Добірка наукової літератури з теми "Weak and strong numerical congergence"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Weak and strong numerical congergence".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Weak and strong numerical congergence"
Mosler, J. "Numerical analyses of discontinuous material bifurcation: strong and weak discontinuities." Computer Methods in Applied Mechanics and Engineering 194, no. 9-11 (March 2005): 979–1000. http://dx.doi.org/10.1016/j.cma.2004.06.018.
Повний текст джерелаMavroyannis, Constantine. "A laser-excited three-level atom. II numerical results." Canadian Journal of Physics 68, no. 4-5 (April 1, 1990): 411–21. http://dx.doi.org/10.1139/p90-065.
Повний текст джерелаMužík, Juraj. "Numerical Simulation of the Couette Flow Using Meshless Weak-strong Method." Procedia Engineering 91 (2014): 334–39. http://dx.doi.org/10.1016/j.proeng.2014.12.070.
Повний текст джерелаBunch, James R. "The weak and strong stability of algorithms in numerical linear algebra." Linear Algebra and its Applications 88-89 (April 1987): 49–66. http://dx.doi.org/10.1016/0024-3795(87)90102-9.
Повний текст джерелаEnglert, Roman, and Jörg Muschiol. "Numerical Evidence That the Power of Artificial Neural Networks Limits Strong AI." Advances in Artificial Intelligence and Machine Learning 02, no. 02 (2022): 338–46. http://dx.doi.org/10.54364/aaiml.2022.1122.
Повний текст джерелаHilke, Michael, Mathieu Massicotte, Eric Whiteway, and Victor Yu. "Weak Localization in Graphene: Theory, Simulations, and Experiments." Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/737296.
Повний текст джерелаKerman, R. A. "Strong and Weak Weighted Convergence of Jacobi Series." Journal of Approximation Theory 88, no. 1 (January 1997): 1–27. http://dx.doi.org/10.1006/jath.1996.3005.
Повний текст джерелаNgodock, Hans, Matthew Carrier, Scott Smith, and Innocent Souopgui. "Weak and Strong Constraints Variational Data Assimilation with the NCOM-4DVAR in the Agulhas Region Using the Representer Method." Monthly Weather Review 145, no. 5 (April 17, 2017): 1755–64. http://dx.doi.org/10.1175/mwr-d-16-0264.1.
Повний текст джерелаAbbasian Arani, Ali Akbar, and Majid Dehghani. "Numerical Comparison of Two and Three Dimensional Flow Regimes in Porous Media." Defect and Diffusion Forum 312-315 (April 2011): 427–32. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.427.
Повний текст джерелаSiopacha, Maria, and Josef Teichmann. "Weak and strong Taylor methods for numerical solutions of stochastic differential equations." Quantitative Finance 11, no. 4 (April 2011): 517–28. http://dx.doi.org/10.1080/14697680903493573.
Повний текст джерелаДисертації з теми "Weak and strong numerical congergence"
Campana, Lorenzo. "Modélisation stochastique de particules non sphériques en turbulence." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4019.
Повний текст джерелаThe motion of small non- spherical particles suspended in a turbulent flow is relevant for a large variety of natural and industrial applications such as aerosol dynamics in respiration, red blood cells motion, plankton dynamics, ice in clouds, combustion, to name a few. Anisotropic particles react on turbulent flows in complex ways, which depend on a wide range of parameters (shape, inertia, fluid shear). Inertia-free particles, with size smaller than the Kolmogorov length, follow the fluid motion with an orientation generally defined by the local turbulent velocity gradient. Therefore, this thesis is focused on the dynamics of these objects in turbulence exploiting stochastic Lagrangian methods. The development of a model that can be used as predictive tool in industrial computational fluid dynamics (CFD) is highly valuable for practical applications in engineering. Models that reach an acceptable compromise between simplicity and accuracy are needed for progressing in the field of medical, environmental and industrial processes. The formulation of a stochastic orientation model is studied in two-dimensional turbulent flow with homogeneous shear, where results are compared with direct numerical simulations (DNS). Finding analytical results, scrutinising the effect of the anisotropies when they are included in the model, and extending the notion of rotational dynamics in the stochastic framework, are subjects addressed in our work. Analytical results give a reasonable qualitative response, even if the diffusion model is not designed to reproduce the non-Gaussian features of the DNS experiments. The extension to the three-dimensional case showed that the implementation of efficient numerical schemes in 3D models is far from straightforward. The introduction of a numerical scheme with the capability to preserve the dynamics at reasonable computational costs has been devised and the convergence analysed. A scheme of splitting decomposition of the stochastic differential equations (SDE) has been developed to overcome the typical instability problems of the Euler–Maruyama method, obtaining a mean-square convergence of order 1/2 and a weakly convergence of order 1, as expected. Finally, model and numerical scheme have been implemented in an industrial CFD code (Code_Saturne) and used to study the orientational and rotational behaviour of anisotropic inertia-free particles in an applicative prototype of inhomogeneous turbulence, i.e. a turbulent channel flow. This real application has faced two issues of the modelling: the numerical implementation in an industrial code, and whether and to which extent the model is able to reproduce the DNS experiments. The stochastic Lagrangian model for the orientation in the CFD code reproduces with some limits the orientation and rotation statistics of the DNS. The results of this study allows to predict the orientation and rotation of aspherical particles, giving new insight into the prediction of large scale motions both, in two-dimensional space, of interest for geophysical flows, and in three-dimensional industrial applications
Thomas, Nicolas. "Stochastic numerical methods for Piecewise Deterministic Markov Processes : applications in Neuroscience." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS385.
Повний текст джерелаIn this thesis, motivated by applications in Neuroscience, we study efficient Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods based on the thinning for piecewise deterministic (Markov) processes (PDMP or PDP) that we apply to stochastic conductance-based models. On the one hand, when the deterministic motion of the PDMP is explicitly known we end up with an exact simulation. On the other hand, when the deterministic motion is not explicit, we establish strong estimates and a weak error expansion for the numerical scheme that we introduce. The thinning method is fundamental in this thesis. Beside the fact that it is intuitive, we use it both numerically (to simulate trajectories of PDMP/PDP) and theoretically (to construct the jump times and establish error estimates for PDMP/PDP)
He, Yu. "Flameless Combustion of Natural Gas in the SJ/WJ Furnace." Thesis, 2008. http://hdl.handle.net/1974/1084.
Повний текст джерелаThesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2008-04-04 11:25:25.455
Частини книг з теми "Weak and strong numerical congergence"
Feireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Weak-Strong Uniqueness Principle." In Numerical Analysis of Compressible Fluid Flows, 187–208. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_6.
Повний текст джерелаFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Weak and Strong Convergence." In Numerical Analysis of Compressible Fluid Flows, 211–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_7.
Повний текст джерелаNguyen, Vinh Phu, and Stéphane Bordas. "Extended Isogeometric Analysis for Strong and Weak Discontinuities." In Isogeometric Methods for Numerical Simulation, 21–120. Vienna: Springer Vienna, 2015. http://dx.doi.org/10.1007/978-3-7091-1843-6_2.
Повний текст джерелаEscalante, C., E. D. Fernández-Nieto, T. Morales de Luna, and G. Narbona-Reina. "Modelling of Bedload Sediment Transport for Weak and Strong Regimes." In Numerical Simulation in Physics and Engineering: Trends and Applications, 179–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62543-6_6.
Повний текст джерелаVinogradov, Alexander, Vladimir Volkov, Vladimir Gidaspov, Alexander Muslaev, and Peter Rozovski. "Adaptive High-Performance Method for Numerical Simulation of Unsteady Complex Flows with Number of Strong and Weak Discontinuities." In Computational Science — ICCS 2001, 511–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45545-0_60.
Повний текст джерелаNielsen, Jens H., Dominik Pentlehner, Lars Christiansen, Benjamin Shepperson, Anders A. Søndergaard, Adam S. Chatterley, James D. Pickering, et al. "Laser-Induced Alignment of Molecules in Helium Nanodroplets." In Topics in Applied Physics, 381–445. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94896-2_9.
Повний текст джерелаBourantas, G. C., G. R. Joldes, A. Wittek, and K. Miller. "Strong- and Weak-Form Meshless Methods in Computational Biomechanics." In Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes, 325–39. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-811718-7.00018-6.
Повний текст джерелаPoulsen, B. A., and H. Guo. "Numerical modeling of longwall coal mining through a weak to strong transition in strength of immediate roof strata." In FLAC and Numerical Modeling in Geomechanics, 287–93. CRC Press, 2020. http://dx.doi.org/10.1201/9781003077527-43.
Повний текст джерелаZinn-Justin, Jean. "The Standard Model (SM) of fundamental interactions." In Quantum Field Theory and Critical Phenomena, 567–92. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0023.
Повний текст джерелаТези доповідей конференцій з теми "Weak and strong numerical congergence"
Li, Heling, Bin Yang, and Hongjun Shen. "The new finite temperature Schrödinger equations with strong or weak interaction." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992279.
Повний текст джерелаShuo, Wang, Ding Yunhua, and Xu Runzhang. "Local well-posedness for nonlinear Klein-Gordon equation with weak and strong damping terms." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756618.
Повний текст джерелаZahiri, S., F. Daneshmand, and M. H. Akbari. "Using Meshfree Weak-Strong Form Method for a 2-D Heat Transfer Problem." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12525.
Повний текст джерелаJoo, Kang-Woo, Jun Young Kim, Kyu Tae Park, and Kwang-Sun Kim. "A Numerical Analysis of the Solar Panel Support Structure on the Weak Ground." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65549.
Повний текст джерелаYamamoto, Makoto, and Masaya Suzuki. "Weak Coupling Strategy for Multi-Physics CFD Simulation in Engineering Problems." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-01012.
Повний текст джерелаde Cacqueray, Nicolas, Martin Seive, and Alain Kernilis. "Comparison Between Weak and Strong Coupling Modeling for Aeroelastic Stability of a Simple Sealing Device." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57752.
Повний текст джерелаLi, Peng, Odd M. Faltinsen, and Marilena Greco. "Wave-Induced Accelerations of a Fish-Farm Elastic Floater: Experimental and Numerical Studies." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23302.
Повний текст джерелаJin, Ming, Bing Ge*, Ting Shi, YuDi Lu, and ShuSheng Zang. "The Effects of Strong-Weak Swirling Interaction on Emissions In a Multi- Nozzle Model Combustor." In GPPS Xi'an21. GPPS, 2022. http://dx.doi.org/10.33737/gpps21-tc-251.
Повний текст джерелаIida, Keiichiro, Yoshimitsu Hashizume, Hiroshi Narita, Long Wu, Ganapathi Balasubramanian, and Bernd Crouse. "Experimental and Numerical Investigation of Automotive Wind Throb Phenomenon." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-23004.
Повний текст джерелаHu, Jiasen, and Torsten H. Fransson. "Numerical Performance of Transition Models in Different Turbomachinery Flow Conditions: A Comparative Study." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0520.
Повний текст джерелаЗвіти організацій з теми "Weak and strong numerical congergence"
HYSTERETIC PERFORMANCE OF WEAK-AXIS CONNECTION WITH I-SHAPED PLATES IN STEEL FRAME. The Hong Kong Institute of Steel Construction, September 2021. http://dx.doi.org/10.18057/ijasc.2021.17.3.1.
Повний текст джерела