Книги з теми "Volumi Finiti"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 книг для дослідження на тему "Volumi Finiti".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.
Introducción al método de volúmenes finitos. [Santiago de Compostela]: Universidade de Santiago de Compostela, 2008.
Знайти повний текст джерелаCendón, M. Elena Vázquez. Introducción al método de volúmenes finitos. [Santiago de Compostela]: Universidade de Santiago de Compostela, 2008.
Знайти повний текст джерелаM, Nallasamy, and United States. National Aeronautics and Space Administration., eds. Large-scale advanced propeller blade pressure distributions: Predictions and data. [Washington, D.C.]: NASA, 1989.
Знайти повний текст джерелаBasic control volume finite element methods for fluids and solids. Hackensack, NJ: World Scientific, 2009.
Знайти повний текст джерелаE, Jones J., and Institute for Computer Applications in Science and Engineering., eds. Control-volume mixed finite element methods. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаInternational Symposium on Finite Volumes for Complex Applications (5th 2008 Aussois, France). Finite volumes for complex applications V: Proceedings of the 5th International Symposium on Finite Volumes for Complex Applications. Hoboken, NJ: Wiley, 2008.
Знайти повний текст джерелаSpekreijse, S. P. Numerical evaluation of an efficient Roe scheme and chemical models for chemically reacting nozzle flows in thermal equilibrium. Amsterdam: National Aerospace Laboratory, 1990.
Знайти повний текст джерелаCaughey, David A. Effects of numerical dissipation on finite volume solutions of compressible flow problems. Washington: American Institute of Aeronautics and Astronautics, 1988.
Знайти повний текст джерелаLeVeque, Randall J. High resolution finite volume methods on arbitrary grids via wave propagation. Hampton, Va: ICASE, 1987.
Знайти повний текст джерелаSchonfeld, Thilo. Methods to enhance the accuracy of finite volume schemes II. Stockholm, Sweden: Aeronautical Research Institute of Sweden, 1991.
Знайти повний текст джерелаManna, M. A three dimensional high resolution upwind finite volume Euler solver. Rhode Saint Genese, Belgium: Von Karman Institute for Fluid Dynamics, 1992.
Знайти повний текст джерелаPerthame, B. On positivity preserving finite volume schemes for compressible Euler equations. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Знайти повний текст джерелаDemuren, A. O. Calculation of turbulence-driven secondary motion in ducts with arbitrary cross section. Cleveland, Ohio: Institute for Computational Mechanics in Propulsion, 1989.
Знайти повний текст джерелаVooren, J. Van der. Wave drag determination in the transonic full-potential flow code matrics. Amsterdam: National Aerospace Laboratory, 1990.
Знайти повний текст джерелаTōkyō Daigaku. Kikō Shisutemu Kenkyū Sentā, ed. Development of a mixed finite-difference/finite-volume scheme for the shallow water model on a spherical geodesic grid. Tokyo, Japan]: Center for Climate System Research, University of Tokyo, 2004.
Знайти повний текст джерелаMiura, Hiroaki. Development of a mixed finite-difference/finite-volume scheme for the shallow water model on a spherical geodesic grid. [Tokyo, Japan]: Center for Climate System Research, University of Tokyo, 2004.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Compact finite volume methods for the diffusion equation. Greensboro, NC: Dept. of Mechanical Engineering, N.C. A&T State University, 1989.
Знайти повний текст джерелаCenter, Langley Research, ed. High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Hampton, Va: ICASE, NASA Langley Research Center, 2001.
Знайти повний текст джерела1960-, Malalasekera W., ed. An introduction to computational fluid dynamics: The finite volume method. Harlow, Essex, England: New York, 1995.
Знайти повний текст джерела1960-, Malalasekera W., ed. An introduction to computational fluid dynamics: The finite volume method. 2nd ed. Harlow, England: Pearson Education Ltd., 2007.
Знайти повний текст джерелаChang-Qing, Hu, Shu Chi-Wang, and Institute for Computer Applications in Science and Engineering., eds. A technique of treating negative weights in WENO schemes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2000.
Знайти повний текст джерелаChi-Wang, Shi, and Institute for Computer Applications in Science and Engineering., eds. Weighted essentially non-oscillatory schemes on triangular meshes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Знайти повний текст джерелаToro, E. F. Multidimensional WAF-type schemes for model conservation laws. Cranfield, Bedfordshire, England: Cranfield University, College of Aeronautics, 1993.
Знайти повний текст джерелаWood, William A. Comments on the diffusive behavior of two upwind schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Знайти повний текст джерелаWood, William A. Comments on the diffusive behavior of two upwind schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Знайти повний текст джерелаE, Jones J., and Institute for Computer Applications in Science and Engineering., eds. Control-volume mixed finite element methods. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаE, Jones J., and Institute for Computer Applications in Science and Engineering., eds. Control-volume mixed finite element methods. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаE, Jones J., and Institute for Computer Applications in Science and Engineering., eds. Control-volume mixed finite element methods. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Development of an upwind, finite-volume code with finite-rate chemistry. San Jose, CA: MCAT Institute, 1994.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Development of an upwind, finite-volume code with finite-rate chemistry. San Jose, CA: MCAT Institute, 1995.
Знайти повний текст джерелаVázquez-Cendón, M. Elena. Solving Hyperbolic Equations with Finite Volume Methods. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14784-0.
Повний текст джерелаVassilevski, Yuri, Kirill Terekhov, Kirill Nikitin, and Ivan Kapyrin. Parallel Finite Volume Computation on General Meshes. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47232-0.
Повний текст джерелаInstitute for Computer Applications in Science and Engineering., ed. A new time-space accurate scheme for hyperbolic problems I: Quasi-explicit case. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Знайти повний текст джерелаP, Lock A., and United States. National Aeronautics and Space Administration., eds. The flux-integral method for multidimensional convection and diffusion. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаInstitute for Computer Applications in Science and Engineering., ed. A new time-space accurate scheme for hyperbolic problems I: Quasi-explicit case. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Знайти повний текст джерелаP, Lock A., and United States. National Aeronautics and Space Administration., eds. The flux-integral method for multidimensional convection and diffusion. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаP, Lock A., and United States. National Aeronautics and Space Administration., eds. The flux-integral method for multidimensional convection and diffusion. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаSchaffers, Ir. Paulus, J. J. Wave propagation in electrically conducting mixtures of inhomogeneities in liquids. Aachen: Shaker, 1993.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Comparison of truncation error of finite-difference and finite-volume formulations of convection terms. [Washington, DC: National Aeronautics and Space Administration, 1992.
Знайти повний текст джерела1934-, Jameson Antony, and United States. National Aeronautics and Space Administration., eds. Control theory based airfoil design for potential flow and a finite volume discretization. [Washington, DC: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаMoukalled, F., L. Mangani, and M. Darwish. The Finite Volume Method in Computational Fluid Dynamics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16874-6.
Повний текст джерелаPetrova, Radostina. Finite volume method: Powerful means of engineering design. Rijeka: InTech, 2012.
Знайти повний текст джерелаJay, Casper, Old Dominion University. Research Foundation., and Langley Research Center, eds. Finite-volume application of high order eno schemes to two-dimensional boundary-value problems. Norfolk, Va: Old Dominion University Research Foundation, 1990.
Знайти повний текст джерелаJay, Casper, Old Dominion University. Research Foundation., and Langley Research Center, eds. Finite-volume application of high order eno schemes to two-dimensional boundary-value problems. Norfolk, Va: Old Dominion University Research Foundation, 1990.
Знайти повний текст джерелаShima, Eiji. Numerical analysis of multiple element high lift devices by Navier Stokes equation using implicit TVD finite volume method. New York: AIAA, 1988.
Знайти повний текст джерелаL, Whitfield David, Anderson W. Kyle, and United States. National Aeronautics and Space Administration., eds. An multiblock approach for calculating incompressible fluid flows on unstructured grids. [Washington, DC: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерела(Editor), Raphaele Herbin, and Dietmar Kroner (Editor), eds. Finite Volumes for Complex Applications III. Hermes Penton Science, 2003.
Знайти повний текст джерела(Editor), Fayssal Benkhaldoun, and Roland Vilsmeier (Editor), eds. Finite Volumes for Complex Applications II. Hermes Science Publications, 1999.
Знайти повний текст джерелаVersteeg, H., and W. Malalasekra. An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd Edition). Prentice Hall, 2007.
Знайти повний текст джерелаVersteeg, H., and W. Malalasekra. An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd Edition). 2nd ed. Prentice Hall, 2007.
Знайти повний текст джерела