Статті в журналах з теми "Wheat"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Wheat.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Wheat".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Wheat, Thomas, Paul Rainville, Beth Gillece-Castro, Ziling Lu, Laetitia Cravello, and Jeffrey Mazzeo. "Fast On-Line Desalting of Proteins for Determination of Structural Variation Using Exact Mass Spectroscopy." BioProcessing Journal 6, no. 1 (June 12, 2007): 55–59. http://dx.doi.org/10.12665/j61.wheat.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Laml, P., and J. Pánek. "Winter wheat Federer." Czech Journal of Genetics and Plant Breeding 46, No. 2 (June 29, 2010): 97–98. http://dx.doi.org/10.17221/54/2010-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Horčička, P., O. Veškrna, T. Sedláček, and J. Chrpová. "Winter wheat Secese." Czech Journal of Genetics and Plant Breeding 46, No. 2 (June 29, 2010): 99–101. http://dx.doi.org/10.17221/55/2010-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bobková, L., and M. Hromádko. "Winter wheat Bohemia." Czech Journal of Genetics and Plant Breeding 44, No. 3 (November 4, 2008): 121–22. http://dx.doi.org/10.17221/60/2008-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ondrejčák, F., and D. Muchová. "Winter Wheat Markola." Czech Journal of Genetics and Plant Breeding 42, No. 1 (November 21, 2011): 23–24. http://dx.doi.org/10.17221/6053-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Horčička, P., and A. Hanišová. "Spring Wheat Sirael." Czech Journal of Genetics and Plant Breeding 42, No. 1 (November 21, 2011): 25–26. http://dx.doi.org/10.17221/6054-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rückschloss, L., A. Hanková, and K. Mazúchová. "Winter Wheat Veldava." Czech Journal of Genetics and Plant Breeding 42, No. 1 (November 21, 2011): 27–28. http://dx.doi.org/10.17221/6055-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rückschloss, L., A. Hanková, and K. Mazúchová. "Winter Wheat Pavla." Czech Journal of Genetics and Plant Breeding 42, No. 1 (November 21, 2011): 29–30. http://dx.doi.org/10.17221/6056-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Horčička, P., and A. Hanišová. "Winter Wheat Simila." Czech Journal of Genetics and Plant Breeding 42, No. 2 (November 21, 2011): 73–74. http://dx.doi.org/10.17221/6058-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Šíp, V., J. Chrpová, and L. Bobková. "Winter Wheat Raduza." Czech Journal of Genetics and Plant Breeding 42, No. 4 (November 21, 2011): 147–48. http://dx.doi.org/10.17221/6061-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ohnoutka, Z. "Winter Wheat Evelina." Czech Journal of Genetics and Plant Breeding 41, No. 1 (November 21, 2011): 31–32. http://dx.doi.org/10.17221/6071-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Ohnoutka, Z. "Winter Wheat Ines." Czech Journal of Genetics and Plant Breeding 41, No. 1 (November 21, 2011): 33–34. http://dx.doi.org/10.17221/6072-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Bobková, L. "Spring wheat Granny." Czech Journal of Genetics and Plant Breeding 40, No. 3 (November 23, 2011): 109–10. http://dx.doi.org/10.17221/6092-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Bobková L et, al. "Winter wheat Meritto." Czech Journal of Genetics and Plant Breeding 39, No. 3 (November 23, 2011): 97–98. http://dx.doi.org/10.17221/6102-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Hanišová, A., and P. Horčička. "Winter wheat Svitava." Czech Journal of Genetics and Plant Breeding 38, No. 2 (July 30, 2012): 87–88. http://dx.doi.org/10.17221/6117-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bobková, L. "Winter wheat Mladka." Czech Journal of Genetics and Plant Breeding 38, No. 2 (July 30, 2012): 88–89. http://dx.doi.org/10.17221/6118-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Bobková, L., V. Šíp, and M. Škorpík. "Winter wheat Rheia." Czech Journal of Genetics and Plant Breeding 38, No. 2 (July 30, 2012): 90–91. http://dx.doi.org/10.17221/6119-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Laml, P. "Winter Wheat Banquet." Czech Journal of Genetics and Plant Breeding 38, No. 3-4 (August 1, 2012): 137–38. http://dx.doi.org/10.17221/6251-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Laml, P., and J. Pánek. "Winter wheat Baletka." Czech Journal of Genetics and Plant Breeding 44, No. 4 (January 22, 2009): 167–68. http://dx.doi.org/10.17221/74/2008-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Laml, P., and J. Pánek. "Winter wheat Bakfis." Czech Journal of Genetics and Plant Breeding 44, No. 4 (January 22, 2009): 169–70. http://dx.doi.org/10.17221/75/2008-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Horčička, P., A. Hanišová, and O. Veškrna. "Winter wheat Sultan." Czech Journal of Genetics and Plant Breeding 44, No. 2 (June 27, 2008): 81–82. http://dx.doi.org/10.17221/29/2008-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Horčička, P., O. Veškrna, T. Sedláček, and J. Chrpová. "Winter wheat Matylda." Czech Journal of Genetics and Plant Breeding 47, No. 2 (June 2, 2011): 78–80. http://dx.doi.org/10.17221/46/2011-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Horčička, P., O. Veškrna, T. Sedláček, A. Hanzalová, and V. Šíp. "Spring wheat Seance." Czech Journal of Genetics and Plant Breeding 47, No. 4 (December 15, 2011): 182–84. http://dx.doi.org/10.17221/163/2011-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Horčička, P., O. Veškrna, T. Sedláček, and A. Hanzalová. "Spring wheat Dafne." Czech Journal of Genetics and Plant Breeding 48, No. 3 (September 17, 2012): 144–45. http://dx.doi.org/10.17221/175/2012-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Horčička, P., A. Hanišová, and J. Chrpová. "Winter wheat Sakura." Czech Journal of Genetics and Plant Breeding 43, No. 4 (January 7, 2008): 153–55. http://dx.doi.org/10.17221/1899-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Horčička, P., A. Hanišová, O. Veškrna, and A. Hanzalová. "Spring wheat Septima." Czech Journal of Genetics and Plant Breeding 45, No. 4 (December 27, 2009): 175–77. http://dx.doi.org/10.17221/86/2009-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Horčička, P., O. Veškrna, and T. Sedláček. "Winter wheat Seladon." Czech Journal of Genetics and Plant Breeding 46, No. 3 (October 14, 2010): 142–44. http://dx.doi.org/10.17221/101/2010-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Horčička, P., O. Veškrna, T. Sedláček, and J. Chrpová. "Winter wheat Elly." Czech Journal of Genetics and Plant Breeding 46, No. 4 (December 14, 2010): 183–85. http://dx.doi.org/10.17221/125/2010-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Dumalasová, V., and P. Bartoš. "Reaction of wheat, alternative wheat and triticale cultivars to common bunt." Czech Journal of Genetics and Plant Breeding 46, No. 1 (March 4, 2010): 14–20. http://dx.doi.org/10.17221/73/2009-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
 Seventeen winter wheat cultivars registered in the Czech Republic were tested for reaction to common bunt in 2–3 year field trials. Bunt infection of resistant checks Globus and Bill varied between 4.1% and 10.6%; the highest infection in cv. Pitbull reached 85.9%. Of the recently registered cultivars Nikol has a relatively low bunt incidence (26.9%). In addition to bread wheat seventeen triticale, seven durum wheat cultivars, two spelt wheat cultivars and one emmer wheat cultivar were tested in the field and some of them also in the greenhouse. Bunt infection of durum wheats was lower than that of bread wheat cultivars. All seventeen tested triticale cultivars were resistant. The reaction of emmer wheat cultivar and spelt wheat cultivars to common bunt was lower than that of susceptible bread wheat checks.
30

Mugera, Amin W., Reece Curwen, and Ben White. "Deregulation of the Australian Wheat Export Market: What Happened to Wheat Prices?" Journal of International Food & Agribusiness Marketing 28, no. 1 (January 2, 2016): 18–34. http://dx.doi.org/10.1080/08974438.2014.940125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

LAWLOR, DAVID W. "Wheat and Wheat Improvement." Soil Science 146, no. 4 (October 1988): 292–93. http://dx.doi.org/10.1097/00010694-198810000-00010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ni, J., B. Feng, Z. Xu, and T. Wang. "Dynamic changes of wheat quality during grain filling in waxy wheat WX12." Czech Journal of Genetics and Plant Breeding 47, Special Issue (October 20, 2011): S182—S185. http://dx.doi.org/10.17221/3277-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Changes of quality traits such as grain sugar, starch, and protein content in full waxy and normal wheat in field grown samples was studied during grain filling. Compared to the normal line, the soluble sugar, sucrose and pentosan contents were higher in the waxy isoline. The highest pentosan content in waxy wheat was 22&ndash;27 days after flowering (DAF), while the highest fructan content was 7&ndash;12 DAF. In addition, the quality dynamic changes of two wheat lines were similar except for starch content during grain filling, the V<sub>max</sub> of starch synthesis were highest at 17&ndash;22 DAF in the waxy line, while this was at 22&ndash;27 DAF in the normal line. The results indicated that according to the different dynamic changes between waxy and common wheat, the quality of waxy wheat may be improved by optimum cultivation measures.
33

Han, J. H., and B. Ahn. "Multiple-regime price transmission between wheat and wheat flour prices in Korea." Agricultural Economics (Zemědělská ekonomika) 61, No. 12 (June 6, 2016): 552–63. http://dx.doi.org/10.17221/47/2015-agricecon.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Leszczyńska, J., A. Diowksz, A. LĄcka, K. Wolska, and A. Bartos. "Evaluation of immunore activity of wheat bread made from fermented wheat flour." Czech Journal of Food Sciences 30, No. 4 (June 13, 2012): 336–42. http://dx.doi.org/10.17221/137/2011-cjfs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Combined culture of lactic acid bacteria (Lactobacillus brevis, L. plantarum i L. sanfranciscencis) and baker&rsquo;s yeasts was used in order to reduce immunoreactivity of gluten from wheat. Flour and dough samples were analysed in terms of lactic acid fermentation and thermal processing. Their immunoreactivity was determined with ELISA method using both anti-gliadin antibodies from patients suffering from coeliac disease and rabbit anti-QQQPP peptide (main epitope of flour allergen) antibodies. Also, immunoreactivity was measured in the final products after simulated digestion. The obtained total effectiveness of the fermentation and digestion processes amounted to less than 30% relative to immunoreactivity of human anti-gliadin antibodies and less than 10% relative to immunoreactivity of anti-QQQPP peptide antibodies as compared to the baking made with non-fermented flour. &nbsp;
35

Savchenko, K. G., L. M. Carris, J. Demers, D. S. Manamgoda, and L. A. Castlebury. "What causes flag smut of wheat?" Plant Pathology 66, no. 7 (February 13, 2017): 1139–48. http://dx.doi.org/10.1111/ppa.12657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Hanišová, A., and P. Horčička. "Spring wheat variety Zuzana." Czech Journal of Genetics and Plant Breeding 39, No. 1 (November 23, 2011): 25–26. http://dx.doi.org/10.17221/6097-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Švec, I., and M. Hrušková. "Wheat flour fermentation study." Czech Journal of Food Sciences 22, No. 1 (November 16, 2011): 17–23. http://dx.doi.org/10.17221/3402-cjfs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fermentograph and baking properties of 98 wheat flour samples (two sets of commercial and one set of variety) were evaluated in the form of fermented dough. Analytical traits (ash and protein contents, wet gluten, Falling Number, Zeleny sedimentation value), fermentograph parameters (gases volume, the volume of dough and the time of its max. increase), and the laboratory baking test were used for the characterisation of flours and doughs. Differences found between the two commercial flour sets were small and were influenced by the year of harvest. Significant differences were found between commercial and variety flours both in the fermentograph behaviour and in the baking test results. Lower dough volumes and lower bread specific volumes for variety flours in comparison with commercial ones were caused by a worse quality of proteins. Statistical analysis on significance level 99% showed correlations between the gases volume and the dough volume &lt;i&gt;r&lt;/i&gt; = 0.5264), between the gases volume and the time of dough maximum (&lt;i&gt;r&lt;/i&gt; = &ndash;0.7689), and between the dough volume and the specific volume of bread (&lt;i&gt;r&lt;/i&gt;&nbsp;=&nbsp;0.5452). &nbsp;
38

Ren, Z., Z. Li, L. Shi, X. Wang, L. Zhu, X. Li, and D. Liu. "Molecular identification of wheat leaf rust resistance genes in sixty Chinese wheat cultivars." Czech Journal of Genetics and Plant Breeding 54, No. 1 (March 20, 2018): 1–8. http://dx.doi.org/10.17221/6/2016-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Common wheat (Triticum aestivum L.) is the major crop cultivated in Xinjiang and Anhui provinces of China. The climate in these two provinces is favourable for wheat leaf rust (Puccinia triticina) (Pt) infection. Here, we demonstrate a detailed investigation on the leaf rust resistance of 60 major wheat cultivars cultivated in these two regions. A mixture of high virulent Pt races (THTT, THTS, THTQ and PHPS) were used to phenotype all the collected wheat cultivars at an adult plant stage. Phenotypic disease severity (FDS) and the area under the disease progress curve (AUDPC) for each of these wheat cultivars were calculated. Among all the tested wheat cultivars, three cultivars (Xindong20, Xindong 29 and 99AR142-1) with the lowest FDS and AUDPC may carry major resistance genes. Twenty-seven cultivars (45% of the total tested ones) showed a relatively lower resistance with an average of 12.52% FDS and 126.3 AUDPC. Minor resistance or slow rusting genes may be present in this group of cultivars. Molecular markers for leaf rust resistance genes Lr1, Lr9, Lr19, Lr24, Lr26 and Lr34 were further used for the genotypic screening. Lr1, Lr19, Lr26 and Lr34 were detected in 19 (31.7%), 1 (1.7%), 12 (20%) and 6 (10%) wheat cultivars, respectively. Neither Lr9 nor Lr24 could be detected in any of the tested cultivars. These results will greatly improve wheat molecular breeding for leaf rust resistance in these areas.
39

Bartoš, P., V. Šíp, A. Hanzalová, L. Kučera, J. Ovesná, J. Valkoun, J. Chrpová, et al. "Utilization of wild relatives and primitive forms of wheat in Czech wheat breeding." Czech Journal of Genetics and Plant Breeding 41, Special Issue (July 31, 2012): 284–87. http://dx.doi.org/10.17221/6192-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Cejnar, Pavel, Ludmila Ohnoutková, Jan Ripl, and Jiban Kumar Kundu. "Wheat dwarf virus infectious clones allow to infect wheat and Triticum monococcum plants." Plant Protection Science 55, No. 2 (February 17, 2019): 81–89. http://dx.doi.org/10.17221/42/2018-pps.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We constructed Wheat dwarf virus (WDV) infectious clones in the bacterial plasmids pUC18 and pIPKb002 and tested their ability to inoculate plants using Bio-Rad Helios Gene Gun biolistic inoculation method and Agrobacterium tumefaciens agroinoculation method, and we then compared them with the natural inoculation method via viruliferous P. alienus. Infected plants were generated using both infectious clones, whereas the agroinoculation method was able to produce strong systemic infection in all three tested cultivars of wheat and Triticum monococcum, comparable to plants inoculated by viruliferous P. alienus. Infection was confirmed by DAS-ELISA, and WDV titres were quantified using qPCR. The levels of remaining bacterial plasmid DNA were also confirmed to be zero.
41

Širlová, L., J. Vacke, and M. Chaloupková. "Reaction of selected winter wheat varieties to autumnal infection with Wheat dwarf virus." Plant Protection Science 41, No. 1 (February 8, 2010): 1–7. http://dx.doi.org/10.17221/2732-pps.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The response of 25 registered winter wheat varieties to autumnal infection with Wheat dwarf virus (WDV) was studied in small plot trials in two years. The materials were infected by vectors, leafhopper Psammotettix alienus Dahlbom, 1851 from three-leaf stage to tillering. The symptoms expression was monitored in spring and plant height, weight of above ground biomass and grain yield were observed in summer. All tested varieties were evaluated as susceptible and divided into three groups: varieties Banquet and Svitava with 87.3–93.1% grain yield reduction as moderately susceptible, varieties Clever, Drifter, Niagara and Rialto with 95.6–97.68% grain yield reduction as susceptible and varieties Apache, Batis, Bill, Complet, Contra, Corsaire, Ludwig, Mladka, Nela, Record, Rheia, Semper, Sepstra, Solara, Sulamit, Tower, Trend, Vlasta and Winsdor with 99.7–100% grain yield reduction as very susceptible. Statistically significant differences were observed between moderately susceptible and susceptible varieties as well as very susceptible ones in absorbency values by means of DAS-ELISA.
42

Manne, Vignan, and Kris V. Kowdley. "You are what you wheat: effects of a whole-wheat diet compared with a refined-wheat diet on hepatic steatosis." American Journal of Clinical Nutrition 108, no. 6 (December 1, 2018): 1162–63. http://dx.doi.org/10.1093/ajcn/nqy300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Mason, MG, and IC Rowland. "Nitrogen fertiliser response of wheat in lupin-wheat, subterranean clover-wheat and continuous wheat rotations." Australian Journal of Experimental Agriculture 30, no. 2 (1990): 231. http://dx.doi.org/10.1071/ea9900231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Response of wheat to 7 rates of nitrogen (N) fertiliser was compared in clover-wheat (CW), lupin-wheat (LW) and continuous wheat (WW) rotations, in 4 alternate years on a grey gravelly sand over ironstone gravel at Badgingarra, during the period 1980-87. Nitrogen fertilisers significantly increased wheat grain yields in all assessment years (1981, 1983, 1985 and 1987). There were significant (P<0.05) interactions between rotation and N fertiliser in all years except 1983, with response to N fertiliser on wheat least in the LW rotation. The apparent average increases in N available in wheat dry matter, without added N, were 10.9 kg/ha from clover and 13 kg/ha from lupins. The contributions from clover and lupins in grain N were 10 and 12.3 kg/ha respectively. Organic carbon and total N levels in the soil were similar in the LW and WW rotations but were less than in the CW rotation. The levels of organic carbon in the LW and WW rotations decreased with time. Despite the difference in soil organic carbon and total N, grain yields were similar for the CW and LW rotations in the absence of N fertiliser but were higher than in the WW rotation. It was concluded that a LW rotation (in this environment) would be as effective, at least over a 6-year period, as a CW rotation in maintaining wheat yields due to the contribution of N from readily decomposible residues from the lupin crop. However, highest yields overall where obtained when N fertiliser was added to the CW rotation.
44

Mastrangelo, Anna M., and Luigi Cattivelli. "What Makes Bread and Durum Wheat Different?" Trends in Plant Science 26, no. 7 (July 2021): 677–84. http://dx.doi.org/10.1016/j.tplants.2021.01.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yoshimura, Hirofumi. "What? Wheat Flour can become a Lubricant?" Materia Japan 39, no. 2 (2000): 164–65. http://dx.doi.org/10.2320/materia.39.164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kerby, K., and J. Kuspira. "The phylogeny of the polyploid wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat)." Genome 29, no. 5 (October 1, 1987): 722–37. http://dx.doi.org/10.1139/g87-124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The phylogeny of the polyploid wheats has been the subject of intense research and speculation during the past 70 years. Various experimental approaches have been employed to ascertain the diploid progenitors of these wheats. The species having donated the D genome to Triticum aestivum has been unequivocally identified as Aegilops squarrosa. On the basis of evidence from many studies, Triticum monococcum has been implicated as the source of the A genome in both Triticum turgidum and Triticum aestivum. However, numerous studies since 1968 have shown that Triticum urartu is very closely related to Triticum monococcum and that it also carries the A genome. These studies have prompted the speculation that Triticum urartu may be the donor of this chromosome set to the polyploid wheats. The donor of the B genome to Triticum turgidum and Triticum aestivum remains equivocal and controversial. Six different diploid species have been implicated as putative B genome donors: Aegilops bicornis, Aegilops longissima, Aegilops searsii, Aegilops sharonensis, Aegilops speltoides, and Triticum urartu. Until recently, evidence presented by different researchers had not permitted an unequivocal identification of the progenitor of the B genome in polyploid wheats. Recent studies, involving all diploid and polyploid wheats and putative B genome donors, lead to the conclusion that Aegilops speltoides and Triticum urartu can be excluded as B genome donors and that Aegilops searsii is the most likely source of this chromosome set. The possibility of the B genome having arisen from an AAAA autotetraploid or having a polyphyletic origin is discussed. Key words: phylogeny; Triticum aestivum; Triticum turgidum; A, B, and D genomes.
47

De Bustos, A., R. Pérez, A. Cuadrado, and N. Jouve. "The MRN complex of wheat." Czech Journal of Genetics and Plant Breeding 47, Special Issue (October 20, 2011): S35—S38. http://dx.doi.org/10.17221/3251-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The MRN complex is formed by the interaction of the products of the Mre11, Rad50 and Nbs1 genes. This complex plays a central role on repair of double-strand breaks (DSBs) and acts in a great number of cellular processes. In this study we have performed the analysis of the MRN complex in diploid and polyploid species of wheat. The molecular characterization was carried out in the diploid T. monococcum (genome A) and Ae.&nbsp;tauschii (genome D) and in the tetraploid T. turgidum (genomes A and B). The results obtained showed that in all cases the genes presented the main characteristics previously described in other species. A modified FISH protocol was used to locate the Rad50, Mre11 and the Nbs1 genes on the homoeologous chromosomes 5, 2 and 1, respectively. Analysis of expression showed that the hexaploid T. aestivum was the species with the higher level of expression whereas the rest of the species analysed showed no relation with its ploidy. Also, quantification of the expression of each homoeologous gene in the polyploid species evidenced in some cases a process of silencing after polyploidization. The study of the interaction between the proteins demonstrated that the interaction of proteins was not restricted to each genome, detecting interaction between proteins belonging to different genomes.
48

De Almeida, J. L., and G. Dos Santos Portes Silva. "Predicting cookie wheat germplasm performance." Czech Journal of Genetics and Plant Breeding 47, Special Issue (October 20, 2011): S178—S181. http://dx.doi.org/10.17221/3276-cjgpb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Compared to the large effort spent developing Brazilian bread wheat cultivars, relatively few soft wheat cultivars for cookie flour were released in this country in the recent years. The objective of this study is to propose a model to predict wheat cultivars with improved manufacturing quality for the cookie industry while maintaining production for the growers. A database was compiled originally with 1674 entries with field, milling and flour quality parameters from the year 2000 to 2008 crop seasons. The critical specifications of 14&nbsp;commercial cookie flours were compared and it was determined that the variables farinograph water absorption appeared in 14 out of 41 specifications (34.1%), alveograph strength appeared in 13 out of 41 specifications (31.7%), wet gluten appeared in 11 out of 41 specifications (26.8%), alveograph tenacity appeared in two out of 41 specifications (4.9%), and alveograph dough extensibility appeared in one out of 41 specifications (2.5%). Using frequency percentages as model coefficients a Brazilian Cookie Wheat Score Model was proposed:<br />BCWS&nbsp;=ABS&nbsp;&times; 0.341 + W &times; 0.317 + WG &times; 0.268 + P &times; 0.049 + L &times; 0.025. The ideal score for a wheat genotype to be classified as cookie wheat for the Brazilian market is within the optimum interval from 56.1 to 81.2. To validate this model and its proposed interval, 277 wheat entries from the 2008 crop year were tested under the following conditions: first, wheat genotypes that yielded less than the average of bread wheat genotypes were discharged; second, wheat genotypes without the full set of values for the model variables were discharged. Twenty wheat genotypes, out of 277, were within the optimum interval and were proposed as wheat genotypes to produce cookie flour. The validation results indicated that, using the BCWS Model, along with the established conditions, a wheat breeder will have 75% chance of finding a potential cultivar with acceptable cookie functionality from a set of experimental lines.
49

Diekmann, Florian. "Wheat." Journal of Agricultural & Food Information 10, no. 4 (October 26, 2009): 289–99. http://dx.doi.org/10.1080/10496500903245404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Steen, Bill. "Wheat." Journal of the Southwest 54, no. 4 (2012): 621–33. http://dx.doi.org/10.1353/jsw.2012.0028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії