Добірка наукової літератури з теми "Waves topology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Waves topology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Waves topology"

1

BUĞDAYCI, NECMI. "SCALAR WAVES IN A WORMHOLE TOPOLOGY." International Journal of Modern Physics D 15, no. 05 (May 2006): 669–93. http://dx.doi.org/10.1142/s0218271806008395.

Повний текст джерела
Анотація:
Global monochromatic solutions of the scalar wave equation are obtained in flat wormholes of dimensions (2+1) and (3+1). The solutions are in the form of infinite series involving cylindrical and spherical wave functions, and they are elucidated by the multiple scattering method. Explicit solutions for some limiting cases are illustrated as well. The results presented in this work constitute instances of solutions of the scalar wave equation in a space–time admitting closed time-like curves.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bokhari, Ahmad H., Abbas Mousavi, Bin Niu, and Eddie Wadbro. "Topology optimization of an acoustic diode?" Structural and Multidisciplinary Optimization 63, no. 6 (February 7, 2021): 2739–49. http://dx.doi.org/10.1007/s00158-020-02832-9.

Повний текст джерела
Анотація:
AbstractBy using topology optimization, we consider the problem of designing a passive acoustic device that allows for one-way flow of sound waves; such a device is often colloquially referred to as an acoustic diode. The Helmholtz equation is used to model the time harmonic linear wave propagation together with a Dirichlet-to-Neumann (DtN) type boundary condition, and the finite element method is used for discretization. The objective of this study is to maximize the wave propagation in one direction (from left to right) and minimize the wave propagation in the reverse direction (from right to left) for planar incoming waves. The method of moving asymptotes (MMA) solves the optimization problem, and a continuation approach is used for the penalizing intermediate design variables. The results for the optimized waveguide show that more than 99.8% of the power of planar incoming waves get transmitted from left to right while less than 0.3% gets transmitted in the reverse direction for planar incoming waves in the specified frequency range. Since a true diode is a non-reciprocal device and here we used a linear acoustic wave model, which is basically reciprocal, we discuss details about how it appears to be possible to obtain a one-way waveguiding effect using this linear model.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hua, Yifei, Chao Qian, Hongsheng Chen, and Huaping Wang. "Experimental topology-optimized cloak for water waves." Materials Today Physics 27 (October 2022): 100754. http://dx.doi.org/10.1016/j.mtphys.2022.100754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hasan, S. S., O. Steiner, and A. van Ballegooijen. "Inferring the chromospheric magnetic topology through waves." Proceedings of the International Astronomical Union 3, S247 (September 2007): 78–81. http://dx.doi.org/10.1017/s1743921308014695.

Повний текст джерела
Анотація:
AbstractThe aim of this work is to examine the hypothesis that the wave propagation time in the solar atmosphere can be used to infer the magnetic topography in the chromosphere as suggested by Finsterle et al. (2004). We do this by using an extension of our earlier 2-D MHD work on the interaction of acoustic waves with a flux sheet. It is well known that these waves undergo mode transformation due to the presence of a magnetic field which is particularly effective at the surface of equipartition between the magnetic and thermal energy density, the β = 1 surface. This transformation depends sensitively on the angle between the wave vector and the local field direction. At the β = 1 interface, the wave that enters the flux sheet, (essentially the fast mode) has a higher phase speed than the incident acoustic wave. A time correlation between wave motions in the non-magnetic and magnetic regions could therefore provide a powerful diagnostic for mapping the magnetic field in the chromospheric network.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shabana, A. A., and W. H. Gau. "Propagation of Impact-Induced Longitudinal Waves in Mechanical Systems With Variable Kinematic Structure." Journal of Vibration and Acoustics 115, no. 1 (January 1, 1993): 1–8. http://dx.doi.org/10.1115/1.2930309.

Повний текст джерела
Анотація:
In previous publications by the authors of this paper it was shown that elastic media become dispersive as the result of the coupling between the finite rotation and the elastic deformation. Impact-induced harmonic waves no longer travel, in a rotating rod, with the same phase velocity and consequently the group velocity becomes dependent on the wave number. In this investigation, the propagation of impact-induced longitudinal waves in mechanical systems with variable kinematic structure is examined. The configuration of the mechanical system is identified using two different sets of modes. The first set describes the system configuration before the change in the system topology, while the second set describes the configuration of the system after the topology changes. In the analysis presented in this investigation, it is assumed that collision between the system components occurs first, followed by a change in the system topology. Both events are assumed to occur in a very short-lived interval of time such that the system configuration does not appreciably change. By using the first set of modes, the jump discontinuity in the system velocities is predicted using the algebraic generalized impulse momentum equations. The propagation of the impact-induced wave motion after the change in the system topology is described using the Fourier method. The series solution obtained is used to examine the effect of the topology change on the propagation of longitudinal elastic waves in constrained mechanical systems. It is shown that, while, for a nonrotating rod, mass capture or mass release has no effect on the phase and group velocities, in rotating rods the phase and group velocities depend on the change in the system topology. In particular the phase velocities of low harmonic longitudinal waves are more affected by the change in the system topology as compared to high frequency harmonic waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rak, Gašper, Marko Hočevar, and Franci Steinman. "Water surface topology of supercritical junction flow." Journal of Hydrology and Hydromechanics 67, no. 2 (June 1, 2019): 163–70. http://dx.doi.org/10.2478/johh-2018-0042.

Повний текст джерела
Анотація:
Abstract The complexity of flow conditions at junctions amplifies significantly with supercritical flow. It is a pronounced three-dimensional two-phased flow phenomenon, where standing waves with non-stationary water surface are formed. To analyse the hydrodynamic conditions at an asymmetric right-angled junction with incoming supercritical flows at Froude numbers between 2 and 12, an experimental approach was used. For a phenomenological determination of the relations between the integral parameters of incoming flows and the characteristics of standing waves at the junction area, water surface topographies for 168 scenarios at the junction were measured using non-intrusive measurement techniques. The new, phenomenologically derived equations allow for determination of location, height and extent of the main standing waves at the junction. Research results give important information on the processes and their magnitude for engineering applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lin, Mengnan, Zhongwei Tian, Siyuan Chang, Kai Cui, and Shulan Dai. "Three-Dimensional Shock Topology Detection Method via Tomographic Reconstruction." Aerospace 10, no. 3 (March 11, 2023): 275. http://dx.doi.org/10.3390/aerospace10030275.

Повний текст джерела
Анотація:
Shock waves and shock-shock interaction are typical phenomena in supersonic or hypersonic flows that have significant impacts on aerodynamic performance. To obtain a comprehensive understanding of the mechanism of shock wave interaction, shock wave detection (SWD) methods are required. However, it is often challenging for most current SWD methods to identify the relationship between shock waves (also known as shock topology). To address this issue, this paper proposes a novel three-dimensional shock topology detection method based on the tomographic reconstruction strategy. This method involves extracting parallel slices from the flow field, then utilizing a two-dimensional shock topology recognition algorithm to obtain shock lines. Shock bands are obtained by connecting shock lines for every two adjacent slices, and shock surfaces are generated by assembling shock bands. Interaction lines are also formed by connecting interaction points. The detected shock wave is a structure composed of “point-line-band-surface”, and the topology relationship with other shock waves is obvious. Numerical results show that the shock waves detected by the proposed method can be categorized into families. Moreover, the shock surfaces generated by this method are free of gaps, holes, and un-physical fragments, which is an improvement over existing SWD methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mirev, Andrei, Anton Andonov, and Yovko Rakanov. "Photovoltaic’s inverter directly connected to the grid." Science, Engineering and Education 1, no. 1 (November 28, 2016): 32–35. http://dx.doi.org/10.59957/see.v1.i1.2016.5.

Повний текст джерела
Анотація:
The paper describes a modification of the topology of a photovoltaic’s inverter with a flying inductor connected to a single phase grid in absence of any transformer. The topology advanced provides the application of buck-, boost- and buck-boost modes of transforming at both half-waves of the grid voltage. It works as a three level inverter reducing high frequency disturbances. The symmetric work in both half-waves facilitates the control required.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ables, S. T., B. J. Fraser, C. L. Waters, D. A. Neudegg, and R. J. Morris. "Monitoring cusp/cleft topology using Pc5 ULF waves." Geophysical Research Letters 25, no. 9 (May 1, 1998): 1507–10. http://dx.doi.org/10.1029/98gl00848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Ze, Hao-Wen Dong, and Gui-Lan Yu. "Topology optimization of periodic barriers for surface waves." Structural and Multidisciplinary Optimization 63, no. 1 (August 26, 2020): 463–78. http://dx.doi.org/10.1007/s00158-020-02703-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Waves topology"

1

Deymier, Pierre, and Keith Runge. "One-Dimensional Mass-Spring Chains Supporting Elastic Waves with Non-Conventional Topology." MDPI AG, 2016. http://hdl.handle.net/10150/615109.

Повний текст джерела
Анотація:
There are two classes of phononic structures that can support elastic waves with non-conventional topology, namely intrinsic and extrinsic systems. The non-conventional topology of elastic wave results from breaking time reversal symmetry (T-symmetry) of wave propagation. In extrinsic systems, energy is injected into the phononic structure to break T-symmetry. In intrinsic systems symmetry is broken through the medium microstructure that may lead to internal resonances. Mass-spring composite structures are introduced as metaphors for more complex phononic crystals with non-conventional topology. The elastic wave equation of motion of an intrinsic phononic structure composed of two coupled one-dimensional (1D) harmonic chains can be factored into a Dirac-like equation, leading to antisymmetric modes that have spinor character and therefore non-conventional topology in wave number space. The topology of the elastic waves can be further modified by subjecting phononic structures to externally-induced spatio-temporal modulation of their elastic properties. Such modulations can be actuated through photo-elastic effects, magneto-elastic effects, piezo-electric effects or external mechanical effects. We also uncover an analogy between a combined intrinsic-extrinsic systems composed of a simple one-dimensional harmonic chain coupled to a rigid substrate subjected to a spatio-temporal modulation of the side spring stiffness and the Dirac equation in the presence of an electromagnetic field. The modulation is shown to be able to tune the spinor part of the elastic wave function and therefore its topology. This analogy between classical mechanics and quantum phenomena offers new modalities for developing more complex functions of phononic crystals and acoustic metamaterials.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsoi, Man. "Persistence of planar spiral waves under domain truncation near the core." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1148486634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jezequel, Lucien. "Phase space approach to topological physics : Mode-shell correspondence and extentions to non-Hermitian and non-linear systems." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0021.

Повний текст джерела
Анотація:
Depuis les années 80 et la découverte de l’effet Hall quantique, la topologie s’est avérée être un outil crucial pour analyser divers phénomènes ondulatoires. Parmi les concepts clés ayant émergés de ce domaine, la correspondance bord-volume se distingue. Elle établit un lien entre l'existence d'états de bords d'énergie nulle dans des matériaux isolants dans leur volume et des propriétés topologiques définies dans le-dit volume. Cependant, de nombreux autres phénomènes topologiques, tels que les isolants d'ordre supérieur ou les semi-métaux sont documentés dans la littérature, chacun avec sa propre phénoménologie distincte. Cette thèse présente un nouveau formalisme, baptisé "mode-shell correspondence", qui harmonise ces divers résultats de la recherche et généralise la correspondance bord-volume. En effet, cette correspondance démontre la possibilité de lier, de manière générale, les propriétés des modes topologiques à basse énergie à une propriété topologique définie dans la coquille (shell), représentant la surface entourant ces modes dans l'espace des phases. De plus, cette thèse explore les extensions de ce formalisme aux systèmes non-linéaires et non-Hermitiens, lesquels revêtent une importance particulière pour l'étude des propriétés topologiques des ondes classiques
Since the 1980s and the discovery of the quantum Hall effect, topology has proven to be a crucial tool for analyzing various wave phenomena. Among the key concepts that have emerged from this field, bulk-edge correspondence stands out. It establishes a link between the existence of zero energy edge states in bulk-insulating materials and topological properties defined in the bulk. However, many other topological phenomena, such as higher order insulators or semimetals, are documented in the literature, each with their own distinct phenomenology. This thesis presents a new formalism, called "mode-shell correspondence", which harmonizes these various research results and generalizes the bulk-edge correspondence. Indeed, this correspondence demonstrates the possibility of linking, in a general way, the properties of low energy topological modes to a topological property defined in the shell, representing the surface surrounding these modes in phase space. Furthermore, this thesis explores the extensions of this formalism to non-linear and non- Hermitian systems, which are of particular importance for the study of the topological properties of classical waves
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wadbro, Eddie. "Topology Optimization for Wave Propagation Problems." Doctoral thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-98382.

Повний текст джерела
Анотація:
This thesis considers topology optimization methods for wave propagation problems. These methods make no a priori assumptions on topological properties such as the number of bodies involved in the design. The performed studies address problems from two different areas, acoustic wave propagation and microwave tomography. The final study discusses implementation aspects concerning the efficient solution of large scale material distribution problems. Acoustic horns may be viewed as impedance transformers between the feeding waveguide and the surrounding air. Modifying the shape of an acoustic horn changes the quality of the impedance match as well as the angular distribution of the radiated waves in the far field (the directivity). This thesis presents strategies to optimize acoustic devices with respect to efficiency and directivity simultaneously. The resulting devices exhibit desired far field properties and high efficiency throughout wide frequency ranges. In microwave tomography, microwaves illuminate an object, and measurements of the scattered electrical field are used to depict the object's conductive and dielectric properties. Microwave tomography has unique features for medical applications. However, the reconstruction problem is difficult due to strongly diffracting waves in combination with large dielectric contrasts. This thesis demonstrates a new method to perform the reconstruction using techniques originally developed for topology optimization of linearly elastic structures. Numerical experiments illustrate the method and produce good estimates of dielectric properties corresponding to biological objects. Material distribution problems are typically cast as large (for high resolutions) nonlinear programming problems over coefficients in partial differential equations. Here, the computational power of a modern graphics processing unit (GPU) efficiently solves a pixel based material distribution problem with over 4 million unknowns using a gradient based optimality criteria method.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wadbro, Eddie. "Topology optimization for acoustic wave propagation problems." Licentiate thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-86427.

Повний текст джерела
Анотація:
The aim of this study is to develop numerical techniques for the analysis and optimization of acoustic horns for time harmonic wave propagation. An acoustic horn may be viewed as an impedance transformer, designed to give an impedance matching between the feeding waveguide and the surrounding air. When modifying the shape of the horn, the quality of this impedance matching changes, as well as the angular distribution of the radiated wave in the far field (the directivity). The dimensions of the horns considered are in the order of the wavelength. In this wavelength region the wave physics is complicated, and it is hard to apply elementary physical reasoning to enhance the performance of the horn. Here, topology optimization is applied to improve the efficiency and to gain control over the directivity of the acoustic horn.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lindberg, Erik, and Lukas Magnusson. "WEC Back-to-back Topology." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-351912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pena, Moises. "Geodesics on Generalized Plane Wave Manifolds." CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/866.

Повний текст джерела
Анотація:
A manifold is a Hausdorff topological space that is locally Euclidean. We will define the difference between a Riemannian manifold and a pseudo-Riemannian manifold. We will explore how geodesics behave on pseudo-Riemannian manifolds and what it means for manifolds to be geodesically complete. The Hopf-Rinow theorem states that,“Riemannian manifolds are geodesically complete if and only if it is complete as a metric space,” [Lee97] however, in pseudo-Riemannian geometry, there is no analogous theorem since in general a pseudo-Riemannian metric does not induce a metric space structure on the manifold. Our main focus will be on a family of manifolds referred to as a generalized plane wave manifolds. We will prove that all generalized plane wave manifolds are geodesically complete.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tingleff, Jens. "Current Mode Wave Active Filters : a topology for high frequency integrated filters." Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Otomori, Masaki. "Topology optimization for the micro- and macrostructure designs in electromagnetic wave problems." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Langham-Lopez, Jordan. "Coherent states and wave packet dynamics for the Bogoliubov-de Gennes equations." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/34172/.

Повний текст джерела
Анотація:
We investigate generalizations of coherent states as a means of representing the dynamics of excitations of the superconducting ground state. We also analyse the propagation of generalized coherent state wave packets under the Bogoliubov-de Gennes Hamiltonian. The excitations of the superconducting ground state are superpositions of electron and hole quasi-particles described by the Bogoliubov-de Gennes equations, that can only exist at energies outside the band gap. A natural generalization relevant to the excitations of the superconducting ground state is the tensor product of canonical and spin coherent states. This state will quickly become de-localized on phase space under evolution by the Bogoliubov-de Gennes Hamiltonian due to the opposite velocities of the quasi-spin components. We therefore define the electron-hole coherent states which remain localised on phase space over longer times. We show that the electron-hole coherent states though entangled retain many defining features of coherent states. We analyse the propagation of both product and electron hole coherent states in a superconductor with a spatially homogeneous superconducting band gap. The dispersion relation indicates that wavepackets defined on the band gap have a zero group velocity, but we will show that interference effects can create states on the band gap that propagate at the Fermi velocity. We also consider the two semiclassical, short wavelength regimes, hbar→0$ and the large Fermi energy limit mu→infinity. In general these limits produce behaviour analogous to the canonical coherent states except for isolated cases. Finally we analyse the dynamics of the Andreev Reflection of a Gaussian wavepacket incident on a discontinuous normal-superconducting interface. We show that restricting the energy bandwidth of the incident state inside the superconducting band gap precludes the wavepacket from fully entering the superconducting region. We again consider the two semiclassical regimes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Waves topology"

1

Levy, Silvio. Making waves: A guide to the ideas behind Outside in. [Minneapolis, Minn.]: Geometry Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Deymier, Pierre, and Keith Runge. Sound Topology, Duality, Coherence and Wave-Mixing. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62380-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

E, Witten, ed. Lecture notes on Chern-Simons-Witten theory. Singapore: World Scientific, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bruggeman, Roelof W. Period functions for Maass wave forms and cohomology. Providence, Rhode Island: American Mathematical Society, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Brian, Cantwell, Mansour N, Joint Institute for Aeronautics and Acoustics., and Ames Research Center, eds. Direct numerical simulation of a temporally evolving incompressible plane wake: Effect of initial conditions on evolution and topology. Stanford, CA: Joint Institute for Aeronautics and Acoustics, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Deymier, Pierre, and Keith Runge. Sound Topology, Duality, Coherence and Wave-Mixing: An Introduction to the Emerging New Science of Sound. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Deymier, Pierre, and Keith Runge. Sound Topology, Duality, Coherence and Wave-Mixing: An Introduction to the Emerging New Science of Sound. Springer, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Witten, E. Lecture Notes on Chern-Simons-Witten Theory. World Scientific Publishing Co Pte Ltd, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lecture Notes on Chern-Simons-Witten Theory. World Scientific Publishing Co Pte Ltd, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Waves topology"

1

Gan, Woon Siong. "Topology in Acoustics and Topological Sound Waves." In Time Reversal Acoustics, 77–82. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3235-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Deymier, Pierre, and Keith Runge. "Topology and Duality of Sound and Elastic Waves." In Sound Topology, Duality, Coherence and Wave-Mixing, 81–161. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62380-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Salin, A., Y. F. Yao, S. H. Lo, and A. A. Zheltovodov. "Flow Topology of Symmetric Crossing Shock Wave Boundary Layer Interactions." In 28th International Symposium on Shock Waves, 425–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25685-1_64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khomenko, Elena. "Multi-Fluid Extensions of MHD and Their Implications on Waves and Instabilities." In Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory, 69–116. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16343-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hedayatrasa, Saeid. "Optimisation of Porous 2D PhPs: Topology Refinement Study and Other Aspect Ratios." In Design Optimisation and Validation of Phononic Crystal Plates for Manipulation of Elastodynamic Guided Waves, 135–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72959-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Afzal, Ayesha, Georg Hager, and Gerhard Wellein. "Analytic Modeling of Idle Waves in Parallel Programs: Communication, Cluster Topology, and Noise Impact." In Lecture Notes in Computer Science, 351–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78713-4_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jensen, Jakob S. "Topology optimization." In Wave Propagation in Linear and Nonlinear Periodic Media, 109–59. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-1309-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Deymier, Pierre, and Keith Runge. "Phase and Topology." In Sound Topology, Duality, Coherence and Wave-Mixing, 37–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62380-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Arnold, V. I. "Lagrangian and Legendre topology." In Singularities of Caustics and Wave Fronts, 87–121. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3330-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Deymier, Pierre, and Keith Runge. "Wave Mixing." In Sound Topology, Duality, Coherence and Wave-Mixing, 261–318. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62380-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Waves topology"

1

Kály-Kullai, Kristóf, András Volford, and Henrik Farkas. "Waves of excitations in heterogeneous annular region II. Strong asymmetry." In Geometry and Topology of Caustics – Caustics '02. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc62-0-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Costain, Andrew, and Javid Bayandor. "On Topology Dependence of Explosive Shock Properties." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-22046.

Повний текст джерела
Анотація:
When explosive material is ignited, a detonation wave is generated causing a chemical reaction to take place. This chemical reaction results in the creation of a shockwave in the air surrounding the explosive material. The properties of this shockwave are dependent upon many different variables including but not limited to the type of explosive material used, the amount of material used, the surrounding fluid and the distance that the shockwave travels from the point of ignition. One variable that is not often considered is how the topology of the explosive material may affect the properties of a shockwave. If all other properties are held constant, the shockwave created by a spherical explosive charge will have different properties from those created by a cylindrical or cubical charge. This work uniquely applies an explicit finite element approach to simulate different shapes of explosives and the effects of explosive surface topology on the ensuing shockwaves. In order to fully observe these varying shockwaves, a target wall was included in the simulations. The propagating shockwaves damage the wall on impact, while creating a series of reflective shock- and strain-waves. By thoroughly examining the damaged portions of the target wall in conjunction with wave propagation patterns, it is possible to study the strength of the shockwave and the mechanism by which the reflective waves are created. Through these investigations, shockwave pressure, velocity, patterns and shapes, as well as damage sustained by the wall will be considered. The paper will conclude how shockwave properties are influenced by the original topology of the explosive mass.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Akalin, T., E. Peytavit, and J.-F. Lampin. "THz long range plasmonic waveguide in membrane topology." In 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sheveleva, A., U. Andral, B. Kibler, P. Colman, J. M. Dudley, and C. Finot. "Complete measurement of the phase-space topology of fiber four-wave mixing using iterated initial conditions." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sf4h.3.

Повний текст джерела
Анотація:
We experimentally demonstrate an optical fiber testbed enabling the quantitative study of ideal four-wave mixing. We directly measure the complex phase-space topology including features such as the separatrix, Fermi Pasta Ulam recurrence, and stationary waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

LIU, ZE, SHENGBO SHAN, and LI CHENG. "ENHANCING GUIDED-WAVE-BASED STRUCTURAL HEALTH MONITORING USING METAMATERIAL DEVICES DESIGNED BY TOPOLOGY OPTIMIZATION." In Structural Health Monitoring 2023. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/shm2023/36790.

Повний текст джерела
Анотація:
Lamb waves inside thin-walled structures have received extensive attention due to their great promise in applications such as structural health monitoring (SHM). Applications point at the common need for effective conditioning and manipulation of the wave propagation in terms of both frequency content and mode components. In this work, the concept of metamaterials is exploited to construct functional metadevices (MDs). The MDs are designed to deliver prescribed functionalities after they are surface-mounted onto a structure conveying Lamb waves. To this end, a unified inverse-design scheme based on topology optimization is proposed and applied to achieve multifold functions such as frequency filtering and single-mode transmission. Typical scenarios with different frequencies and modes are discussed. Functional MDs with broadband working frequencies are obtained by using the established design strategy. A representative MD with a finite number of unit cells is examined through finite element simulations. Numerical simulations show that, through wave modulation of the designed MD, Lamb waves located in pass bands can transmit through the MD, while the waves within bandgaps are prohibited to propagate by the MD, which agrees well with the predicted dispersion features. An experiment is finally carried out to confirm the prescribed wave manipulation functions of the designed MD from the SHM perspective, which is finally validated experimentally using a metal specimen containing local plasticized incipient damage. This work provides a universal approach for topologically customizing MDs for the precise and tactical control of Lamb wave propagation, especially for SHM applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Segal, Ohad, Eran Lustig, Yonatan Sharabi, Moshe-Ishay Cohen, Ron Ziv, Mark Lyubarov, Alex Dikopoltsev, and Mordechai Segev. "Topology in Photonic Space-Time Crystals." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jw4a.4.

Повний текст джерела
Анотація:
We introduce topological phases in photonic space-time crystals, which have gaps in both momentum and frequency. We show that edge states waves refracted and reflected from spatial and temporal interfaces are governed by topological invariants.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Su, Xiao-Xing, Tian-Xue Ma, Hao-Wen Dong, and Yue-Sheng Wang. "Topology optimization of two-dimensional phononic crystals using FDTD and genetic algorithm." In 2011 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2011). IEEE, 2011. http://dx.doi.org/10.1109/spawda.2011.6167278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dong, Hao-wen, Xiao-xing Su, and Yue-sheng Wang. "Topology optimization of two-dimensional phononic crystals using FEM and genetic algorithm." In 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2012). IEEE, 2012. http://dx.doi.org/10.1109/spawda.2012.6464032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Song, Su-Li, Jun-Hui Ou, Jun Yang, and Yue Long Lin. "High-Efficiency Wideband Rectifier with Different Rectifying Topology and Working Frequency." In 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT). IEEE, 2018. http://dx.doi.org/10.1109/ucmmt45316.2018.9015768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

You, Yan, Lingbo Qiao, and Ziran Zhao. "Optimal 1D MIMO Array Topology for Millimeter-Wave Short-Range Imaging." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Waves topology"

1

Cantwell, Brian J. The Effects of Initial Conditions on the 3-D Topology of Temporally Evolving Wakes, (ARI on 3-D Bluff Body Wakes). Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada271008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії