöberg, Ludvig. "Wind Forecasts Using Large Eddy Simulations for Stratospheric Balloon Applications." Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74457.
Повний текст джерелаGallaher, Shawn G. "Performance of a high resolution diagnostic model for short range mesoscale wind forecasts in complex terrain." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02sep%5FGallaher.pdf.
Повний текст джерелаThesis advisor(s): Douglas K. Miller, Wendell A. Nuss. Includes bibliographical references (p. 125-128). Also available online.
Olaofe, Zaccheus Olaniyi. "Wind energy generation and forecasts: a case study of Darling and Vredenburg sites." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/16831.
Повний текст джерелаIve, Federica. "Improving numerical simulation methods for the assessment of wind source availability and related power production for wind farms over complex terrain." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/350981.
Повний текст джерелаCavicchioli, Niccolò. "Preparing for a future satellite mission to measure wind and improve climate forecasts." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23037/.
Повний текст джерелаZamo, Michaël. "Statistical Post-processing of Deterministic and Ensemble Wind Speed Forecasts on a Grid." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLA029/document.
Повний текст джерелаErrors of numerical weather prediction (NWP) models can be reduced thanks to post-processing methods (model output statistics, MOS) that build a statistical relationship between the observations and associated forecasts. The objective of the present thesis is to build MOS for windspeed forecasts over France on the grid of several NWP models, to be applied on operations at Météo-France, while addressing the two main issues. First, building MOS on the grid of some NWP model, with thousands of grid points over France, requires to develop methods fast enough for operational delays. Second, requent updates of NWP models require updating MOS, but training MOS requires an NWP model unchanged for years, which is usually not possible.A new windspeed analysis for the 10 m windspeed has been built over the grid of Météo-France's local area, high resolution (2,5km) NWP model, AROME. The new analysis is the sum of two terms: a spline with AROME most recent forecast as input plus a correction with a spline with the location coordinates as input. The new analysis outperforms the existing analysis, while displaying realistic spatio-temporal patterns. This new analysis, now available at an hourly rate over 4, is used as a gridded observation to build MOS in the remaining of this thesis.MOS for windspeed over France have been built for ARPEGE, Météo-France's global NWP model. A test-bed designs random forests as the most efficient MOS. The loading times is reduced by a factor 10 by training random forests over block of nearby grid points and pruning them as much as possible. This time optimisation goes without reducing the forecast performances. This block MOS approach is currently being made operational.A preliminary study about the estimation of the continuous ranked probability score (CRPS) leads to recommendations to efficiently estimate it and to generalizations of existing theoretical results. Then 4 ensemble NWP models from the TIGGE database are post-processed with 6 methods and combined with the corresponding raw ensembles thanks to several statistical methods. The best combination method is based on the theory of prediction with expert advice, which ensures good forecast performances relatively to some reference forecast. This method quickly adapts its combination weighs, which constitutes an asset in case of performances changes of the combined forecasts. This part of the work highlighted contradictions between two criteria to select the best combination methods: the minimization of the CRPS and the flatness of the rank histogram according to the Jolliffe-Primo tests. It is proposed to choose a model by first imposing the flatness of the rank histogram
Stamp, Alexander. "The relationship between weather forecasts and observations for predicting electricity output from wind turbines." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215651.
Повний текст джерелаBetydelsen för vindkraftsproduktion växer i länder runt om i världen. För att förbättratillförlitligheten och elnätstabiliteten i vindkraften blir dess prognoser viktiga kommersielltoch ett forskningsområde. Maskininlärningsmetoder anses vara mycket värdefullanär man gör förutsägelser om tidsseriedata och har därmed framträdat inom vindprognoser. Detta arbete utökar ett existerande prediktionssystem av neurala nätverk med ny indata,med särskilt den observerade vindhastigheten från själva vindkraftparken. Måletvar att undersöka effekten av denna nya dataserie, och huruvida den skulle kunna användasför att förbättra förutsägelserna jämfört med det befintliga referensprognossystemetdefinierat i denna uppsats. För att kunna göra detta utvecklas flera metoder för att inkludera den observeradevindhastigheten, inklusive ett flerstegs nätverkskoncept. Dessa resultat är statistiskt testadeför att ge mer grund i deras jämförelse med referensmodellen. Resultaten visar att detflerstega nätverkskonceptet kan använda den observerade vindhastigheten för att förbättraprestanda över referensmodellen för specifika prediktionshorisonter.
Nachmani, Gil. "Minimum-energy flight paths for UAVs using mesoscale wind forecasts and approximate dynamic programming." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Dec%5FNachmani.pdf.
Повний текст джерелаThesis Advisor(s): Royset, Johannes O. Description based on title screen as viewed on January 22, 2007. Includes bibliographical references (p. 57-60). Also available in print.
Neese, Jay M. "Evaluating Atlantic tropical cyclone track error distributions for use in probabilistic forecasts of wind distribution." Thesis, Monterey, California. Naval Postgraduate School, 2010. http://hdl.handle.net/10945/5150.
Повний текст джерелаThis thesis investigates whether the National Hurricane Center (NHC) operational product for producing probabilistic forecasts of tropical cyclone (TC) wind distributions could be further improved by examining the distributions of track errors it draws upon to calculate probabilities. The track spread/skill relationship for several global ensemble prediction system forecasts is examined as a condition for a description of a full probability distribution function. The 2007, 2008, and 2009 NHC official track forecasts are compared to the ensemble prediction system model along-, cross-, and forecast-track errors. Significant differences in statistical properties were then identified among the groups to determine whether conditioning based on geographic location was warranted. Examination of each regional distribution interval suggests that differences in distributions existed for along-track and cross-track errors. Because errors for ensemble mean and deterministic forecasts typically have larger mean errors and larger variance than official forecast errors, it is unlikely that independent error distributions based on these models would refine the PDFs used in the probabilistic model. However, this should be tested with a sensitivity analysis and verified with the probability swath. Overall, conditional formatting suggests that the NHC probability product may be improved if the Monte Carlo (MC) model would draw from refined distributions of track errors based on TC location.
Plyler, Mitchell. "A machine learning approach to wind estimation and uncertainty using remote dropsondes and deterministic forecasts." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112476.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 100-102).
The U.S. Air force currently has a need for high altitude, unguided airdrops without making two passes over a drop zone (DZ). During conventional high altitude drops, aircrews fly over a DZ, release a dropsonde, compute a payload release point, loop back to the DZ, and release a payload. This work proposes a machine learning method that enables a single pass airdrop mission where a dropsonde is released en route to a DZ, the dropsonde measurement is merged with a weather forecast using machine learning methods, and the aircrew releases the payload when they reach the drop zone. Machine learning models are trained to use a deterministic weather forecast and a dropsonde measurement to predict the winds over a DZ. The uncertainty in the DZ wind prediction is inferred using quantile regression. The uncertainty estimate is nonstatic meaning it is unique for each airdrop mission, and the uncertainty estimate is derived from data that is already available to aircrews. The quantile regression uncertainty estimate replaces the single pass mission's potential need for ensemble forecasts. The developed models are evaluated using data near Yuma, AZ, with later evaluation of several other locations in the US. The machine learning models are shown to improve the accuracy of the wind prediction at the DZ from a remote location up to 117 km away by up to 43% over other methods. To generalize findings, we develop models at several US locations and demonstrate the machine learning methodology is successful at other geographic locations. Models trained on data from a set of DZs are then shown to be transferrable to DZs unseen by models during training. This moves the wind prediction methodology closer to a global solution. The inferred prediction uncertainty is found to reliably reflect the accuracy in the wind prediction. The dynamic wind uncertainty estimate allows for the assessment of mission risks as a function of day-of-drop conditions. For nominal drop parameters, single pass airdrop missions were simulated around the Yuma DZ, and the machine learning methodology is shown to be approximately 20% more accurate than other methods.
by Mitchell Plyler.
S.M.
Gensler, André [Verfasser]. "Wind Power Ensemble Forecasting : Performance Measures and Ensemble Architectures for Deterministic and Probabilistic Forecasts / André Gensler." Kassel : Kassel University Press, 2019. http://d-nb.info/117653517X/34.
Повний текст джерелаZelenke, Brian Christopher. "An empirical statistical model relating winds and ocean surface currents : implications for short-term current forecasts." Thesis, Connect to the title online, 2005. http://hdl.handle.net/1957/2166.
Повний текст джерелаSILVA, ILITCH VITALI GOMES DA. "THE WIND FORECAST FOR WIND POWER GENERATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16824@1.
Повний текст джерелаA energia eólica é uma das alternativas mais promissoras para geração de energia elétrica, pois assegura a diversidade e segurança no fornecimento de energia e atende à necessidade premente de reduzir os níveis de emissão de gases poluentes. Na operação de sistemas elétricos com forte presença de geração eólica é fundamental prever com pelo menos um dia de antecedência os valores futuros (pelo menos horários) da veloci-dade do vento, pois assim pode-se avaliar a disponibilidade de energia para o próximo dia, uma informação útil no despacho das unidades geradoras e no controle do sistema elétrico. A proposta dessa dissertação objetiva especificamente desenvolver modelos de previsão de curto prazo da velocidade do vento, baseado em técnicas de inteligência artificial, modelo da rede neural artificial e neuro-fuzzy adaptativa (ANFIS) e um mode-lo Estatístico composto por um modelo de regressão harmônica e Box-Jenkins. Para aplicação da metodologia considerou-se o município de São João do Cariri (Estado de Paraíba), onde está localizada uma das estações de referência do projeto SONDA (Sis-tema Nacional de Dados Ambientais para o setor de energia). O desempenho dos mode-los rede neural, neuro-fuzzy (ANFIS) e modelo Estatístico são comparados nas previ-sões de 6 horas, 12 horas, 18 h e 24horas a frente. Os resultados obtidos mostram o me-lhor desempenho da modelagem ANFIS e encorajam novos estudos no tema.
Wind power is one of the most promising options for power generation. It ensures the diversity and security of energy supply and meets the pressing need to reduce the levels of emission of polluting gases. In the operation of electrical systems with a strong presence of wind generation, it is essential to provide at least one day in advance the future values (at least hourly) of wind speed, so that we can assess the availability of energy for the next day, a useful information in the order of the generating units and electrical control system. The purpose of this dissertation aims to develop models spe-cifically to develop models to forecast short-term wind speed, based on artificial intelligence techniques, artificial neural network model and adaptive neuro-fuzzy Systems (ANFIS) and a statistical model composed of a harmonic regression model and Box-Jenkins. For application of the methodology, the city of São João do Cariri (State of Paraíba), where a reference station of SONDA project (National Environmental Data for the energy sector) is located, was considered.To apply the methodology was consi-dered the city of the ray tracing model (State of Paraíba), which is located a station ref-erence design (National Environmental Data for the energy sector). The performance of artificial neural network model and adaptive neuro-fuzzy Systems (ANFIS) and a statis-tical model are compared mixed forecasts of 6 hours, 12 hours, 18hours and 24 hours ahead. The results show the best performance of the ANFIS model and encourage fur-ther studies on the subject.
Gahard, Claude F. "An estimation of the ability to forecast boundary layer mixing height and wind parameters through forecast verification over Fort Ord." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03sep%5FGahard.pdf.
Повний текст джерелаThesis advisor(s): Wendell A. Nuss, David S. Brown. Includes bibliographical references (p. 65-66). Also available online.
Jarmander, Sara. "Wind Power Forecast Accuracy in Scandinavia:Analysis of Forecast Errors Using TAPM." Thesis, KTH, Kraft- och värmeteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226146.
Повний текст джерелаVindkraft är en förnybar energikälla som skiljer sig på flera sätt jämfört med konventionell energiproduktion. Konvensionell produktion avser planerbar och icke väderberoende energiproduktion som dessutom är synkront kopplad till elnätet, exempelvis vattenkraft och kärnkraft. Den huvudsakliga skillnaden är att energiproduktionen från vindkraftverk är direkt kopplad till meteorologiska förhållanden och är därmed beroende av de rätta väderbetingelserna för att kunna producera el, framförallt rådande vindhastigheter. Detta innebär att elproduktionen varierar på ett oförutsägbart sätt vilket medför att den producerade elkraften från vindkraftverk är mindre stabil jämfört med elkraft som utnyttjar konventionells krafttekniker. En ökad andel variabel elproduktion från vindkraft medför stora utmaningar för det befintliga och framtida kraftsystemet. Den främsta utmaningen är att upprätthålla balansen i systemet, både i det korta och långa tidsperspektivet. Om inga åtgärder genomförs förväntas kraftsystemets utformning och egenskaper att bli sämre i form av ökad känslighet för störningar och försämrad leveranstid. En ökad förståelse för vindkraftsproduktionens variabilitet och förutsägbarhet är därmed av intresse för att kunna förbättra integrationen av variabel vindkraftsproduktion. Prognosmodeller för vindkraftsproduktion (analogt med prognoer för vindhastighet) utgör en viktig faktor i detta. I denna studie har noggrannheten av numeriska väderprognoser (NWP) analyserats. Analysen genomfördes för fyra skandinaviska vindkraftparker mellan 1 september 2013 och 31 december 2016. De granskade parkerna var: Rødsand II, Kårehamn, Jokkmokksliden och Storliden. Den numeriska prognosmodell som används i denna studie var The Air Pollution Model (TAPM). TAPM utvecklades i Australien och modellen bygger på observationsbaserade meterologiska input. TAPM är i själva verket ansluten till globala databaser med struktuerad meterologisk data bestående av bland annat terränghöjd, vegetation och synoptisk metrologisk information. TAPM har tidigare tillämpats för att förutspå vindhastigheter för ett flertal vindkraftparker i Australien och ett antal platser i USA. Inga tidigare studier har dock gjorts för scandinaviska förhållanden. Det huvudsakliga målet med denna studie var därmed att undersöka huruvida biaskorrigerade metoder kan förbättra noggrannheten av okorrigerade TAPMprognoser för de fyra utvalda vindkraftparkerna. Denna studie avsåg även att undersöka om prognosernas noggrannhet skiljer sig nämnvärt mellan skandinaviska och australienska väderförhållanden. Numeriska modeller innehåller alltid fel jämför med de ”sanna” värdena. Resultatet av denna studie indikerade att TAPM-prognoserna har en tendens att underskatta vindhastigheter, därmed även vindkraftsproduktionen gentemot den verkliga produktionen. Dessutom observerades att prognosernas noggrannhet varierade under året. Den bästa tillförlitligheten erhölls under vintern och den sämsta tillförlitligheten under sommarhalvåret. Vidare varierade prognosernas noggrannhet mellan turbinerna inom de enskilda vindkraftparkerna. Storleken på felet i TAPMprognoserna var generellt sett lägst för turbiner som utsetts för så kallade vakar. Vakar är ett fenomen som uppstår bakom rotorbladen och påverkar energiproduktionen för bakomliggande vindkraftverk. Storleken på felet var lägst för turbiner som i stor utsträckning påverkas av vakar från turbiner uppströms. Resultatet visade även att implementeringen av biaskorrigerande metoder förbättrade noggrannheten av TAPM-prognoserna. Sammantaget undersöktes fyra biaskorrigerande metoder varav två uppvisade de största förbättringarna. Gemensamt för dessa två metoder var att de baserades på en kombination av biaskorrigering och tidskorrigering. Olika statistiska metoder användes för att uppskatta storleken av felet för den förutspådda vindhastigheten som modellerats i TAPM. Bland annat användes Root Mean Square Error (RMSE), Mean Absolute Error (MAE) och Mean Bias Error (MBE). Dessa värden normaliserades därefter med avseende på medelvärdet av den verkliga produktionen för önskad tidsperiod. Resultatet visade bland annat att NRMSE för TAPM-modellerade timvisa vindhastigheter minskade med nästan 50 % för Rødsand II och Kårehamn när full biaskorrektion tillämpades och med uppemot 70 % för Jokkmokksliden och Storliden. Med utgångspunkt från de erhållna resultaten är den övergripande slutsatsen att TAPM kan tillämpas för geografiska platser med olika väderförhållanden och samtidigt generera prognoser med relativt god noggrannhet, speciellt om biaskorrigerade metoder appliceras. Till följd av den begränsande tidsramen och andra avgränsningar i denna studie är dock ytterligare analyser nödvändiga för att dra djupare slutsatser.
Mauch, Brandon Keith. "Managing Wind Power Forecast Uncertainty in Electric Grids." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/199.
Повний текст джерелаScharff, Richard. "On Distributed Balancing of Wind Power Forecast Deviations in Competitive Power Systems." Licentiate thesis, KTH, Elektriska energisystem, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103608.
Повний текст джерелаQC 20121017
Short-term hydro power planning in power systems with large amounts of wind power
Elektra 36141: Korttidsplanering av vatten-värmekraftsystem vid stora mängder vindkraft: System-perspektivet
Matusevicius, Tadas. "Analysis of Swedish Wind Power Forecast Quality over Forecast Horizon and Power System Operation Implications." Thesis, KTH, Elkraftteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-213706.
Повний текст джерелаVindkraft, som den mest okande satt for elproduktion, kan skapa miljofordelar.Pa grund av sin stokastiska karaktar ar det svart att skapa ett exakt vindkraftprognosverktyg utan prognosfel. Lamplig uppfattning om fel ar avgorande foratt underlatta driften och planeringen av elsystemet.I den har uppsatsen analyseras och jamfors vindkraftprognoser for olika prisomradena i Sverige. Analys har utforts av data som hamtats fran och mednovember 2015 med en timmes mellanrum fran Nord Pool-spot databasen. Vanligaindikatorer, som RMSE (root-mean-square) och metodfel anvandes for attkarakterisera prognosens noggrannhet. Det visar att RMSE i allmanhet minskarnar prognostiden nar leveranstiden. Dessutom identierades och diskuteradessystematiska fel runt den dagen-forre marknaden's stangningstid.Uppsatsen fortsatter att analysera vindkraftprognosfelfordelning med hansyntill prognostid och olika produktionsnivaer. Fyra statistiska moment av fordelningsfunktionenberaknades och jamfordes. Det visades att for prognoshorisonternamellan 0 och 36 timmar ar prognosfelfordelningsfunktionerna negativaskevade leptokurtiska.Den tidsmassiga vindkraftprognosfelkorrelationen mellan olika horisonter samtde rumsliga korrelationerna mellan olika prisomraden beraknas och diskuteras.Som forvantat identierades en starkare korrelation mellan narliggande prisomraden. Dessutom beraknades korrelationskoecienter mellan prognosfel ochupp- och nedreguleringspriser.Slutligen utvecklades en modell for att kvantiera mangden av drift reservniva som behovs for att kompensera osakerheten i systemet pa grund avosakra vindkraft och lastprognoser. Framtidsscenarier med okande vindkraftspenetrationsniva simuleras och mangden driftsreservniva for enskilda prisomradenberaknas. Det visar att, med en snabbt okande vindkraftspenetration, sarskiltprisomradet SE3 kommer att behova planeras for hogre driftsreservnivaer foratt framgangsrikt klara osakerheten i last- och vindkraftprognoserna.
Hawkins, Samuel Lennon. "High resolution re-analysis of wind speeds over the British Isles for wind energy integration." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7898.
Повний текст джерелаSTERMASI, ADRIST. "Offshore wind energy in the Adriatic Sea: Modelling of the microscale wind field and short-term forecast of wind power potential." Doctoral thesis, Università Politecnica delle Marche, 2015. http://hdl.handle.net/11566/242945.
Повний текст джерелаValee, Joris. "Using airborne laser scans to model roughness length and forecast energy production of wind farms." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393953.
Повний текст джерелаJaklovsky, Simon. "Drag based forecast for CME arrival." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415153.
Повний текст джерелаGustafsson, Johan. "Managing Forecast Errors at the Nordic Power Market at Presence of Large Amounts of Wind Power." Thesis, Institutionen för energi och teknik, SLU, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-162594.
Повний текст джерелаJaworsky, Christina A. "The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81605.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 84-87).
Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have minute to minute variability which causes minute to minute generation to fluctuate. Additionally, wind forecasting does not perfectly predict wind generation, so it is difficult for wind to meet a generation schedule. Therefore, with increased wind production, there is a need for flexibility in the electricity grid. Electricity storage is one method of achieving greater flexibility. With storage, wind generators can have a less variable power output. They can also be made to follow a generation schedule the same way traditional generation does. This study discusses the storage requirements for reducing the variability of wind power. It also assesses the value of an accurate forecast in terms of storage requirements. Storage capacity requirements are shown to be modest compared to the size of a generator, representing approximately one minute of full power generation capacity. Accurate forecasting can reduce the storage requirements of a wind generator. However, forecasts have little added value for greater accuracy beyond correctly predicting the mean of the wind generation on delivery scheduling intervals.
by Christina A. Jaworsky.
S.M.
Mauger, Léo. "Generation of wind speed and solar irradiance time series for power plants with storage." Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181923.
Повний текст джерелаLeblebici, Engin. "Terrain Modeling And Atmospheric Turbulent Flowsolutions Based On Meteorological Weather Forecast Data." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614103/index.pdf.
Повний текст джерелаBoone, Andrew. "Simulation of Short-term Wind Speed Forecast Errors using a Multi-variate ARMA(1,1) Time-series Model." Thesis, KTH, Elektriska energisystem, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118084.
Повний текст джерелаHOELTGEBAUM, HENRIQUE HELFER. "FORECAST OF THE JOINT DENSITY OF WIND CAPACITY FACTOR THROUGH THE USE OF A MULTIVARIATE GAS MODEL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25286@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Neste trabalho usamos o arcabouço dos modelos GAS para gerar previsões conjuntas de fator de capacidade eólico, pertencentes a diferentes usinas localizadas em áreas geográficas distintas. Esses cenários são insumos para gerar uma distribuição de fluxo de caixa associada a um portfólio de contratos atrelados aos parques eólicos em questão. Inicialmente modelamos as densidades marginais via um modelo GAS, supondo densidade Beta. De maneira a capturar a estrutura de dependência entre esses fatores de capacidade, usamos uma cópula t-Student com a matriz de correlação também sendo atualizada via mecanismo GAS. Uma das contribuições importantes desse trabalho para o setor elétrico está na geração de cenários conjuntos apenas em um passo, evitando a necessidade de modelar variáveis transformadas e posteriormente transforma-las para retornar às suas respectivas escalas originais. Assim como é feito no caso supondo normalidade para as marginais. Como é sabido, exponenciar valores simulados a partir de uma densidade normal pode gerar resultados equivocados para fatores de capacidade eólico, e por propagação, isso pode afetar severamente as medidas de risco que são obtidas a partir da distribuição simulada de fluxo de caixa associada com o portfolio das usinas eólicas. Nossos resultados mostram que quando a dependência é levada em consideração, os fluxos de caixa tendem a ser maiores do que quando ignora-se a dependência.
In this work we use the framework of GAS models to generate joint forecasts for capacity factors of several wind plants belonging to different geographical areas. Such scenarios are then used as input to raise the distribution of cash flows associated with a portfolio of contracts attached to these wind plants. We first model the marginal density of each capacity factor using a GAS model with Beta density. In order to capture the observed dependence among these capacity factors, we use a copula t- Student with correlation matrix evolving through a GAS mechanism. One of the important contributions of our framework is that generation of scenarios is accomplished in just one step, avoiding the need of transforming back variables to its original scale, as it is the case under a Gaussian assumption for the marginals. As it is known, exponentiation of simulated Gaussian values can result in unrealistic sampling paths for the wind capacity factor, and by propagation, this can badly a ect the risk measures obtained from the simulated distribution of the cash flows associated with a particular portfolio of wind plants. Our results shows that when taking into account dependence the cash flows are higher than when ignoring dependence.
Scharff, Richard. "Design of Electricity Markets for Efficient Balancing of Wind Power Generation." Doctoral thesis, KTH, Elektriska energisystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171063.
Повний текст джерелаAtt använda vindkraft i en större utsträckning är en möjlighet att minska elproduktionens negativa miljöpåverkan. Det finns dock också olika utmaningar med stora mängder vindkraft. Från ett systemperspektiv gäller det till exempel att hålla balansen mellan tillförsel och konsumtion av el. Från elproducenternas perspektiv bör vindkraftens påverkan på elmarknaden nämnas eftersom det påverka aktörernas vinster. Avhandlingen titta närmare in i hur man kan få tillgång till mer flexibilitet på produktionssidan. Avhandlingen består av tre delar. För det första undersöks variationer och prognosfel av vindkraft i Sverige med hjälp av statistiska metoder. Även om andel vindkraft hittills är låg i Sverige, behöver elsystemet och elmarknader i framtiden hantera samma egenskaper av själva variationer och prognosfel som idag men i en större utsträckning. För det andra undersöks hur den flexibiliteten som finns i tidshorisonten några timmar innan leveranstimmen kan utnyttjas för att integrera vindkraften på ett sätt som är både fördelaktigt från systemets och från aktörernas perspektiv. Undersökningen sker med hjälp av en simuleringsmodell som omfattar viktiga delar i produktionsplanering och intradayhandel. I en fallstudie uppvisas att vinster av intern omplanering är i högsta grad beroende på kostnadsskillnaden mellan omplanering några timmar innan leveranstimmen och anpassning av körscheman under själva leveranstimmen. Resultat av ytterligare en fallstudie uppvisar att det är betydligt billigare och mer effektivt att använda intradayhandel istället för intern omplanering för att utnyttja den befintliga flexibiliteten och för att reducera obalanser som systemoperatörer annars behöver ta hand om under leveranstimmen. Detta är en anledning till att undersöka handelsmönster på Elbas som är en intradaymarknad med kontinuerlig handel. En annan anledning till den här tredje delen är utmaningarna i att modellera kontinuerlig intradayhandel. Studien beskriver handelsaktiviteten på Elbas och hur priserna utvecklas under handelstiden. Ett resultat är att handeln inte alltid återspeglar den fysiska situationen i elsystemet. I den utsträckningen som ett snabbare informationsflöde och förändringar i marknadsdesignen kunde förbättrar aktörernas underlag för intradayhandel, föreslås förbättringar och öppna forskningsfrågor.
QC 20150911
Elektra 36141: Korttidsplanering av vatten-värmekraftsystem vid stora mängder vindkraft: System-perspektivet
Jones, Marcia L. "A prototype expert system to forecast severe winds in the western Mediterranean Sea." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27227.
Повний текст джерелаGordon, Ronald Walter. "Impact of Assimilating Airborne Doppler Radar Winds on the Inner-Core Structure and Intensity of Hurricane Ike (2008)." Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_theses/276.
Повний текст джерелаBartošík, Tomáš. "Metody simulace dodávky výkonu z větrných elektráren." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217592.
Повний текст джерелаTino, Clayton P. "Wind models and stochastic programming algorithms for en route trajectory prediction and control." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50242.
Повний текст джерелаLönnberg, Joakim. "Short-term regulating capacity and operational patterns of The Lule River with large wind power penetration." Thesis, Uppsala universitet, Elektricitetslära, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-230972.
Повний текст джерелаFilho, Celso Luís de Oliveira. "Prognóstico das variáveis meteorológicas e da evapotranspiração de referência com o modelo de previsão do tempo GFS/NCEP." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/11/11131/tde-21082007-111326/.
Повний текст джерелаThe performance of a numeric weather forecast model (GFS- Forecast System, former AVN - AvatioN model, National Center for Environmental Prediction-NCEP) was evaluated for predicting weather variables, like air temperature and vapor pressure deficit, net radiation and wind speed, as well as reference evapotranspiration calculated by Thornthwaite (1948) and Penman-Monteith (Allen et al., 1948) methods, by the comparison with data obtained by an automatic weather station, in Piracicaba, State of São Paulo, Brazil. Temperature and vapor pressure deficit were the variables predicted with the best accuracy, with a "very good" and "good" performance, according to the index of confidence proposed by Camargo and Sentelhas (1997), for the maximum of four and three days in advance, respectively, during the dry season. For the wet season, only vapor pressure deficit was predicted with a "good" performance of the model. The predictions of net radiation and wind speed were very poor for both seasons. As the weather forecast model predicted temperature well, ETo estimated by Thornthwaite method showed a good agreement with ETo values estimated by observed data from the weather station, with till three days in advance for the dry season. For the wet season, such agreement was observed just for one day in advance. When ETo estimated by Penman-Monteith method with data from the weather forecast model and from weather station were compared any agreement was observed, which was caused by the poor performance of the numeric weather forecast model to predict net radiation and wind speed.
Музика, М. О. "Обґрунтування перспектив розвитку виноробної галузі на мезорівні (на прикладі Одеської області)". Thesis, Одеський національний економічний університет, 2020. http://dspace.oneu.edu.ua/jspui/handle/123456789/12431.
Повний текст джерелаThe theoretical aspects of the development of wine-producing branch have been considered in the master thesis. The potential, necessity and specialness of the national and foreign regulation of winemaking has been revealed. The main indicators of the development tendencies of wine branch in the world and Ukraine have been analyzed. The analysis of the winery hall in the Odessa region has been carried out and the assessment of the main changes in development has been completed. The key competitive trials and strategic development of the wine region have been designated. The forecast of the development prospects has been propounded on the basis of the last update.
Haessig, Pierre. "Dimensionnement et gestion d’un stockage d’énergie pour l'atténuation des incertitudes de production éolienne." Thesis, Cachan, Ecole normale supérieure, 2014. http://www.theses.fr/2014DENS0030/document.
Повний текст джерелаThe context of this PhD thesis is the integration of wind power into the electricity grid of small islands. This work is supported by EDF SEI, the system operator for French islands. We study a wind-storage system where an energy storage is meant to help a wind farm operator fulfill a day-ahead production commitment to the grid. Within this context, we propose an approach for the optimization of the sizing and the control of the energy storage system (energy management). Because day-ahead wind power forecast errors are a major source of uncertainty, the energy management of the storage is a stochastic optimization problem (stochastic optimal control). To solve this problem, we first study the modeling of the components of the system. This include energy-based models of the storage system, with a focus on Lithium-ion and Sodium-Sulfur battery technologies. We then model the system inputs and in particular the stochastic time series like day-ahead forecast errors. We also discuss the modeling of storage aging, using a formulation which is adapted to the control optimization. Assembling all these models enables us to optimize the energy management of the storage system using the stochastic dynamic programming (SDP) method. We introduce the SDP algorithms and present our optimization results, with a special interest for the effect of the shape of the penalty function on the energy control law. We also present additional energy management applications with SDP (mitigation of wind power ramps and smoothing of ocean wave power). Having optimized the storage energy management, we address the optimization of the storage sizing (choice of the rated energy). Stochastic time series simulations show that the temporal structure (autocorrelation) of wind power forecast errors have a major impact on the need for storage capacity to reach a given performance level. Then we combine simulation results with cost parameters, including investment, losses and aging costs, to build a economic cost function for sizing. We also study storage sizing when the penalization of commitment deviations includes a tolerance threshold. We finish this manuscript with a structural study of the interaction between the optimizations of the sizing and the control of an energy storage system, because these two optimization problems are coupled
Franěk, Lukáš. "Flight Management System Model." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219075.
Повний текст джерелаNovozámský, Adam. "Střih větru jako nebezpečný jev v letectví." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231313.
Повний текст джерелаScheele, Kyle Fred. "Wind forecast verification : a study in the accuracy of wind forecasts made by the Weather Channel and AccuWeather." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4234.
Повний текст джерелаtext
"Short-Term Wind Power Forecasts using Doppler Lidar." Master's thesis, 2014. http://hdl.handle.net/2286/R.I.27540.
Повний текст джерелаDissertation/Thesis
Masters Thesis Mechanical Engineering 2014
CHEN, YI-CHENG, and 陳奕成. "Application of Deep Learning Techniques to Wind Power Forecasts." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/r72g79.
Повний текст джерела逢甲大學
產業研發碩士班
107
In response to the issues of climate change and the pursuit of sustainable development in the world. In renewable energy, wind power is an indispensable part. Taiwan has a good geographical area in the west, as well as the promotion of conditions and policies, and the cost reduction year by year. They are all making Taiwan more suitable for developing wind power, as well as conducting related research and evaluating its benefits. This paper proposes to combine the two methods of Convolutional Neural Network (CNN) and Long Short Term Memory Network (LSTM) based on deep learning. These techniques take advantages of the CNN's expertise in feature extraction and LSTM are good at processing time series data. Then, the results are subjected to point forecast and probabilistic forecast evaluation. In them also uses multi-step forecast to output and observe the forecast results at different time points. The probabilistic forecast uses Empirical Cumulative Distribution Function (ECDF) to define the upper and lower limits of the prediction interval. In order to prove the accuracy of the proposed method for wind power generation, the CNN model and LSTM models are also predicted to verify whether the proposed model is complete and the effective features in the data are extracted to improve learning accuracy and predict. In this way, the three-party comparison is carried out with point forecast, probabilistic forecast, multi-step forecast, multi-step probabilistic forecast and probabilistic forecast results of different prediction intervals to verify that the proposed model performance and its stability are better than the other two methods. Index Terms- Deep learning, machine learning, point forecast, probabilistic forecast, multi-step forecast, CNN, LSTM, feature extraction, ECDF
Tsai, Sheng-Hang, and 蔡盛行. "A Study on the Suspended Particulate Concentration Forecasts using Back-Propagation Neural Network for Controlling Wind and Sand Disasters." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/54301662797486498421.
Повний текст джерела國立嘉義大學
土木與水資源工程學系研究所
99
In this research, we estimate the wind and sand disasters around Taitung City with the back-propagation neural network (BPN). The goal of research includes: (1) to estimate and analyze the correlation between meteorological factor and the suspended particulate matter density PM10 and (2) to suggest effective solutions and prevention measures for wind and sand disasters around Taitung City based on data collection and investigation in accordance with the BPN forecasting results. This study applies separated data (summer and winter) for network testing to examine the effect of seasonality on prediction results. Using the forward selection in the whole-year set, the results show that the optimum grouping of input variables includes the PM10 concentration, relative humidity, wind velocity, and wind direction. The correlation coefficient between network test value and the actual concentration of suspended particulates is R = 0.636. For the network predictions in summer and winter, the results in winter is better and the best combination of input variables is the suspended particles, relative humidity, wind speed, and rainfall, with the correlation coefficient of R = 0.72. The summer data yields worse test results: the top combination of input variables is suspended particulates, relative humidity, wind velocity, temperature, and rainfall, with the correlation coefficient of R = 0.548. This research develops an engineering control method based on the data collection and investigation, in accordance with the BPN forecasting results. Summer engineering methods are mainly used in a long-term engineering base by setting up self-propelled sprinkler system and outsourcing sprinkler. This mechanism starts before the arrival of the typhoon and then repairs and adds the sprinkler gun systems at the levee on Chung Hua Bridge. In winter, besides the self-propelled sprinkler systems, sprinkler gun systems and outsourcing sprinkler, the short-term engineering methods can also set up sand fence in the estuary area and apply the island-hopping-type vegetation to prevent wind and sand disasters.
Daniel, Lucky Oghenechodja. "Short term wind power forecasting in South Africa using neural networks." Diss., 2020. http://hdl.handle.net/11602/1591.
Повний текст джерелаDepartment of Statistics
Wind offers an environmentally sustainable energy resource that has seen increasing global adoption in recent years. However, its intermittent, unstable and stochastic nature hampers its representation among other renewable energy sources. This work addresses the forecasting of wind speed, a primary input needed for wind energy generation, using data obtained from the South African Wind Atlas Project. Forecasting is carried out on a two days ahead time horizon. We investigate the predictive performance of artificial neural networks (ANN) trained with Bayesian regularisation, decision trees based stochastic gradient boosting (SGB) and generalised additive models (GAMs). The results of the comparative analysis suggest that ANN displays superior predictive performance based on root mean square error (RMSE). In contrast, SGB shows outperformance in terms of mean average error (MAE) and the related mean average percentage error (MAPE). A further comparison of two forecast combination methods involving the linear and additive quantile regression averaging show the latter forecast combination method as yielding lower prediction accuracy. The additive quantile regression averaging based prediction intervals also show outperformance in terms of validity, reliability, quality and accuracy. Interval combination methods show the median method as better than its pure average counterpart. Point forecasts combination and interval forecasting methods are found to improve forecast performance.
NRF