Добірка наукової літератури з теми "Waveguide Inscription"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Waveguide Inscription".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Waveguide Inscription"

1

Romero, Carolina, Javier García Ajates, Feng Chen, and Javier R. Vázquez de Aldana. "Fabrication of Tapered Circular Depressed-Cladding Waveguides in Nd:YAG Crystal by Femtosecond-Laser Direct Inscription." Micromachines 11, no. 1 (December 19, 2019): 10. http://dx.doi.org/10.3390/mi11010010.

Повний текст джерела
Анотація:
Crystalline materials are excellent substrates for the integration of compact photonic devices benefiting from the unique optical properties of these materials. The technique of direct inscription with femtosecond lasers, as an advantage over other techniques, has opened the door to the fabrication of true three-dimensional (3D) photonic devices in almost any transparent substrate. Depressed-cladding waveguides have been demonstrated to be an excellent and versatile platform for the integration of 3D photonic circuits in crystals. Here, we present the technique that we have developed to inscribe tapered depressed-cladding waveguides with a circular section for the control of the modal behavior. As a proof of concept, we have applied the technique to fabricate structures in Nd:YAG crystal that efficiently change the modal behavior from highly multimodal to monomodal, in the visible and near infrared, with reduction factors in the waveguide radius of up to 4:1. Our results are interesting for different devices such as waveguide lasers, frequency converters or connectors between external devices with different core sizes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lijing, Zhong, Roman A. Zakoldaev, Maksim M. Sergeev, Andrey B. Petrov, Vadim P. Veiko, and Alexander P. Alodjants. "Optical Sensitivity of Waveguides Inscribed in Nanoporous Silicate Framework." Nanomaterials 11, no. 1 (January 7, 2021): 123. http://dx.doi.org/10.3390/nano11010123.

Повний текст джерела
Анотація:
Laser direct writing technique in glass is a powerful tool for various waveguides’ fabrication that highly develop the element base for designing photonic devices. We apply this technique to fabricate waveguides in porous glass (PG). Nanoporous optical materials for the inscription can elevate the sensing ability of such waveguides to higher standards. The waveguides were fabricated by a single-scan approach with femtosecond laser pulses in the densification mode, which resulted in the formation of a core and cladding. Experimental studies revealed three types of waveguides and quantified the refractive index contrast (up to Δn = 1.2·10−2) accompanied with ~1.2 dB/cm insertion losses. The waveguides demonstrated the sensitivity to small objects captured by the nanoporous framework. We noticed that the deposited ethanol molecules (3 µL) on the PG surface influence the waveguide optical properties indicating the penetration of the molecule to its cladding. Continuous monitoring of the output near field intensity distribution allowed us to determine the response time (6 s) of the waveguide buried at 400 µm below the glass surface. We found that the minimum distinguishable change of the refractive index contrast is 2 × 10−4. The results obtained pave the way to consider the waveguides inscribed into PG as primary transducers for sensor applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lijing, Zhong, Roman A. Zakoldaev, Maksim M. Sergeev, Andrey B. Petrov, Vadim P. Veiko, and Alexander P. Alodjants. "Optical Sensitivity of Waveguides Inscribed in Nanoporous Silicate Framework." Nanomaterials 11, no. 1 (January 7, 2021): 123. http://dx.doi.org/10.3390/nano11010123.

Повний текст джерела
Анотація:
Laser direct writing technique in glass is a powerful tool for various waveguides’ fabrication that highly develop the element base for designing photonic devices. We apply this technique to fabricate waveguides in porous glass (PG). Nanoporous optical materials for the inscription can elevate the sensing ability of such waveguides to higher standards. The waveguides were fabricated by a single-scan approach with femtosecond laser pulses in the densification mode, which resulted in the formation of a core and cladding. Experimental studies revealed three types of waveguides and quantified the refractive index contrast (up to Δn = 1.2·10−2) accompanied with ~1.2 dB/cm insertion losses. The waveguides demonstrated the sensitivity to small objects captured by the nanoporous framework. We noticed that the deposited ethanol molecules (3 µL) on the PG surface influence the waveguide optical properties indicating the penetration of the molecule to its cladding. Continuous monitoring of the output near field intensity distribution allowed us to determine the response time (6 s) of the waveguide buried at 400 µm below the glass surface. We found that the minimum distinguishable change of the refractive index contrast is 2 × 10−4. The results obtained pave the way to consider the waveguides inscribed into PG as primary transducers for sensor applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zha, Hao, Yicun Yao, Minghong Wang, Nan-Kuang Chen, Liqiang Zhang, Chenglin Bai, Tao Liu, Yingying Ren, and Yuechen Jia. "Bending 90° Waveguides in Nd:YAG Crystal Fabricated by a Combination of Femtosecond Laser Inscription and Precise Diamond Blade Dicing." Crystals 13, no. 2 (January 20, 2023): 188. http://dx.doi.org/10.3390/cryst13020188.

Повний текст джерела
Анотація:
In this paper, a low-loss 90°-bending design in femtosecond laser-induced double-line waveguides is theoretically proposed and experimentally demonstrated. The bending is realized based on the total internal reflection of a corner mirror (made by precise diamond blade dicing) located at the intersection of a pair of waveguides perpendicular to each other. The waveguide bending performance was birefringence free, with the insertion loss of each bending below 0.8 dB. This method provides great flexibility and has great potential for the design of integrated photonics based on femtosecond laser-inscribed crystalline materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Idrisov, Ravil, Adrian Lorenz, Manfred Rothhardt, and Hartmut Bartelt. "Composed Multicore Fiber Structure for Extended Sensor Multiplexing with Fiber Bragg Gratings." Sensors 22, no. 10 (May 19, 2022): 3837. http://dx.doi.org/10.3390/s22103837.

Повний текст джерела
Анотація:
A novel multicore optical waveguide component based on a fiber design optimized towards selective grating inscription for multiplexed sensing applications is presented. Such a fiber design enables the increase in the optical sensor capacity as well as extending the sensing length with a single optical fiber while preserving the spatial sensing resolution. The method uses a multicore fiber with differently doped fiber cores and, therefore, enables a selective grating inscription. The concept can be applied in a draw tower inscription process for an efficient production of sensing networks. Along with the general concept, the paper discusses the specific preparation of the fiber-based sensing component and provides experimental results showing the feasibility of such a sensing system.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Calmano, Thomas, Anna-Greta Paschke, Sebastian Müller, Christian Kränkel, and Günter Huber. "Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription." Optics Express 21, no. 21 (October 17, 2013): 25501. http://dx.doi.org/10.1364/oe.21.025501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hessler, Steffen, Marieke Rüth, Horst-Dieter Lemke, Bernhard Schmauss, and Ralf Hellmann. "Deep UV Formation of Long-Term Stable Optical Bragg Gratings in Epoxy Waveguides and Their Biomedical Sensing Potentials." Sensors 21, no. 11 (June 3, 2021): 3868. http://dx.doi.org/10.3390/s21113868.

Повний текст джерела
Анотація:
In this article, we summarize our investigations on optimized 248 nm deep ultraviolet (UV) fabrication of highly stable epoxy polymer Bragg grating sensors and their application for biomedical purposes. Employing m-line spectroscopy, deep UV photosensitivity of cross-linked EpoCore thin films in terms of responding refractive index change is determined to a maximum of Δn = + (1.8 ± 0.2) × 10−3. All-polymer waveguide Bragg gratings are fabricated by direct laser irradiation of lithographic EpoCore strip waveguides on compatible Topas 6017 substrates through standard +1/-1-order phase masks. According near-field simulations of realistic non-ideal phase masks provide insight into UV dose-dependent characteristics of the Bragg grating formation. By means of online monitoring, arising Bragg reflections during grating inscription via beforehand fiber-coupled waveguide samples, an optimum laser parameter set for well-detectable sensor reflection peaks in respect of peak strength, full width at half maximum and grating attenuation are derived. Promising blood analysis applications of optimized epoxy-based Bragg grating sensors are demonstrated in terms of bulk refractive index sensing of whole blood and selective surface refractive index sensing of human serum albumin.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thomson, R. R., H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, Shaoxiong Shen, A. Jha, and A. K. Kar. "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription." IEEE Photonics Technology Letters 18, no. 14 (July 2006): 1515–17. http://dx.doi.org/10.1109/lpt.2006.877591.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Duan, Yuwen, Peter Dekker, Esa Jaatinen, Scott Foster, Martin Ams, M. J. Steel, and Michael J. Withford. "Narrow Linewidth DFB Waveguide Laser Fabricated via Ultrafast Laser Inscription." IEEE Photonics Technology Letters 26, no. 24 (December 15, 2014): 2499–502. http://dx.doi.org/10.1109/lpt.2014.2359467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gross, S., and M. J. Withford. "Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications." Nanophotonics 4, no. 3 (November 6, 2015): 332–52. http://dx.doi.org/10.1515/nanoph-2015-0020.

Повний текст джерела
Анотація:
AbstractSince the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Waveguide Inscription"

1

Campbell, Stuart. "Advances in femtosecond pulse laser micromachining and index waveguide inscription." Thesis, Heriot-Watt University, 2007. http://hdl.handle.net/10399/67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bain, Fiona Mair. "Yb:tungstate waveguide lasers." Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1698.

Повний текст джерела
Анотація:
Lasers find a wide range of applications in many areas including photo-biology, photo-chemistry, materials processing, imaging and telecommunications. However, the practical use of such sources is often limited by the bulky nature of existing systems. By fabricating channel waveguides in solid-state laser-gain materials more compact laser systems can be designed and fabricated, providing user-friendly sources. Other advantages inherent in the use of waveguide gain media include the maintenance of high intensities over extended interaction lengths, reducing laser thresholds. This thesis presents the development of Yb:tungstate lasers operating around 1μm in waveguide geometries. An Yb:KY(WO₄)₂ planar waveguide laser grown by liquid phase epitaxy is demonstrated with output powers up to 190 mW and 76 % slope efficiency. This is similar to the performance from bulk lasers but in a very compact design. Excellent thresholds of only 40 mW absorbed pump power are realised. The propagation loss is found to be less than 0.1 dBcm⁻¹ and Q-switched operation is also demonstrated. Channel waveguides are fabricated in Yb:KGd(WO₄)₂ and Yb:KY(WO₄)₂ using ultrafast laser inscription. Several of these waveguides lase in compact monolithic cavities. A maximum output power of 18.6 mW is observed, with a propagation loss of ~2 dBcm⁻¹. By using a variety of writing conditions the optimum writing pulse energy is identified. Micro-spectroscopy experiments are performed to enable a fuller understanding of the induced crystal modification. Observations include frequency shifts of Raman lines which are attributed to densification of WO₂W bonds in the crystal. Yb:tungstate lasers can generate ultrashort pulses and some preliminary work is done to investigate the use of quantum dot devices as saturable absorbers. These are shown to have reduced saturation fluence compared to quantum well devices, making them particularly suitable for future integration with Yb:tungstate waveguides for the creation of ultrafast, compact and high repetition rate lasers.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abou, Khalil Alain. "Direct laser writing of a new type of optical waveguides and components in silver containing glasses." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0290/document.

Повний текст джерела
Анотація:
L'inscription laser directe est un domaine de recherche en croissance depuis ces deux dernières décennies, fournissant un moyen efficace et robuste pour inscrire directement des structures en trois dimensions (3D) dans des matériaux transparents tels que des verres en utilisant des impulsions laser femtosecondes. Cette technique présente de nombreux avantages par rapport à la technique de lithographie, qui se limite à la structuration en deux dimensions (2D) et implique de nombreuses étapes de fabrication. Cela rend la technique d’inscription laser direct bien adaptée aux nouveaux procédés de fabrication. Généralement, l’inscription laser dans les verres induit des changements physiques tels qu'un changement permanent de l'indice de réfraction localisé. Ces modifications ont été classés en trois types distincts : (Type I, Type II et Type III). Dans ce travail, nous présentons un nouveau type de changement d'indice de réfraction, appelé type A qui est basé sur la création d’agrégats d'argent photo-induit. En effet, dans des verres dans lesquels sont incorporés des ions argent Ag+, lors de leurs synthèses, l’inscription laser directe induit la création d’agrégats d’argent fluorescents Agmx+ au voisinage du voxel d’interaction. Ces agrégats modifient localement les propriétés optiques comme : la fluorescence, la non-linéarité et la réponse plasmonique du verre. Ainsi, différents guides d'ondes, un séparateur de faisceau 50-50, ainsi que des coupleurs optiques ont été inscrits en se basant sur ce nouveau Type A et complétement caractérisés. D'autre part, une étude comparative entre les deux types de guides d'ondes (type A et type I) est présentée, tout en montrant qu’en ajustant les paramètres laser, il est possible de déclencher soit le Type I soit le Type A. Enfin, en se basant sur des guides d’ondes de type A inscrits proche de la surface du verre, un capteur d'indice de réfraction hautement sensible a été inscrit dans une lame de verre de 1 cm de long. Ce capteur miniaturisé peut présenter deux fenêtres de détection d’indice, ce qui constitue une première mondiale. Les propriétés des guides d'ondes inscrits dans ces verres massifs ont été transposées à des fibres en forme de ruban, du même matériau contenant de l'argent. Les résultats obtenus dans ce travail de thèse ouvrent la voie à la fabrication de circuits intégrés en 3D et de capteurs à fibre basés sur des propriétés optiques originales inaccessibles avec des guides d’onde de Type I standard
Direct Laser Writing (DLW) has been an exponentially growing research field during the last two decades, by providing an efficient and robust way to directly address three dimensional (3D) structures in transparent materials such as glasses using femtosecond laser pulses. It exhibits many advantages over lithography technique which is mostly limited to two dimensional (2D) structuring and involves many fabrication steps. This competitive aspect makes the DLW technique suitable for future technological transfer to advanced industrial manufacturing. Generally, DLW in glasses induces physical changes such as permanent local refractive index modifications that have been classified under three distinct types: (Type I, Type II & Type III). In silver containing glasses with embedded silver ions Ag+, DLW induces the creation of fluorescent silver clusters Agmx+ at the vicinity of the interaction voxel. In this work, we present a new type of refractive index change, called type A that is based on the creation of the photo-induced silver clusters allowing the creation of new linear and nonlinear optical waveguides in silver containing glasses. Various waveguides, a 50-50 Y beam splitter, as well as optical couplers, were written based on type A modification inside bulk glasses and further characterized. On the other hand, a comparison study between type A and type I waveguides is presented, showing that finely tuning the laser parameters allows the creation of either type A or type I modification inside silver containing glasses. Finally, based on type A near-surface waveguides, a highly sensitive refractive index sensor is created in a 1 cm glass chip, which could exhibit a pioneer demonstration of double sensing refractive ranges. The waveguiding properties observed and reported in the bulk of such silver containing glasses were transposed to ribbon shaped fibers of the same material. Those results pave the way towards the fabrication of 3D integrated circuits and fiber sensors with original fluorescent, nonlinear and plasmonic properties that are not accessible using the standard type I modification
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Le, Camus Arthur. "Conception et élaboration de composants photoniques pour l'infrarouge moyen inscrits par impulsions ultra brèves." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/66425.

Повний текст джерела
Анотація:
«Thèse en cotutelle, Doctorat en physique, Université Laval, Québec, Canada, Philosophiæ doctor (Ph. D.) et Université de Bordeaux, Talence, France»
L’infrarouge moyen présente un grand intérêt pour de nombreuses applications dans des domaines variés comme la médecine, la biologie, l’environnement ou encore l’astronomie. Il y a donc un besoin de sources et de dispositifs fonctionnant dans cette bande de longueur d’onde s’étendant approximativement de 2 à 20 µm. L’élaboration de ces dispositifs passe par le développement de matériaux transparents dans l’infrarouge moyen puis par la fonctionnalisation optique de ces matériaux. Dans le cadre de cette thèse de doctorat, nous nous proposons d’étudier la fabrication de composants dans un verre d’oxyde de métaux lourds (baryum, gallium, germanium : BGG), dont l’intérêt est la combinaison d’une bonne transmission jusque dans l’IR moyen (de ~350 nm à ~5 µm) et de bonnes résistances mécanique et chimique. La technique utilisée pour la fonctionnalisation optique de ce verre est l’inscription directe par impulsions ultra courtes. Cette dernière permet de modifier localement – et de manière permanente – un matériau par la focalisation d’impulsions d’une durée de l’ordre de quelques dizaines ou centaines de femto secondes, générant des intensités lumineuses très importantes et permettant l’absorption non-linéaire d’une partie de l’énergie du faisceau laser. Le caractère non linéaire de l’interaction permet l’inscription de structures tridimensionnelles dans le volume du matériau. Grâce à cette technique, on peut notamment fabriquer des guides d’onde, des canaux de microfluidique et des motifs fluorescents pour ne citer que quelques exemples. Nous rapportons dans cette thèse une étude détaillée de l’inscription par laser femtoseconde dans différents types de verres BGG. Nous montrons qu’il est possible d’avoir un changement d’indice positif élevé, permettant la formation de composants à base de guides d’onde pour l’IR moyen. En particulier, nous présentons des résultats de mesures sur des guides d’onde et des coupleurs dans l’IR moyen, inscrits dans un verre BGG et dans la silice. Un autre type verre, dérivé des BGG et dopé en ions argents, est également étudié dans le cadre de l’inscription par laser femtoseconde. Comme il a été observé dans d’autres types de verres d’oxydes, les ions argent modifient l’interaction laser matière et apportent des propriétés spécifiques à l’argent : fluorescence, génération de seconde harmonique et résonance de plasmons de surface.
The mid-infrared region is of great interest for many applications in various fields such as medicine, biology, environment and astronomy. Therefore, there is a need for developing sources and devices operating in this wavelength region, spanning approximately from 2 to20 µm. The development of these devices involves the development of mid-IR transparent materials and then the optical functionalization of these materials. In the framework of this PhD thesis, we propose to study the fabrication of components in glass of heavy metaloxides (barium, gallium, germanium: BGG), whose interest is the combination of a good transmission (from ~350 nm to ~5 µm) and good mechanical and chemical resistances. The technique used for the optical functionalization of this glass is direct inscription by ultra-short pulses. This technique allows a local and permanent modification of a material by focusing pulses of a duration of a few tens or hundreds of femtoseconds, generating very high light intensities and allowing the non-linear absorption of the laser beam energy. The non-linear nature of the interaction allows the inscription of three-dimensional structures in the bulk. Thanks to this technique, we can produce waveguides, microfluidic channels and fluorescent patterns, to name but a few examples. In this thesis, we report a detailed study of femtosecond laser inscription in different types of BGG glasses. We show that it is possible to have a high positive index change, allowing the formation of waveguide-based components for mid-IR. In particular, we present measurements results on waveguides and couplers in the mid-IR, embedded in BGG glass and fused silica. Another type of glass derived from BGG and doped with silver ions is also studied with the femtosecond laser inscription. As observed in other types of oxide glasses, silver ions modify the laser-matter interaction and provide silver-specific properties such as fluorescence, second harmonic generation and surface plasmons resonance.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sabapathy, Tamilarasan. "Ultrafast Laser Inscribed Waveguides on Chalcogenide Glasses for Photonic Applications." Thesis, 2013. http://hdl.handle.net/2005/2845.

Повний текст джерела
Анотація:
Chalcogenide glasses are highly nonlinear optical materials which can be used for fabricating active and passive photonic devices. This thesis work deals with the fabrication of buried, three dimensional, channel waveguides in chalcogenide glasses, using ultrafast laser inscription technique. The femtosecond laser pulses are focused into rare earth ions doped and undoped chalcogenide glasses, few hundred microns below from the surface to modify the physical properties such as refractive index, density, etc. These changes are made use in the fabrication of active and passive photonic waveguides which have applications in integrated optics. The first chapter provides an introduction to the fundamental aspects of femtosecond laser inscription, laser interaction with matter and chalcogenide glasses for photonic applications. The advantages and applications of chalcogenide glasses are also described. Motivation and overview of the present thesis work have been discussed at the end. The methods of chalcogenide glass preparation, waveguide fabrication and characterization of the glasses investigated are described in the second chapter. Also, the details of the experiments undertaken, namely, loss (passive insertion loss) and gain measurements (active) and nanoindentation studies are outlined. Chapter three presents a study on the effect of net fluence on waveguide formation. A heat diffusion model has been used to solve the waveguide cross-section. The waveguide formation in GeGaS chalcogenide glasses using the ultrafast laser, has been analyzed in the light of a finite element thermal diffusion model. The relation between the net fluence and waveguide cross section diameter has been verified using the experimentally measured properties and theoretically predicted values. Chapter four presents a study on waveguide fabrication on Er doped Chalcogenide glass. The active and passive characterization is done and the optimal waveguide fabrication parameters are given, along with gain properties for Er doped GeGaS glass. A C-band waveguide amplifier has been demonstrated on Chalcogenide glasses using ultrafast laser inscription technique. A study on the mechanical properties of the waveguide, undertaken using the nanoindentation technique, is presented in the fifth chapter. This work brings out the close relation between the change in mechanical properties such as elastic modulus and hardness of the material under the irradiation of ultrafast laser after the waveguide formation. Also, a threshold value of the modulus and hardness for characterizing the modes of the waveguide is suggested. Finally, the chapter six provides a summary of work undertaken and also discusses the future work to be carried out.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Waveguide Inscription"

1

Grenier, Jason R., Moez Haque, Luís A. Fernandes, Kenneth K. C. Lee, and Peter R. Herman. "Femtosecond Laser Inscription of Photonic and Optofluidic Devices in Fiber Cladding." In Planar Waveguides and other Confined Geometries, 67–110. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1179-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sola, Daniel, and José I. Peña. "Ultrafast Laser Inscription of Buried Waveguides in W-TCP Bioactive Eutectic Glasses." In Advanced Surface Engineering Research. InTech, 2018. http://dx.doi.org/10.5772/intechopen.79577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Waveguide Inscription"

1

Smektala, F., R. Sramek, J. Lucas, W. Xie, P. Bernage, and P. Niay. "Bragg gratings inscription in rare earth doped fluoride glasses." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jsue.12.

Повний текст джерела
Анотація:
Bragg gratings inscription experiments have been performed on fluorozirconate glasses (ZBLA) doped with Ho3+, as well as on fluorozirconate planar waveguides realized by chlorine ion exchange and doped with Ce3+ and Er3+. Both 244 nm and 260 nm light were used. The inscription wasn't possible in any case in the Ce3+ doped planar waveguide. Gratings were written in the Er3+ doped planar waveguide at 260 nm only. In the case of Ho3+ doped fluorozirconate bulk, the inscription was possible at both wavelengths. These results are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gretzinger, Thomas, Simon Gross, Martin Ams, Alexander Arriola, and Michael J. Withford. "Ultrafast laser waveguide inscription in Gallium Lanthanum Sulfide." In Australian Conference on Optical Fibre Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acoft.2016.am4c.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boisvert, Jean-Sebastien, Antsar Hlil, Youness Messaddeq, and Raman Kashyap. "Femtosecond written waveguide in photosensitive elastomeric PDMS." In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/bgppm.2022.bw2a.3.

Повний текст джерела
Анотація:
We demonstrate waveguide inscription in an elastomeric PDMS host doped with a photosensitive mixture of a germanium derivative and benzophenone. Propagation and bend losses are reported paving the way towards ultra-tunable/flexible photonics devices and sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pallarés-Aldeiturriaga, D., L. Rodriguez-Cobo, M. Lancry, B. Poumellec, and J. M. Lopez-Higuera. "Mach-Zehnder interferometer based on femtosecond laser waveguide inscription." In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/bgppm.2018.jtu2a.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nye, N. S., S. Shabahang, C. Markos, D. N. Christodoulides, and A. F. Abouraddy. "Non-permanent graded-index waveguide-inscription in bulk chalcogenides." In Frontiers in Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/fio.2017.jw4a.99.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Berry, Patrick A., John R. MacDonald, Ajoy K. Kar, and Kenneth L. Schepler. "Ultrafast Laser Inscription of Waveguide Structures in Cr2+:ZnSe." In Advances in Optical Materials. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/aiom.2011.aifb5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stevenson, N. K., J. Morris, H. Bookey, A. K. Kar, C. T. A. Brown, J. M. Hopkins, M. D. Dawson, and A. A. Lagatsky. "Waveguide Tm:Lu2O3 ceramic laser fabricated by ultrafast laser inscription." In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ams, M., T. Calmano, B. F. Johnston, P. Dekker, C. Kränkel, and M. J. Withford. "Ultrafast Laser Inscription of Waveguide Bragg Gratings (WBGs) in Yb:YAG Crystals." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/bgpp.2016.bm3b.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Jue, Chengkun Cai, Tianhao Fu, and Jian Wang. "Femtosecond laser inscription of integrated orbital angular momentum emitter." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.ath1c.5.

Повний текст джерела
Анотація:
We present integrated orbital angular momentum (OAM) emitters by using femtosecond laser inscription. The emitter we designed consists of a Mach-Zehnder interferometer and specially designed trench waveguide, transforming Gaussian beams into first-order OAM beams.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Marshall, Graham D., Martin Ams, and Michael J. Withford. "Femtosecond inscription of wavelength specific features in optical waveguide structures." In Photonics Europe, edited by Giancarlo C. Righini. SPIE, 2006. http://dx.doi.org/10.1117/12.663177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії