Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Weakening of the geomagnetic field.

Статті в журналах з теми "Weakening of the geomagnetic field"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Weakening of the geomagnetic field".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Brown, Maxwell, Monika Korte, Richard Holme, Ingo Wardinski, and Sydney Gunnarson. "Earth’s magnetic field is probably not reversing." Proceedings of the National Academy of Sciences 115, no. 20 (April 30, 2018): 5111–16. http://dx.doi.org/10.1073/pnas.1722110115.

Повний текст джерела
Анотація:
The geomagnetic field has been decaying at a rate of ∼5% per century from at least 1840, with indirect observations suggesting a decay since 1600 or even earlier. This has led to the assertion that the geomagnetic field may be undergoing a reversal or an excursion. We have derived a model of the geomagnetic field spanning 30–50 ka, constructed to study the behavior of the two most recent excursions: the Laschamp and Mono Lake, centered at 41 and 34 ka, respectively. Here, we show that neither excursion demonstrates field evolution similar to current changes in the geomagnetic field. At earlier times, centered at 49 and 46 ka, the field is comparable to today’s field, with an intensity structure similar to today’s South Atlantic Anomaly (SAA); however, neither of these SAA-like fields develop into an excursion or reversal. This suggests that the current weakened field will also recover without an extreme event such as an excursion or reversal. The SAA-like field structure at 46 ka appears to be coeval with published increases in geomagnetically modulated beryllium and chlorine nuclide production, despite the global dipole field not weakening significantly in our model during this time. This agreement suggests a greater complexity in the relationship between cosmogenic nuclide production and the geomagnetic field than is commonly assumed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roman, Adam, and Barbara Tombarkiewicz. "Prolonged weakening of the geomagnetic field (GMF) affects the immune system of rats." Bioelectromagnetics 30, no. 1 (January 2009): 21–28. http://dx.doi.org/10.1002/bem.20435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ben-Yosef, Erez, Michael Millman, Ron Shaar, Lisa Tauxe, and Oded Lipschits. "Six centuries of geomagnetic intensity variations recorded by royal Judean stamped jar handles." Proceedings of the National Academy of Sciences 114, no. 9 (February 13, 2017): 2160–65. http://dx.doi.org/10.1073/pnas.1615797114.

Повний текст джерела
Анотація:
Earth’s magnetic field, one of the most enigmatic physical phenomena of the planet, is constantly changing on various time scales, from decades to millennia and longer. The reconstruction of geomagnetic field behavior in periods predating direct observations with modern instrumentation is based on geological and archaeological materials and has the twin challenges of (i) the accuracy of ancient paleomagnetic estimates and (ii) the dating of the archaeological material. Here we address the latter by using a set of storage jar handles (fired clay) stamped by royal seals as part of the ancient administrative system in Judah (Jerusalem and its vicinity). The typology of the stamp impressions, which corresponds to changes in the political entities ruling this area, provides excellent age constraints for the firing event of these artifacts. Together with rigorous paleomagnetic experimental procedures, this study yielded an unparalleled record of the geomagnetic field intensity during the eighth to second centuries BCE. The new record constitutes a substantial advance in our knowledge of past geomagnetic field variations in the southern Levant. Although it demonstrates a relatively stable and gradually declining field during the sixth to second centuries BCE, the new record provides further support for a short interval of extreme high values during the late eighth century BCE. The rate of change during this “geomagnetic spike” [defined as virtual axial dipole moment > 160 ZAm2 (1021 Am2)] is further constrained by the new data, which indicate an extremely rapid weakening of the field (losing ∼27% of its strength over ca. 30 y).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pavlov, A. V., S. Fukao, and S. Kawamura. "A modeling study of ionospheric F2-region storm effects at low geomagnetic latitudes during 17-22 March 1990." Annales Geophysicae 24, no. 3 (May 19, 2006): 915–40. http://dx.doi.org/10.5194/angeo-24-915-2006.

Повний текст джерела
Анотація:
Abstract. We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2, which were observed in the low-latitude ionosphere simultaneously by the Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders, by the middle and upper atmosphere (MU) radar during 17-22 March 1990, and by the Arecibo radar for the time period of 20-22 March 1990. A comparison between the electron and ion temperatures measured by the MU and Arecibo radars and those produced by the model of the ionosphere and plasmasphere is presented. The empirical zonal electric field, the meridional neutral wind taken from the HWM90 wind model, and the NRLMSISE-00 neutral temperature and densities are corrected so that the model results agree reasonably with the ionospheric sounder observations, and the MU and Arecibo radar data. It is proved that the nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess (1997) or Scherliess and Fejer (1999)), in combination with the corrected wind-induced plasma drift along magnetic field lines, provides the development of the nighttime enhancements in NmF2 observed over Manila during 17-22 March 1990. As a result, the new physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator includes the nighttime weakening of the equatorial zonal electric field and equatorward nighttime plasma drift along magnetic field lines caused by neutral wind in the both geomagnetic hemispheres. It is found that the latitudinal positions of the crests depend on the E×B drift velocity and on the neutral wind velocity. The relative role of the main mechanisms of the equatorial anomaly suppression observed during geomagnetic storms is studied for the first time in terms of storm-time variations of the model crest-to-trough ratios of the equatorial anomaly. During most of the studied time period, a total contribution from meridional neutral winds and variations in the zonal electric field to the equatorial anomaly changes is larger than that from geomagnetic storm disturbances in the neutral temperature and densities. Vibrationally excited N2 and O2 promote the equatorial anomaly enhancement during the predominant part of the studied time period, however, the role of vibrationally excited N2 and O2 in the development of the equatorial anomaly is not significant. The asymmetries in the neutral wind and densities relative to the geomagnetic equator are responsible for the north-south asymmetry in NmF2 and hmF2, and for the asymmetry between the values of the crest-to-trough ratios of the Northern and Southern Hemispheres. The model simulations provide evidence in favor of an asymmetry in longitude of the energy input into the auroral region of the Northern Hemisphere on 21 March 1990.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhou, Xu, XinAn Yue, Han-Li Liu, Yong Wei, and YongXin Pan. "Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations." Earth and Planetary Physics 5, no. 4 (2021): 1–10. http://dx.doi.org/10.26464/epp2021040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pavlov, A. V., S. Fukao, and S. Kawamura. "<i>F</i>-region ionospheric perturbations in the low-latitude ionosphere during the geomagnetic storm of 25-27 August 1987." Annales Geophysicae 22, no. 10 (November 3, 2004): 3479–501. http://dx.doi.org/10.5194/angeo-22-3479-2004.

Повний текст джерела
Анотація:
Abstract. We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2 which were observed at the equatorial anomaly crest and close to the geomagnetic equator simultaneously by the Akita, Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper atmosphere (MU) radar (34.85° N, 136.10° E) during the 25-27 August 1987 geomagnetically storm-time period at low solar activity near 201°, geomagnetic longitude. A comparison between the electron and ion temperatures measured by the MU radar and those produced by the model of the ionosphere and plasmasphere is presented. The corrections of the storm-time zonal electric field, EΛ, from 16:30 UT to 21:00 UT on 25 August bring the modeled and measured hmF2 into reasonable agreement. In both hemispheres, the meridional neutral wind, W, taken from the HWW90 wind model and the NRLMSISE-00 neutral temperature, Tn, and densities are corrected so that the model results agree with the ionospheric sounders and MU radar observations. The geomagnetic latitude variations in NmF2 on 26 August differ significantly from those on 25 and 27 August. The equatorial plasma fountain undergoes significant inhibition on 26 August. This suppression of the equatorial anomaly on 26 August is not due to a reduction in the meridional component of the plasma drift perpendicular to the geomagnetic field direction, but is due to the action of storm-time changes in neutral winds and densities on the plasma fountain process. The asymmetry in W determines most of the north-south asymmetry in hmF2 and NmF2 on 25 and 27 August between about 01:00-01:30 UT and about 14:00 UT when the equatorial anomaly exists in the ionosphere, while asymmetries in W, Tn, and neutral densities relative to the geomagnetic equator are responsible for the north-south asymmetry in NmF2 and hmF2 on 26 August. A theory of the primary mechanisms causing the morning and evening peaks in the electron temperature, Te, is developed. An appearance, magnitude variations, latitude variations, and a disappearance of the morning Te peaks during 25-27 August are caused by variations in EΛ, thermospheric composition, Tn, and W. The magnitude of the evening Te peak and its time location are decreased with the lowering of the geomagnetic latitude due to the weakening of the effect of the plasma drift caused by W on the electron density. The difference between 25 August and 26-27 August in an appearance, magnitude and latitude variations, and a disappearance of the evening Te peak is caused by variations in W, the thermospheric composition, Tn, and EΛ.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Subrahmanyam, P., A. R. Jain, L. Singh, and S. C. Garg. "Role of neutral wind and storm time electric fields inferred from the storm time ionization distribution at low latitudes: in-situ measurements by Indian satellite SROSS-C2." Annales Geophysicae 23, no. 10 (November 30, 2005): 3289–99. http://dx.doi.org/10.5194/angeo-23-3289-2005.

Повний текст джерела
Анотація:
Abstract. Recently, there has been a renewal of interest in the study of the effects of solar weather events on the ionization redistribution and irregularity generation. The observed changes at low and equatorial latitudes are rather complex and are noted to be a function of location, the time of the storm onset and its intensity, and various other characteristics of the geomagnetic storms triggered by solar weather events. At these latitudes, the effects of geomagnetic storms are basically due to (a) direct penetration of the magnetospheric electric fields to low latitudes, (b) development of disturbance dynamo, (c) changes in atmospheric neutral winds at ionospheric level and (d) changes in neutral composition triggered by the storm time atmospheric heating. In the present study an attempt is made to further understand some of the observed storm time effects in terms of storm time changes in zonal electric fields and meridional neutral winds. For this purpose, observations made by the Retarding Potential Analyzer (RPA) payload on board the Indian satellite SROSS-C2 are examined for four prominent geomagnetic storm events that occurred during the high solar activity period of 1997-2000. Available simultaneous observations, from the GPS satellite network, are also used. The daytime passes of SROSS-C2 have been selected to examine the redistribution of ionization in the equatorial ionization anomaly (EIA) region. In general, EIA is observed to be weakened 12-24 h after the main phase onset (MPO) of the storm. The storm time behaviour inferred by SROSS-C2 and the GPS satellite network during the geomagnetic storm of 13 November 1998, for which simultaneous observations are available, is found to be consistent. Storm time changes in the delay of received GPS signals are noted to be ~1-3 m, which is a significant component of the total delay observed on a quiet day. An attempt is made to identify and delineate the effects of a) meridional neutral winds, b) the development of the ring currents and c) the disturbance dynamo electric fields on the low latitude ionization distribution. The weakening of the EIA is noted to be primarily due to the decrease in the eastward electric fields driving the equatorial fountain during the daytime. The meridional neutral winds are also noted to play an important role in redistribution of ionization in the EIA region. The present results demonstrate that storm time latitudinal distribution of ionization in this region can be better understood by taking into account the meridional winds in addition to E×B drifts.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kauristie, K., M. V. Uspensky, N. G. Kleimenova, O. V. Kozyreva, M. M. J. L. Van De Kamp, S. V. Dubyagin, and S. Massetti. "Equivalent currents associated with morning-sector geomagnetic Pc5 pulsations during auroral substorms." Annales Geophysicae 34, no. 4 (April 7, 2016): 379–92. http://dx.doi.org/10.5194/angeo-34-379-2016.

Повний текст джерела
Анотація:
Abstract. Space and time variations of equivalent currents during morning-sector Pc5 pulsations (T ∼ 2–8 min) on 2 days (18 January and 19 February 2008) are studied in the context of substorm activity with THEMIS and MIRACLE ground-based instruments and THEMIS P3, P5, and P2 probes. These instruments covered the 22:00–07:00 magnetic local time during the analyzed events. In these cases abrupt changes in the Pc5 amplitudes, intensifications and/or weakenings, were recorded some minutes after auroral breakups in the midnight sector. We analyze three examples of Pc5 changes with the goal to resolve whether substorm activity can have an effect on Pc5 amplitude or not. In two cases (on 19 February) the most likely explanation for Pc5 amplitude changes comes from the solar wind (changes in the sign of interplanetary magnetic field Bz). In the third case (on 18 January) equivalent current patterns in the morning sector show an antisunward-propagating vortex which replaced the Pc5-related smaller vortices and consequently the pulsations weakened. We associate the large vortex with a field-aligned current system due to a sudden, although small, drop in solar wind pressure (from 1 to 0.2 nPa). However, the potential impact of midnight substorm activity cannot be totally excluded in this case, because enhanced fluxes of electrons with high enough energies (∼ 280 keV) to reach the region of Pc5 within the observed delay were observed by THEMIS P2 at longitudes between the midnight and morning-sector instrumentation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Amrhein, Marco, Philip Krein, Patrick Chapman, and Brenda Fierro. "Field Weakening Alternative." IEEE Industry Applications Magazine 13, no. 6 (November 2007): 28–37. http://dx.doi.org/10.1109/mia.2007.907208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jurica, Jan. "Geomagnetic field mapping." Journal of the ASB Society 1, no. 1 (December 28, 2020): 22–29. http://dx.doi.org/10.51337/jasb20201228003.

Повний текст джерела
Анотація:
This work focuses on creating maps of the geomagnetic field and areas of increased cosmic radiation surrounding the Earth. Data were measured by Proba-V satellite at Low-Earth orbit 820 kilometres above the Earth during 2015. The actual measured data were compared with the calculated magnetic values. The created maps serve to a better understanding of the shape of the geomagnetic field and show magnetic equator, north magnetic pole and more. The map confirms that the area of the South Atlantic Anomaly corresponds with the weakest area of the geomagnetic field. Maps of different time periods of 2015 show small changes in the shape of the geomagnetic field during a year. Increased attention was paid to June 2015, when solar flares were passing near the Earth. The observation confirms that solar flares have a significant effect on the shape of the geomagnetic field.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Palacios, Angel Fierros. "The Geomagnetic Field." Journal of High Energy Physics, Gravitation and Cosmology 02, no. 01 (2016): 33–40. http://dx.doi.org/10.4236/jhepgc.2016.21004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

BARRACLOUGH, D. R. "Modelling the geomagnetic field." Journal of geomagnetism and geoelectricity 42, no. 9 (1990): 1051–70. http://dx.doi.org/10.5636/jgg.42.1051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kalegaev, V. V. "Dynamic geomagnetic field models." Geomagnetism and Aeronomy 51, no. 7 (December 2011): 855–65. http://dx.doi.org/10.1134/s0016793211070073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Henderson, Roger. "Biological geomagnetic field sensing." Preview 2021, no. 210 (January 2, 2021): 34–36. http://dx.doi.org/10.1080/14432471.2021.1880118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

GAO, Jin-Tian, Zhen-Chang AN, Zuo-Wen GU, Wei HAN, Zhi-Jia ZHAN, and Tong-Qi YAO. "Selection of the Geomagnetic Normal Field and Calculation of Geomagnetic Anomalous Field." Chinese Journal of Geophysics 48, no. 1 (January 2005): 66–73. http://dx.doi.org/10.1002/cjg2.627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Liu, Huixin, and Mamoru Yamamoto. "Weakening of the mid-latitude summer nighttime anomaly during geomagnetic storms." Earth, Planets and Space 63, no. 4 (April 2011): 371–75. http://dx.doi.org/10.5047/eps.2010.11.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

HAINES, G. V., and L. R. NEWITT. "Canadian geomagnetic reference field 1985." Journal of geomagnetism and geoelectricity 38, no. 9 (1986): 895–921. http://dx.doi.org/10.5636/jgg.38.895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Gmitrov, J., and C. Ohkubo. "Geomagnetic Field Decreases Cardiovascular Variability." Electro- and Magnetobiology 18, no. 3 (January 1999): 291–303. http://dx.doi.org/10.3109/15368379909022585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Korte, Monika, Catherine Constable, Fabio Donadini, and Richard Holme. "Reconstructing the Holocene geomagnetic field." Earth and Planetary Science Letters 312, no. 3-4 (December 2011): 497–505. http://dx.doi.org/10.1016/j.epsl.2011.10.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Cillis, A., and S. J. Sciutto. "Air showers and geomagnetic field." Journal of Physics G: Nuclear and Particle Physics 26, no. 3 (February 17, 2000): 309–21. http://dx.doi.org/10.1088/0954-3899/26/3/309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

WEI, Zigang. "Differential rotation of geomagnetic field." Chinese Science Bulletin 48, no. 24 (2003): 2739. http://dx.doi.org/10.1360/03wd0060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Showstack, Randy. "Updated International Geomagnetic Reference Field." Eos, Transactions American Geophysical Union 91, no. 16 (April 20, 2010): 142. http://dx.doi.org/10.1029/2010eo160003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Anonymous. "Geomagnetic field: A new look." Eos, Transactions American Geophysical Union 66, no. 20 (1985): 441. http://dx.doi.org/10.1029/eo066i020p00441-01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Mandea, Mioara, Susan Macmillan, Tatiana Bondar, Vadim Golovkov, Benoit Langlais, Frank Lowes, Nils Olsen, John Quinn, and Terry Sabaka. "International geomagnetic reference field — 2000." Physics of the Earth and Planetary Interiors 120, no. 1-2 (June 2000): 39–42. http://dx.doi.org/10.1016/s0031-9201(00)00153-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Voorhies, Coerte V. "The time-varying geomagnetic field." Reviews of Geophysics 25, no. 5 (1987): 929. http://dx.doi.org/10.1029/rg025i005p00929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Prodanovic, Goran. "Mathematical analysis of geomagnetic field." Vojnotehnicki glasnik, no. 1 (2006): 88–96. http://dx.doi.org/10.5937/vojtehg0601088p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

McFadden, P. L., and R. T. Merrill. "Inhibition and geomagnetic field reversals." Journal of Geophysical Research: Solid Earth 98, B4 (April 10, 1993): 6189–99. http://dx.doi.org/10.1029/92jb02574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wei, Zigang, and Wenyao Xu. "Differential rotation of geomagnetic field." Chinese Science Bulletin 48, no. 24 (December 2003): 2739–42. http://dx.doi.org/10.1007/bf02901767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Winch, D. E. "The geomagnetic field and Sq." Exploration Geophysics 17, no. 1 (March 1986): 17–18. http://dx.doi.org/10.1071/eg986017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Pedie, Norman W. "GEOMAG: A Geomagnetic Field Program." Eos, Transactions American Geophysical Union 68, no. 20 (1987): 530. http://dx.doi.org/10.1029/eo068i020p00530-03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Barton, C. E., A. J. McEwin, and P. L. McFadden. "Australian geomagnetic reference field 1985." Eos, Transactions American Geophysical Union 68, no. 43 (1987): 1157. http://dx.doi.org/10.1029/eo068i043p01157-01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kotsiaros, Stavros, and Nils Olsen. "The geomagnetic field gradient tensor." GEM - International Journal on Geomathematics 3, no. 2 (July 24, 2012): 297–314. http://dx.doi.org/10.1007/s13137-012-0041-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Bou-Rabee, F. A., and M. Niazi. "Geomagnetic field reconnaissance in Kuwait." Tectonophysics 190, no. 2-4 (May 1991): 381–87. http://dx.doi.org/10.1016/0040-1951(91)90440-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Mandea, M. "International Geomagnetic Reference Field—2000." Pure and Applied Geophysics 157, no. 10 (October 2000): 1797–802. http://dx.doi.org/10.1007/pl00001062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Olcese, J., S. Reuss, and P. Semm. "Geomagnetic field detection in rodents." Life Sciences 42, no. 6 (January 1988): 605–13. http://dx.doi.org/10.1016/0024-3205(88)90451-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Peddie, Norman W. "International Geomagnetic Reference Field Revision 1985." GEOPHYSICS 51, no. 4 (April 1986): 1020–23. http://dx.doi.org/10.1190/1.1442144.

Повний текст джерела
Анотація:
IAGA Division I, Working Group 1 deals with the topic “Analysis of the Main Field and Secular Variations.” One of the more important functions of the working group is the periodic revision of the International Geomagnetic Reference Field (IGRF). The thirteen members of the working group have professional interests covering a broad spectrum of geomagnetic science, including the theory and practice of geomagnetic analysis and modeling, the theory of the origin of the magnetic fields of the Earth and other bodies, the theory of geomagnetic secular variation, the application of field models in magnetic survey data processing, and geomagnetic charting.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Thomson, Alan W. P., and Vincent Lesur. "An improved geomagnetic data selection algorithm for global geomagnetic field modelling." Geophysical Journal International 169, no. 3 (June 2007): 951–63. http://dx.doi.org/10.1111/j.1365-246x.2007.03354.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Barraclough, D. R. "International Geomagnetic Reference Field Revision 1987." GEOPHYSICS 53, no. 4 (April 1988): 576–78. http://dx.doi.org/10.1190/1.1442493.

Повний текст джерела
Анотація:
The International Geomagnetic Reference Field (IGRF) is a series of mathematical models of the main geomagnetic field and its secular variation, the models consisting of sets of spherical harmonic (or Gauss) coefficients. The IGRF has become a widely used means of deriving values of geomagnetic field components in, for example, studies of magnetic anomalies and investigations of charged particle motions in the ionosphere and the magnetosphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Bhardwaj, S., P. A. Khan, R. Atulkar, and P. K. Purohit. "Variability of Geomagnetic Field with Interplanetary Magnetic Field at Low, Mid and High Latitudes." Journal of Scientific Research 10, no. 2 (May 1, 2018): 133–44. http://dx.doi.org/10.3329/jsr.v10i2.34509.

Повний текст джерела
Анотація:
The fluctuations in the Interplanetary Magnetic Field significantly affect the state of geomagnetic field particularly during the Coronal Mass Ejection (CME) events. In the present investigation we have studied the influence of Interplanetary Magnetic Field changes on the geomagnetic field components at high, low and mid latitudes. To carry out this investigation we have selected three stations viz. Alibag (18.6°N, 72.7°E), Beijing MT (40.3°N, 116.2°E) and Casey (66.2°S, 110.5°E) one each in the low, mid and high latitude regions. Then we selected geomagnetic storm events of three types namely weak (-50≤Dst≤-20), moderate (100≤Dst≤-50) and intense (Dst≤-100nT). In each storm category 10 events were considered. From our study we conclude that geomagnetic field components are significantly affected by the changes in the IMF at all the three latitudinal regions during all the storm events. At the same time we also found that the magnitude of change in geomagnetic field components is highest at the high latitudes during all types of storm events while at low and mid latitude stations the magnitude of effect is approximately the same.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Haines, G. V., and L. R. Newitt. "The Canadian Geomagnetic Reference Field 1995." Journal of geomagnetism and geoelectricity 49, no. 2 (1997): 317–36. http://dx.doi.org/10.5636/jgg.49.317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

HOFFMAN, Kenneth A. "Transitional behavior of the geomagnetic field." Journal of geomagnetism and geoelectricity 37, no. 1 (1985): 139–46. http://dx.doi.org/10.5636/jgg.37.139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

ALLDREDGE, Leroy R. "Novel views of the geomagnetic field." Journal of geomagnetism and geoelectricity 41, no. 6 (1989): 565–71. http://dx.doi.org/10.5636/jgg.41.565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

INTERNATIONAL ASSOCIATION OF GEOMAG. "International Geomagnetic Reference Field, 1991 Revision." Journal of geomagnetism and geoelectricity 43, no. 12 (1991): 1007–12. http://dx.doi.org/10.5636/jgg.43.1007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

De Santis, A., E. Qamili, and G. Cianchini. "Ergodicity of the recent geomagnetic field." Physics of the Earth and Planetary Interiors 186, no. 3-4 (June 2011): 103–10. http://dx.doi.org/10.1016/j.pepi.2011.04.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Merrill, Ronald T., and Phillip L. McFadden. "The geomagnetic axial dipole field assumption." Physics of the Earth and Planetary Interiors 139, no. 3-4 (October 2003): 171–85. http://dx.doi.org/10.1016/j.pepi.2003.07.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Klinowska, M. "Cetacean ‘Navigation’ and the Geomagnetic Field." Journal of Navigation 41, no. 1 (January 1988): 52–71. http://dx.doi.org/10.1017/s037346330000905x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Maus, Stefan, and Susan MacMillan. "10th Generation International Geomagnetic Reference Field." Eos, Transactions American Geophysical Union 86, no. 16 (2005): 159. http://dx.doi.org/10.1029/2005eo160006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Barraclough, D. R. "International Geomagnetic Reference Field Revision 1987." Geophysical Journal International 93, no. 1 (April 1, 1988): 187–89. http://dx.doi.org/10.1111/j.1365-246x.1988.tb01397.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Langel, R. A., R. H. Estes, and T. J. Sabaka. "Uncertainty estimates in geomagnetic field modeling." Journal of Geophysical Research 94, B9 (1989): 12281. http://dx.doi.org/10.1029/jb094ib09p12281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Korte, Monika, and Raimund Muscheler. "Centennial to millennial geomagnetic field variations." Journal of Space Weather and Space Climate 2 (2012): A08. http://dx.doi.org/10.1051/swsc/2012006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії