Добірка наукової літератури з теми "Wall label"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Wall label".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Wall label"
Sonnenfeld, E. M., T. J. Beveridge, and R. J. Doyle. "Discontinuity of charge on cell wall poles of Bacillus subtilis." Canadian Journal of Microbiology 31, no. 9 (September 1, 1985): 875–77. http://dx.doi.org/10.1139/m85-163.
Повний текст джерелаDi Tommaso, Stefania, Sherrie Wang, and David B. Lobell. "Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops." Environmental Research Letters 16, no. 12 (November 18, 2021): 125002. http://dx.doi.org/10.1088/1748-9326/ac358c.
Повний текст джерелаRogers, Gregory S., and John J. Frett. "ORGANELLE-SPECIFIC LOCALIZATION OF IPTASE IN TRANSGENIC NICOTIANA." HortScience 31, no. 6 (October 1996): 912C—912. http://dx.doi.org/10.21273/hortsci.31.6.912c.
Повний текст джерелаMessner, Robert, and Christian P. Kubicek. "Synthesis of cell wall glucan, chitin, and protein by regenerating protoplasts and mycelia of Trichoderma reesei." Canadian Journal of Microbiology 36, no. 3 (March 1, 1990): 211–17. http://dx.doi.org/10.1139/m90-036.
Повний текст джерелаDi Guilmi, A. M., J. Bonnet, S. Peiβert, C. Durmort, B. Gallet, T. Vernet, N. Gisch, and Y. S. Wong. "Specific and spatial labeling of choline-containing teichoic acids in Streptococcus pneumoniae by click chemistry." Chemical Communications 53, no. 76 (2017): 10572–75. http://dx.doi.org/10.1039/c7cc05646j.
Повний текст джерелаKoh, Jia Xin, Keyu Geng, and Donglin Jiang. "Smart covalent organic frameworks: dual channel sensors for acids and bases." Chemical Communications 57, no. 74 (2021): 9418–21. http://dx.doi.org/10.1039/d1cc03057d.
Повний текст джерелаBeise, Frank, Harald Labischinski, and Hans Bradaczek. "On the Relationships between Molecular Conformation, Affinity towards Penicillin-Binding Proteins, and Biological Activity of Penicillin G-Sulfoxide." Zeitschrift für Naturforschung C 43, no. 9-10 (October 1, 1988): 656–64. http://dx.doi.org/10.1515/znc-1988-9-1006.
Повний текст джерелаMackey, Brandon, and Vernon T. Mackey. "Successful Deoxycholate Acid Use in a Male Patient for Resistant Lower Abdominal Wall Fat." SKIN The Journal of Cutaneous Medicine 4, no. 4 (July 12, 2020): 349–52. http://dx.doi.org/10.25251/skin.4.4.12.
Повний текст джерелаGu, Hongjun, He Gong, Chunxue Wang, Xiaoqiang Sun, Xibin Wang, Yunji Yi, Changming Chen, Fei Wang, and Daming Zhang. "Compact Inner-Wall Grating Slot Microring Resonator for Label-Free Sensing." Sensors 19, no. 22 (November 19, 2019): 5038. http://dx.doi.org/10.3390/s19225038.
Повний текст джерелаZhang, Yaowen, Linsheng Huo, and Hongnan Li. "Automated Recognition of a Wall between Windows from a Single Image." Journal of Sensors 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/7051931.
Повний текст джерелаДисертації з теми "Wall label"
Choudhry, Anthony Ejaz. "Inhibition of bacterial cell wall biosynthesis by the affinity label N-bromoacetylglucosamine." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ40403.pdf.
Повний текст джерелаMujahid, Hana, Ken Pendarvis, Joseph Reddy, Babi Nallamilli, K. Reddy, Bindu Nanduri, and Zhaohua Peng. "Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers." MDPI AG, 2016. http://hdl.handle.net/10150/618719.
Повний текст джерелаFaon, Raphaël. "Figure, Discours." Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1309.
Повний текст джерелаThis artist's thesis explores the processes of meaning-making and interpretation in artistic propositions that center on the transfiguration of pre-existing images or objects within an artistic context. Bridging art practice with critical theory, it comprises both artistic experiments presented as a portfolio and an essay that examines the role of discourse in relation to visual works within an institutional setting like galleries and museums, particularly regarding the use of exhibition labels (cartel). These two components are complementary: the practical part focuses on artistic gestures that transfigure images, while the theoretical section questions the processes of (re)signification through discourse. The aim is to bring these two dimensions of artistic research into resonance, thereby interrogating the (con)textual conditions of art reception. Inspired by conceptual art, poststructuralism, and American art philosophy, this work pays close attention to the variability of meaning—its spectral and fluid nature—being more a matter of use than essence. The study emphasizes the construction of meaning in visual works based on external determinants beyond or beneath their formal or internal properties, which aligns with a postmodern conception of art and institutional critique. This is evident in gestures of transfiguration influenced by the ready-made and photographic appropriation, studied and practiced throughout the thesis
Fonseca, Juliana Guimarães. "Caracterização do proteoma da parede celular de folhas e entrenós jovens e maduros de cana-de-açúcar." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11137/tde-23042015-162148/.
Повний текст джерелаThis study provides information about the proteins of the cell wall of sugarcane at diferente stages of development and formation. The aim of this study is to assist in the development of new technologies for the production of cellulosic ethanol from sugarcane bagasse. Cell wall proteins from 4-month-old internodes and leaves of sugarcane in two developmental stages, juvenile and mature, have been identified. Protein extraction was performed with a non-destructive method by using vacuum infiltration with two salts, 0.2 M CaCl2 and 2 M LiCl, followed by centrifugation. Complex samples were digested, fractionated and sequenced by LC-MSE. Peptides were processed by ProteinLynx 2.5 and compared to the translated sugarcane and sorghum ESTs database. The annotation of the proteins was performed using PFAM and the functional classification was according the one used in other related studies. Only the proteins that appeared in at least two of the three biological replicates were used in the main analysis. In order to predict the subcellular localization of these proteins, SignalP, TargetP, TMHMM and Predotar softwares were used. Only those proteins that were predicted to be secreted by two or more programs were considered as cell wall proteins (PPS). Altogether, 543 proteins were classified as PPC: 205 inimmature internodes, 143 in mature internodes, 124 in young leaves and 71 in matured leaves. Among these proteins, 365 were considered different, and divided into ten functional classes. Statistical analysis was made with PCA and PLSDA, confirming that there were statistical differences among the treatments. In this work, 66 glycoside hydrolases and 39 peroxidases c identified, being 14 and 11 unique to young tissues, respectively. These proteins have their function related to plant cell wall polysaccharides breakdown and remodeling, and, therewith, the glycoside hydrolases and peroxidases found in this study were indicated to be the target of future research using the plant\'s own enzymes to optimize the cellulosic ethanol production. Individually, this study was the one that most identified PPC among the existing literature, and is a pioneer in the use of quantitative analysis for PPCs.
Bukva, Emir. "From the Wall to the Web: A Microformat for Visual Art." [Kent, Ohio] : Kent State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1259115325.
Повний текст джерелаTitle from PDF t.p. (viewed April 22, 2010). Advisor: Sanda Katila. Keywords: microformats; semantic web; labels. Includes bibliographical references (p. 52-53).
Wallin, Julia, and Anna Lindborg. "The competition within the walls : a qualitative study about how customers reason regarding their brand choice." Thesis, Högskolan Kristianstad, Fakulteten för ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20887.
Повний текст джерелаPaiva, Ana Luiza Sobral. "Biochemical responses of bean-to-string [Vigna unguiculata L. (Walp.)] to salt stress and infection by severe mosaic of cowpea (CPSMV) revealed by quantitative proteomics dial free." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13591.
Повний текст джерелаAs sessile organisms, plants are exposed to a plethora of environmental stresses to which they must respond to maintain efficient growth and survival. Therefore, in order to improve our understanding on the complex mechanisms involved in the cowpea response to salt stress and to a compatible interaction with the cowpea severe mosaic virus (CPSMV), we used a label-free quantitative proteomic approach to identify the salt and virus responsive proteins in the leaves of the Pitiuba (CE-31) cultivar. The proteins extracted from the leaves (control and treated) 2 and 6 days post-treatment only with salt (DPS), only infected with CPSMV (DPV) or both of them (DPSV) were analyzed using mass spectrometry. At 2 DPS, 350 proteins with at least two-fold differences in abundance, in comparison with controls, were differentially accumulated in the leaves of the salt-treated (80% up and 20% down-accumulated), 281 at 2DPV (25% up and 75% down-accumulated) and 321 at 2 DPSV (45% up and 55% down-accumulated) plants. At 6 DPS, 350 proteins were differentially accumulated in the leaves of the salt-treated (90% up and 10% down-accumulated), 225 at 6 DPV (80% up and 20% down-accumulated) and 315 at 6 DPSV (94% up and 6% down-accumulated) plants. The qualitative analysis showed biochemical differences when the cowpea plants were challenged concurrently with both stresses. To cope with salinity, cowpea increased the abundance of proteins directly involved with the salt tolerance mechanisms. The results indicated that the CPSMV induce the down-accumulating of several proteins to invade and spread in host at early infection period (2 DPV), but at 6 DPV plant can induce accumulation of diverse proteins related with defense, although these strategies canât avoid the negatives effects of disease. When exposed simultaneously to salt/CPSMV stresses, a balance in protein accumulation involved in many biological process. This is the first work employing this approach in cowpea and providing evidences of the plant biochemical mechanisms involved in the responses of cowpea to these stresses.
Como organismos sÃsseis, as plantas sÃo expostas a uma variedade de estresses ambientais aos quais devem responder para sobreviverem e se desenvolverem. A fim de melhorar a nossa compreensÃo sobre os mecanismos complexos envolvidos na resposta do feijÃo-de-corda ao estresse salino e na interaÃÃo compatÃvel com o vÃrus do mosaico severo do caupi (CPSMV), foi utilizada uma abordagem proteÃmica quantitativa, livre de marcaÃÃo, para identificar proteÃnas, responsivas a essess estresses em folhas de feijÃo-de-corda, cv. CE-31. As proteÃnas extraÃdas a partir de folhas primÃrias, 2 e 6 dias apÃs o tratamento sà com o sal (DPS), somente infectadas (DPV), ou sob aÃÃo combinada dos dois (DPSV) foram analisadas, usando espectrometria de massas e comparadas com grupo controle. No 2 DPS, foram identificadas 350 proteÃnas diferencialmente acumuladas (80% aumentaram em abundÃncia e 20% diminuÃram), no 2 DPV 281 (25% aumentaram em abundÃncia e 75% diminuÃram) e no 2 DPSV 321 (45% aumentaram em abundÃncia e 55% diminuÃram). Jà no 6 DPS, foram identificadas 350 proteÃnas diferencialmente acumuladas (90% mostraram aumento em abundÃncia e 10% diminuiÃÃo), no 6 DPV 225 (80% aumentaram em abundÃncia e 20% diminuÃram) e no 6 DPSV 315 proteÃnas(94% aumentaram em abundÃncia e 6% diminuÃram). Para lidar com a salinidade, o cv. CE-31 aumentou a abundÃncia de proteÃnas envolvidas diretamente com os mecanismos de tolerÃncia ao sal. Em relaÃÃo à infecÃÃo da planta pelo CPSMV, os resultados obtidos indicaram que o vÃrus induz reduÃÃo na abundÃncia de vÃrias proteÃnas nos tempos iniciais de infecÃÃo, provavelmente favorecendo a invasÃo e propagaÃÃo na planta, mas, no 6 DPSV, a planta recupera sua capacidade de acionar mecanismos de defesa, embora esses jà nÃo sejam mais efetivos para evitar o estabelecimento da doenÃa viral. Durante exposiÃÃo simultÃnea da planta ao sal e ao vÃrus, ocorreu um equilÃbrio entre o aumento e diminuiÃÃo em abundÃncia de proteÃnas envolvidas em diversos processos metabÃlicos. Esse trabalho à pioneiro nessa abordagem em feijÃo-de-corda e fornece evidÃncias dos mecanismos bioquÃmicos envolvidos nas resposta da planta a esses estresses.
Paiva, Ana Luiza Sobral. "Respostas bioquímicas do feijão-de-corda [Vigna unguiculata L. (Walp.)] ao estresse salino e infecção pelo vírus do mosaico severo do caupi (CPSMV) reveladas pela proteômica quantitativa livre de marcação." reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/18855.
Повний текст джерелаSubmitted by Eric Santiago (erichhcl@gmail.com) on 2016-07-08T12:56:09Z No. of bitstreams: 1 2015_dis_alspaiva.pdf: 4225070 bytes, checksum: 0559261a4c594b2649cdb60e4563c1fc (MD5)
Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-08-02T20:16:37Z (GMT) No. of bitstreams: 1 2015_dis_alspaiva.pdf: 4225070 bytes, checksum: 0559261a4c594b2649cdb60e4563c1fc (MD5)
Made available in DSpace on 2016-08-02T20:16:37Z (GMT). No. of bitstreams: 1 2015_dis_alspaiva.pdf: 4225070 bytes, checksum: 0559261a4c594b2649cdb60e4563c1fc (MD5) Previous issue date: 2015
As sessile organisms, plants are exposed to a plethora of environmental stresses to which they must respond to maintain efficient growth and survival. Therefore, in order to improve our understanding on the complex mechanisms involved in the cowpea response to salt stress and to a compatible interaction with the cowpea severe mosaic virus (CPSMV), we used a label-free quantitative proteomic approach to identify the salt and virus responsive proteins in the leaves of the Pitiuba (CE-31) cultivar. The proteins extracted from the leaves (control and treated) 2 and 6 days post-treatment only with salt (DPS), only infected with CPSMV (DPV) or both of them (DPSV) were analyzed using mass spectrometry. At 2 DPS, 350 proteins with at least two-fold differences in abundance, in comparison with controls, were differentially accumulated in the leaves of the salt-treated (80% up and 20% down-accumulated), 281 at 2DPV (25% up and 75% down-accumulated) and 321 at 2 DPSV (45% up and 55% down-accumulated) plants. At 6 DPS, 350 proteins were differentially accumulated in the leaves of the salt-treated (90% up and 10% down-accumulated), 225 at 6 DPV (80% up and 20% down-accumulated) and 315 at 6 DPSV (94% up and 6% down-accumulated) plants. The qualitative analysis showed biochemical differences when the cowpea plants were challenged concurrently with both stresses. To cope with salinity, cowpea increased the abundance of proteins directly involved with the salt tolerance mechanisms. The results indicated that the CPSMV induce the down-accumulating of several proteins to invade and spread in host at early infection period (2 DPV), but at 6 DPV plant can induce accumulation of diverse proteins related with defense, although these strategies can’t avoid the negatives effects of disease. When exposed simultaneously to salt/CPSMV stresses, a balance in protein accumulation involved in many biological process. This is the first work employing this approach in cowpea and providing evidences of the plant biochemical mechanisms involved in the responses of cowpea to these stresses.
Como organismos sésseis, as plantas são expostas a uma variedade de estresses ambientais aos quais devem responder para sobreviverem e se desenvolverem. A fim de melhorar a nossa compreensão sobre os mecanismos complexos envolvidos na resposta do feijão-de-corda ao estresse salino e na interação compatível com o vírus do mosaico severo do caupi (CPSMV), foi utilizada uma abordagem proteômica quantitativa, livre de marcação, para identificar proteínas, responsivas a essess estresses em folhas de feijão-de-corda, cv. CE-31. As proteínas extraídas a partir de folhas primárias, 2 e 6 dias após o tratamento só com o sal (DPS), somente infectadas (DPV), ou sob ação combinada dos dois (DPSV) foram analisadas, usando espectrometria de massas e comparadas com grupo controle. No 2° DPS, foram identificadas 350 proteínas diferencialmente acumuladas (80% aumentaram em abundância e 20% diminuíram), no 2° DPV 281 (25% aumentaram em abundância e 75% diminuíram) e no 2° DPSV 321 (45% aumentaram em abundância e 55% diminuíram). Já no 6° DPS, foram identificadas 350 proteínas diferencialmente acumuladas (90% mostraram aumento em abundância e 10% diminuição), no 6° DPV 225 (80% aumentaram em abundância e 20% diminuíram) e no 6° DPSV 315 proteínas(94% aumentaram em abundância e 6% diminuíram). Para lidar com a salinidade, o cv. CE-31 aumentou a abundância de proteínas envolvidas diretamente com os mecanismos de tolerância ao sal. Em relação à infecção da planta pelo CPSMV, os resultados obtidos indicaram que o vírus induz redução na abundância de várias proteínas nos tempos iniciais de infecção, provavelmente favorecendo a invasão e propagação na planta, mas, no 6° DPSV, a planta recupera sua capacidade de acionar mecanismos de defesa, embora esses já não sejam mais efetivos para evitar o estabelecimento da doença viral. Durante exposição simultânea da planta ao sal e ao vírus, ocorreu um equilíbrio entre o aumento e diminuição em abundância de proteínas envolvidas em diversos processos metabólicos. Esse trabalho é pioneiro nessa abordagem em feijão-de-corda e fornece evidências dos mecanismos bioquímicos envolvidos nas resposta da planta a esses estresses.
TANG, CHI-FONG, and 鄧志峰. "On Macao's Indie: The Case of Music Labels 4daz-le, Day's Eye Records and Warm Wall." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/he3bu4.
Повний текст джерела國立臺灣藝術大學
戲劇學系表演藝術碩士班
107
This study is based on the study of indie music. The definition of indie music, whether in the industry or academic circles, has its views and interpretations, and the indie music label is an important part of operating indie music. Bridges, among which the problems of ideology, autonomous mode and identity identification derived from indie music are especially reviewed. In addition to borrowing and combing, the researchers review the relevant literatures at the same time, and at the same time From the perspective of exploring the indie label of Macao, and exploring the uniqueness and value and positioning of the music environment in Macau, I hope that this study can clarify the beginning of the relationship. Based on the origin of indie music in the West, which extends to different places and then develops, all of which contain the natural color of Western elements, but with strong local character and consciousness, which also involves information from the past. Developed, and the introduction of indie music also has the fusion and impact of globalization. What appears here is not only the breakthrough in music techniques and the innovation in style. The content of music also leads the masses to think about themselves. Value and a spiritual channel to awaken social issues, young people also gain identity and sensory cultural identity through different types of music exchange. In addition to the local characteristics, music works in addition to the local characteristics of the independent music, part of the expression of the sense of autonomy in the identity of different classes in the current era, but also the accusation of social injustice, music The aesthetic standards of the image also develop different criteria along with the social functions and cultural identity that emerged from it. This article begins with the development background of music such as “underground”, “non-mainstream” or “alternative” in Macao. By grasping more information about the development history and current situation of indie music, it will continue to launch the indie label of Macao. People visit, including "4daz-le", "Day's Eye Records" and "Warm Wall", starting from their team's motives and goals, personal or team music background, and deepening their creation. The relationship between concept and brand positioning gradually explores the context of its music environment and cultural atmosphere, and then combs the development history of Macao's indie music and explores its cultural ecology. This article will also pursue the role played by the indie label in the operation of the Macao music environment through indie label management of indie music, but compare the three brands to each other and then integrate the indie label of Macau. Institutions and structures, thus extending the ideology and identity of the group, and then presenting the artistic value of the indie music culture.
Книги з теми "Wall label"
Brown, Iain Gordon. Monumental reputation: Robert Adam and the Emperor's Palace : wall panel texts and exhibit labels forming a retrospective catalogue of the exhibition held at the National Library of Scotland, 1 June - 30 September 1992 and at Kenwood, London, 6 November 1992 - 28 February 1993 : catalogue. Edinburgh: National Library of Scotland, 1993.
Знайти повний текст джерелаMendelson, Cheryl. Home Comforts: The Art & Science of Keeping House. New York, USA: Scribner, 2005.
Знайти повний текст джерелаMendelson, Cheryl. Home Comforts: The Art and Science of Keeping House. 4th ed. New York, USA: Scribner, 1999.
Знайти повний текст джерелаBeer Labels 2013 Wall Calendar. Andrews McMeel Publishing, 2012.
Знайти повний текст джерелаGregory, Deborah W. Financial Psychopaths. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190269999.003.0009.
Повний текст джерелаWalk with Jesus Gold Plated Lapel Pin. Bob Siemon Designs, 1994.
Знайти повний текст джерелаLeon, Sharon. Complexity and Collaboration. Edited by Paula Hamilton and James B. Gardner. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199766024.013.2.
Повний текст джерелаDi Cerbo, Cristiana, and Richard Jasnow. On the Path to the Place of Rest. Lockwood Press, 2022. http://dx.doi.org/10.5913/2022419.
Повний текст джерелаMendelson, Cheryl. Home Comforts: The Art & Science of Keeping House. Scribner, Armstrong, and Co., 1999.
Знайти повний текст джерелаMendelson, Cheryl. Home Comforts: The Art and Science of Keeping House. Scribner, 2002.
Знайти повний текст джерелаЧастини книг з теми "Wall label"
Dai, Qionghai, and Yue Gao. "Typical Hypergraph Computation Tasks." In Artificial Intelligence: Foundations, Theory, and Algorithms, 73–99. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0185-2_5.
Повний текст джерелаLiao, Yongxin, Shenxi Yuan, Jian Chen, Qingyao Wu, and Bin Li. "Joint Classification with Heterogeneous Labels Using Random Walk with Dynamic Label Propagation." In Advances in Knowledge Discovery and Data Mining, 3–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31753-3_1.
Повний текст джерелаPatel, Hemi, and Jai Prakash Verma. "Community Detection Using Label Propagation Algorithm with Random Walk Approach." In Lecture Notes in Electrical Engineering, 307–20. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6737-5_25.
Повний текст джерелаPan, Jing, Yajun Yang, Qinghua Hu, and Hong Shi. "A Label Inference Method Based on Maximal Entropy Random Walk over Graphs." In Web Technologies and Applications, 506–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45814-4_41.
Повний текст джерелаBian, Ang, Aaron Scherzinger, and Xiaoyi Jiang. "An Enhanced Multi-label Random Walk for Biomedical Image Segmentation Using Statistical Seed Generation." In Advanced Concepts for Intelligent Vision Systems, 748–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70353-4_63.
Повний текст джерелаLi, Xiaohong, Fanyi Yang, Yuyin Ma, and Huifang Ma. "Multi-label Classification of Short Text Based on Similarity Graph and Restart Random Walk Model." In IFIP Advances in Information and Communication Technology, 67–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46931-3_7.
Повний текст джерелаIppolito, Jon. "6 Death by Wall Label." In New Media in the White Cube and Beyond, 106–32. University of California Press, 2009. http://dx.doi.org/10.1525/9780520942349-008.
Повний текст джерела"The Labels." In Winning the Mental Game on Wall Street, 65–69. CRC Press, 2000. http://dx.doi.org/10.1201/9781420033090.ch17.
Повний текст джерелаDorsey, Bruce. "The Haystack." In Murder in a Mill Town, 7—C1F2. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/oso/9780197633090.003.0002.
Повний текст джерелаKashima, Hisashi, Hiroto Saigo, Masahiro Hattori, and Koji Tsuda. "Graph Kernels for Chemoinformatics." In Chemoinformatics and Advanced Machine Learning Perspectives, 1–15. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-61520-911-8.ch001.
Повний текст джерелаТези доповідей конференцій з теми "Wall label"
Landes, Timm, Inga Weisheit, Alphonse Mathew, Eren Alkanat, Miroslav Zabic, Thomas Debener, and Dag Heinemann. "Brillouin and Raman imaging for plant cell wall mechanics." In Label-free Biomedical Imaging and Sensing (LBIS) 2023, edited by Natan T. Shaked and Oliver Hayden. SPIE, 2023. http://dx.doi.org/10.1117/12.2649829.
Повний текст джерелаXu, Zhoubing, Rebeccah B. Baucom, Richard G. Abramson, Benjamin K. Poulose, and Bennett A. Landman. "Whole abdominal wall segmentation using augmented active shape models (AASM) with multi-atlas label fusion and level set." In SPIE Medical Imaging, edited by Martin A. Styner and Elsa D. Angelini. SPIE, 2016. http://dx.doi.org/10.1117/12.2216841.
Повний текст джерелаCheng, Weiqing, Xiao Sun, Shengwei Ye, Bocheng Yuan, Xuefeng Liu, John H. Marsh, and Lianping Hou. "Inner-Wall Grating Double Slot Microring Resonator for High Sensitivity and Large Measurement Range Label-Free Biochemical Sensing." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.stu4o.2.
Повний текст джерелаGrabowski, E. F., and K. McKenny. "CHARACTERIZATION OF DISORDERS OF PLATELET-VESSEL WALL INTERACTION IN AN AGGREGOMETER INCORPORATING BLOOD FLOW PAST AN ENDOTHELIAL CELL MONOLAYER." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644537.
Повний текст джерелаWu, Junshuang, Richong Zhang, Yongyi Mao, Masoumeh Soflaei Shahrbabak, and Jinpeng Huai. "Hierarchical Modeling of Label Dependency and Label Noise in Fine-grained Entity Typing." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/544.
Повний текст джерелаJin, Di, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. "RAW-GNN: RAndom Walk Aggregation based Graph Neural Network." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/293.
Повний текст джерелаFonseca, Gabriel Barbosa, Zenilton K. G. Patrocínio Jr, Guillaume Gravier, and Silvio Jamil F. Guimarães. "Multimodal person discovery using label propagation over speaking faces graphs." In XXXII Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sibgrapi.est.2019.8312.
Повний текст джерелаKeretchashvili, Gurami, Ting Lei, Pontus Loviken, Josselin Kherroubi, Lin Liang, Adam Donald, and Romain Prioul. "Machine-Learning-Enabled Joint Interpretation of Dipole Sonic and Borehole Image Data." In 2023 SPWLA 64th Annual Symposium. Society of Petrophysicists and Well Log Analysts, 2023. http://dx.doi.org/10.30632/spwla-2023-0089.
Повний текст джерелаGrabowski, F. E. "RHEOLOGY AND PRIMARY HEMOSTASIS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643986.
Повний текст джерелаLiu, Jinhong, and Juan Yang. "Multi-label Classification Using Random Walk with Restart." In 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). IEEE, 2017. http://dx.doi.org/10.1109/cyberc.2017.84.
Повний текст джерелаЗвіти організацій з теми "Wall label"
Otegui, Marisa, Kevin Eliceiri, Jenu Chacko, and Han Nim Lee. Multiparametric optical label-free imaging to analyze plant cell wall assembly and metabolism. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1969880.
Повний текст джерелаBrenan, J. M., K. Woods, J. E. Mungall, and R. Weston. Origin of chromitites in the Esker Intrusive Complex, Ring of Fire Intrusive Suite, as revealed by chromite trace element chemistry and simple crystallization models. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328981.
Повний текст джерела