Добірка наукової літератури з теми "Vlasov-Poisson equations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Vlasov-Poisson equations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Vlasov-Poisson equations":

1

Després, Bruno. "Symmetrization of Vlasov--Poisson Equations." SIAM Journal on Mathematical Analysis 46, no. 4 (January 2014): 2554–80. http://dx.doi.org/10.1137/130927942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

JIN, SHI, XIAOMEI LIAO, and XU YANG. "THE VLASOV–POISSON EQUATIONS AS THE SEMICLASSICAL LIMIT OF THE SCHRÖDINGER–POISSON EQUATIONS: A NUMERICAL STUDY." Journal of Hyperbolic Differential Equations 05, no. 03 (September 2008): 569–87. http://dx.doi.org/10.1142/s021989160800160x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we numerically study the semiclassical limit of the Schrödinger–Poisson equations as a selection principle for the weak solution of the Vlasov–Poisson in one space dimension. Our numerical results show that this limit gives the weak solution that agrees with the zero diffusion limit of the Fokker–Planck equation. We also numerically justify the multivalued solution given by a moment system of the Vlasov–Poisson equations as the semiclassical limit of the Schrödinger–Poisson equations.
3

Larsson, Jonas. "An action principle for the Vlasov equation and associated Lie perturbation equations. Part 1. The Vlasov—Poisson system." Journal of Plasma Physics 48, no. 1 (August 1992): 13–35. http://dx.doi.org/10.1017/s0022377800016342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new action principle determining the dynamics of the Vlasov–Poisson system is presented (the Vlasov–Maxwell system will be considered in Part 2). The particle distribution function is explicitly a field to be varied in the action principle, in which only fundamentally Eulerian variables and fields appear. The Euler–Lagrange equations contain not only the Vlasov–Poisson system but also equations associated with a Lie perturbation calculation on the Vlasov equation. These equations greatly simplify the extensive algebra in the small-amplitude expansion. As an example, a general, manifestly Manley–Rowesymmetric, expression for resonant three-wave interaction is derived. The new action principle seems ideally suited for the derivation of action principles for reduced dynamics by the use of various averaging transformations (such as guiding-centre, oscillation-centre or gyro-centre transformations). It is also a powerful starting point for the application of field-theoretical methods. For example, the recently found Hermitian structure of the linearized equations is given a very simple and instructive derivation, and so is the well-known Hamiltonian bracket structure of the Vlasov–Poisson system.
4

Vedenyapin, V. V., T. V. Salnikova, and S. Ya Stepanov. "Vlasov-Poisson-Poisson equations, critical mass and kordylewski clouds." Доклады Академии наук 485, no. 3 (May 21, 2019): 276–80. http://dx.doi.org/10.31857/s0869-56524853276-280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A derivation of the Vlasov-Poisson-Poisson equation is proposed for studying stationary solutions of a system of gravitating charged particles in vicinity of triangular libration points (Kordylevsky cloud). Stationary solutions are sought as functions of integrals, which leads to elliptic nonlinear equations for the potentials of the gravitational and electrostatic fields. This gives a critical mass: for bodies with large masses dominates gravitation forces, and for bodies with smaller masses - electrostatic forces.
5

Vedenyapin, V. V., T. V. Salnikova, and S. Ya Stepanov. "Vlasov–Poisson–Poisson Equations, Critical Mass, and Kordylewski Clouds." Doklady Mathematics 99, no. 2 (March 2019): 221–24. http://dx.doi.org/10.1134/s1064562419020212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Scovel, Clint, and Alan Weinstein. "Finite dimensional lie-poisson approximations to vlasov-poisson equations." Communications on Pure and Applied Mathematics 47, no. 5 (May 1994): 683–709. http://dx.doi.org/10.1002/cpa.3160470505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vedenyapin, Victor Valentinovich, and Dmitry Aleksandrovich Kogtenev. "On Derivation and Properties of Vlasov-type equations." Keldysh Institute Preprints, no. 20 (2023): 1–18. http://dx.doi.org/10.20948/prepr-2023-20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Derivation of the gravity and electrodynamics equations in the Vlasov-Maxwell-Einstein form is considered. Properties of Vlasov-Poisson equation and its application to construction of periodic solutions – Bernstein-Greene-Kruskal waves – are proposed.
8

Tyranowski, Tomasz M. "Stochastic variational principles for the collisional Vlasov–Maxwell and Vlasov–Poisson equations." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2252 (August 2021): 20210167. http://dx.doi.org/10.1098/rspa.2021.0167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work, we recast the collisional Vlasov–Maxwell and Vlasov–Poisson equations as systems of coupled stochastic and partial differential equations, and we derive stochastic variational principles which underlie such reformulations. We also propose a stochastic particle method for the collisional Vlasov–Maxwell equations and provide a variational characterization of it, which can be used as a basis for a further development of stochastic structure-preserving particle-in-cell integrators.
9

Karimov, A. R., and H. Ralph Lewis. "Nonlinear solutions of the Vlasov–Poisson equations." Physics of Plasmas 6, no. 3 (March 1999): 759–61. http://dx.doi.org/10.1063/1.873313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Larsson, Jonas. "Hermitian structure for the linearized Vlasov-Poisson and Vlasov-Maxwell equations." Physical Review Letters 66, no. 11 (March 18, 1991): 1466–68. http://dx.doi.org/10.1103/physrevlett.66.1466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Vlasov-Poisson equations":

1

Li, Li. "The asymptotic behavior for the Vlasov-Poisson-Boltzmann system & heliostat with spinning-elevation tracking mode /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b30082419f.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D.)--City University of Hong Kong, 2009.
"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [84]-87)
2

SALANON, BRUNO. "Stabilite des solutions des equations de transport application a la resolution numerique du systeme de vlasov-poisson." Nice, 1997. http://www.theses.fr/1997NICE5085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans cette these, on etudie en premier lieu la continuite et la derivabilite des solutions d'equations aux derivees partielles lineaires du premier ordre par rapport a des perturbations imposees aux donnees du probleme: domaine sur lequel est posee l'equation, champ de vecteurs et donnee au bord. Nous montrons que la continuite a toujours lieu pour des donnees regulieres. Par contre, nous demontrons que la differentiabilite n'est pas toujours verifiee et nous mettons en evidence une condition suffisante de compatibilite geometrique entre les champs de vecteurs et l'ouvert de travail pour obtenir cette regularite. Dans une deuxieme partie, on enonce et on met numeriquement en oeuvre des algorithmes permettant de resoudre le systeme de vlasov-poisson stationnaire. Les methodes mises en oeuvre sont construites autour d'algorithmes de newton qui necessitent l'analyse de stabilite effectuee prealablement sur les equations aux derivees partielles du premier ordre. Nous proposons de resoudre le systeme de vlasov-poisson, mais on s'interesse aussi tout particulierement a l'approche numerique du regime critique de child-langmuir. Pour la resolution de chacun de ces deux problemes, un algorithme de newton est propose. On presente alors des simulations numeriques en dimension 1 d'espace puis en dimension 2 axi-symetrique.
3

Zhelezov, Gleb, and Gleb Zhelezov. "Coalescing Particle Systems and Applications to Nonlinear Fokker-Planck Equations." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/624562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study a stochastic particle system with a logarithmically-singular inter-particle interaction potential which allows for inelastic particle collisions. We relate the squared Bessel process to the evolution of localized clusters of particles, and develop a numerical method capable of detecting collisions of many point particles without the use of pairwise computations, or very refined adaptive timestepping. We show that when the system is in an appropriate parameter regime, the hydrodynamic limit of the empirical mass density of the system is a solution to a nonlinear Fokker-Planck equation, such as the Patlak-Keller-Segel (PKS) model, or its multispecies variant. We then show that the presented numerical method is well-suited for the simulation of the formation of finite-time singularities in the PKS, as well as PKS pre- and post-blow-up dynamics. Additionally, we present numerical evidence that blow-up with an increasing total second moment in the two species Keller-Segel system occurs with a linearly increasing second moment in one component, and a linearly decreasing second moment in the other component.
4

Vecil, Francesco. "A contribution to the simulation of Vlasov-based models." Doctoral thesis, Universitat Autònoma de Barcelona, 2007. http://hdl.handle.net/10803/3100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Esta tesis está dedicada al desarrollo, aplicación y test de métodos para la simulación numérica de problemas procedentes de la física y de la ingeniería electrónica. La principal herramienta aplicada a lo largo de todo el trabajo es la ecuación de Vlasov (transporte) en la forma de la Boltzmann Transport Equation (BTE) para la descripción del transporte de partículas cargadas en plasmas y dispositivos electrónicos: las cargas se mueven bajo el efecto de un campo de fuerza y sufren scattering debido a otras cargas o fonones (pseudo-partículas que describen de manera efectiva las vibraciones de los iones del retículo cristalino).
La BTE ha de ser acoplada con una ecuación o sistema de ecuaciones para calcular el campo de fuerza: para estructuras simples se usa la ecuación de Poisson; para plasmas, donde los efectos magnéticos no se pueden despreciar debido a las altas velocidades de las partículas, se usa la fuerza de Lorentz, por lo cual se han de resolver las ecuaciones de Maxwell; en nanoestructuras, por ejemplo transistores con dimensiones confinadas, la ecuación de Poisson necesita ser acoplada con la ecuación de Schrödinger para la descripción de las dimensiones cuánticas y para la descomposición en sub-bandas, o niveles de energía.
Las colisiones son el scattering que las cargas padecen debido a las interacciones con otras cargas o con el retículo cristalino fijo, representado en forma de fonones. En la tesis se emplean diversos operadores de scattering: los más simples son operadores lineales de relajación; se estudia un modelo para la simulación de semiconductores donde se tienen en cuenta colisiones con fonones acústicos, en aproximación elástica, y fonones ópticos.
Tras la introducción, en el primer capítulo se desarrollan los métodos numéricos más importantes: primero un método de interpolación no oscilante (PWENO), necesario para evitar las oscilaciones producidas por la reconstrucción por polinomios de Lagrange, que incrementa la variación total cuando aparecen choques: las oscilaciones en el espacio de fases son características del problema, pero si el método añade oscilaciones espúreas (es decir, debidas al método en sí), entonces el resultado numérico no tiene sentido, o simplemente explota. El segundo método numérico fundamental es la técnica de splitting: cuando se resuelve un problema complicado, si se puede dividir en sub-problemas y resolverlos por separado, entonces se puede reconstruir una aproximación para el problema completo; esta técnica se usa para el time splitting (separación de la parte de transporte y de colisión) y el splitting dimensional (dividir el espacio de fases en posición y velocidad). La tercera herramienta fundamental es un sólver para advección lineal: se usan dos métodos, uno basado en trazar hacia atrás las características a nivel puntual y otro basado en reconstruir valores integrales en segmentos en lugar de puntos; el primero controla mejor las oscilaciones, el segundo fuerza la conservación de masa.
En el capítulo 2 estos métodos se aplican a algunos tests conocidos para averiguar su solidez.
En el capítulo 3 estos métodos se aplican a la simulación de un diodo, y los resultados se comparan con resultados anteriores obtenidos por esquemas Runge-Kutta basados en diferencias finitas para aproximar las derivadas parciales.
El capítulo 4 está dedicado a la construcción y simulación de modelos intermedios entre una ecuación cinética, con operador de colisión de tipo relajación, y su aproximación más grosera, ésta última siendo la ecuación del calor. Para obtener modelos intermedios, se busca un cierre de las ecuaciones de los momentos de orden cero y uno. Se proponen esquemas "asymptotic-preserving" para la ecuación cinética, que evitan la stiffness de la parte de advección a través de una descomposición de la función de distribución en su media más fluctuaciones. En cuanto a las clausuras de las ecuaciones de los momentos, se proponen esquemas de relajación para aislar las no-linealidades. Estos métodos son aplicados a un test conocido, el Su-Olson test.
El último capítulo está dedicado a la simulación de un MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 2D de dimensión nanométrica en el que los electrones se comportan como partículas en una dimensión y como ondas en las dimensiones confinadas. La descomposición en sub-bandas se realiza a través de una ecuación de Schrödinger 1D en estado estacionario. Las dimensiones, así como las sub-bandas, están acopladas por la ecuación de Poisson en la expresión de la densidad, y por el operador de colisión. Se propone un sólver microscópico para estados transitorios, basado en técnicas de splitting para las BTEs (una para cada nivel de energía), métodos de características para el transporte y una iteración de tipo Newton para resolver el problema acoplado Schrödinger-Poisson para el cálculo del campo de fuerza.
This thesis is dedicated to the development, application and test of numerical methods for the numerical simulation of problems arising from physics and electronic engineering. The main tool which is used all along the work is the Vlasov (transport) equation in the form of the Boltzmann Transport Equation (BTE) for the description of the transport and collisions of charged particles in plasmas and electronic devices: charge carriers are driven by a force field and scattered by other carriers or phonons (pseudo-particles giving an effective representation of the oscillating field produced by the vibrating ions).
The BTE must be coupled to an equation or a system of equations for the computation of the force field: for simple structures the Poisson equation is used; for plasmas, where the magnetic phenomena cannot be neglected due to the high velocities of the particles, the Lorentz force is used, so the Maxwell equations have to be solved; for nanostructures, e.g. transistors with confined dimensions, the Poisson equation needs coupling with Schrödinger equation for the description of the quantum dimensions and the decomposition into subbands, or energy levels.
Collisions mean the scattering the carriers suffer due to the interactions with other carriers or the fixed lattice, in form of phonons. All along the thesis several scattering operator are used: the simplest ones are linear relaxation-time operators; a model for the simulation of a semiconductor is studied in which collisions are taken into account with acoustic phonons, in the elastic approximation, and optical phonons.
After the introduction, in the first chapter the most important numerical methods are developed: first of all a pointwise non-oscillatory interpolation method (PWENO) needed to avoid the simple Lagrange polynomial reconstruction, which increases the total variation when shocks appear: oscillations are part of the physics of the problem, but if the method adds spurious, non-physical oscillations, then the numerical result is meaningless, or it simply blows up. The second fundamental numerical method is the splitting technique: when solving a complicated problem, if we are able to subdivide it into sub-problem and solve them for separate, then we can reconstruct an approximation for the complete problem; this technique is used for both time splitting (separate transport from collisions) and dimensional splitting (split the phase space into either dimensions). The third fundamental instrument is the solver for linear advections: two methods are used, one based on pointwise following backwards the characteristics and another one based on reconstructing integral values along segments instead of point values; the first one controls better oscillations, the second one forces mass conservation.
These methods are applied in chapter 2 to some well-known benchmark tests to control their robustness.
In chapter 3 these methods are applied to the simulation of a diode, and the results compared to previous results obtained by Runge-Kutta schemes based on finite differences schemes for the approximation of the partial derivatives.
Chapter 4 is dedicated to the construction and simulation of intermediate models between a kinetic equation, with relaxation-time collision operator, and its coarsest approximation, this one being the heat equations. In order to obtain intermediate models, the moment equations are closed at zeroth and first order. Asymptotic-preserving schemes are proposed for the kinetic equation, which avoid the stiffness of the advection part by decomposing the distribution function into its average plus fluctuations. As for the moment closures, relaxation schemes are proposed in order to confine the non-linearities in the right hand side. These methods are then applied to a known benchmark, the Su-Olson test.
The last chapter is dedicated to the simulation of a nanoscaled 2D MOSFET (Metal Oxide Field Effect Transistor) in which electrons behave as particles in one dimension and as waves in the confined dimensions. The subband decomposition is realized through a stationary-state 1D Schrödinger equation. The dimensions as well as the subbands are coupled by the Poisson equation in the expression of the density and by the collision operator. A transient-state microscopic solver is proposed, based on splitting techniques for the BTE's (one for each energy level), characteristics methods for the transport and a Newton iteration for the solution of the coupled Schrödinger-Poisson system for computing the force field.
5

Giorgi, Pierre-Antoine. "Analyse mathématique de modèles cinétiques en physique des plasmas." Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse porte sur l'étude de quelques modèles cinétiques utilisés en physique des plasmas.Le premier modèle considéré est un système de Vlasov-Poisson 1D à deux espèces de particules (ions et électrons), dans un domaine d'espace borné, x∈(0,1), avec condition de réflexion directe au bord. Dans le cas linéaire, des caractéristiques généralisées sont définies, en s'assurant qu'on atteint le temps s=0 en un nombre fini de rebonds, le cas problématique étant celui où le champ électrique est sortant du domaine. Puis, pour des données initiales paires en vitesse, une solution globale continue est construite à l'aide des caractéristiques généralisées et d'un argument de point fixe. L'unicité locale d'une solution continue est démontrée, dans un cadre où il ne peut arriver deux rebonds successifs sur le même bord. Le second modèle étudié a été obtenu comme limite d'un système de Vlasov-Poisson à une espèce de particules en régime de rayon de Larmor fini. Pour des solutions vérifiant une condition de décroissance, une estimation de stabilité au sens de Wasserstein est prouvée, et une nouvelle preuve de l'existence de telles solutions est donnée. Le champ d'advection est alors lipschitzien. Enfin, des simulations numériques pour un système de Vlasov-Poisson à une dimension d'espace et de vitesse soumis à une onde extérieure sont réalisées pour étudier la réponse électronique. Un phénomène de battement entre deux ondes, l'une à la fréquence extérieure, l'autre à la fréquence de Landau, est mis en évidence
This thesis deals with the study of some kinetic models encountered in plasma physics.The first model considered is a 1D Vlasov-Poisson system representing the dynamics of two species of particles (ions and electrons) in a bounded set, x ∈ (0,1), with direct reflection boundary conditions. In the linear case, generalized characteristics are defined, ensuring the time s=0 to be reached after a finite number of bounces, the problematic case being when the electric field points outward of the boundary. Then, for initial conditions even in the velocity variable, a global continuous solution is built by means of generalized characteristics and a fixed point argument. Local uniqueness of a continuous solution is shown, in a frame where two successive bounces at the same boundary cannot occur. The second model was obtained as the limit of a Vlasov-Poisson system in the finite Larmor radius regime.For solutions satisfying a decay assumption, a Wasserstein stability estimate is proven, and a new proof of the existence of such solutions is given. The advection field is then Lipschitz continuous. Finally, numerical simulations are performed to investigate the kinetic response of electrons to an external drive. A beating between two waves, one at the external frequency, the other at the Landau frequency, is revealed
6

Herda, Maxime. "Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1165/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse est consacrée à l'étude mathématique de quelques modèles d'équations aux dérivées partielles issues de la physique des plasmas. On s'intéresse principalement à l'analyse théorique de différents régimes asymptotiques de systèmes d'équations cinétiques de type Vlasov-Poisson-Fokker-Planck. Dans un premier temps, en présence d'un champ magnétique extérieur on se concentre sur l'approximation des électrons sans masse fournissant des modèles réduits lorsque le rapport me{mi entre la masse me d'un électron et la masse mi d'un ion tend vers 0 dans les modèles. Suivant le régime considéré, on montre qu'à la limite les solutions vérifient des modèles hydrodynamiques de type convection-diffusion ou sont données par des densités de type Maxwell-Boltzmann-Gibbs, suivant l'intensité des collisions dans la mise à l'échelle. En utilisant les propriétés hypocoercives et hypoelliptiques des équations, on est capable d'obtenir des taux de convergence en fonction du rapport de masse. Dans un second temps, par des méthodes similaires, on montre la convergence exponentielle en temps long vers l'équilibre des solutions du système de Vlasov-Poisson-Fokker-Planck sans champ magnétique avec des taux explicites en les paramètres du modèles. Enfin, on conçoit un nouveau type de schéma volumes finis pour des équations de convection-diffusion non-linéaires assurant le bon comportement en temps long des solutions discrètes. Ces propriétés sont vérifiées numériquement sur plusieurs modèles dont l'équation de Fokker-Planck avec champ magnétique
This thesis is devoted to the mathematical study of some models of partial differential equations from plasma physics. We are mainly interested in the theoretical study of various asymptotic regimes of Vlasov-Poisson-Fokker-Planck systems. First, in the presence of an external magnetic field, we focus on the approximation of massless electrons providing reduced models when the ratio me{mi between the mass me of an electron and the mass mi of an ion tends to 0 in the equations. Depending on the scaling, it is shown that, at the limit, solutions satisfy hydrodynamic models of convection-diffusion type or are given by Maxwell-Boltzmann-Gibbs densities depending on the intensity of collisions. Using hypocoercive and hypoelliptic properties of the equations, we are able to obtain convergence rates as a function of the mass ratio. In a second step, by similar methods, we show exponential convergence of solutions of the Vlasov-Poisson-Fokker-Planck system without magnetic field towards the steady state, with explicit rates depending on the parameters of the model. Finally, we design a new type of finite volume scheme for a class of nonlinear convection-diffusion equations ensuring the satisfying long-time behavior of discrete solutions. These properties are verified numerically on several models including the Fokker-Planck equation with magnetic field
7

Le, Bourdiec Solène. "Méthodes déterministes de résolution des équations de Vlasov-Maxwell relativistes en vue du calcul de la dynamique des ceintures de Van Allen." Phd thesis, Ecole Centrale Paris, 2007. http://tel.archives-ouvertes.fr/tel-00146258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les satellites artificiels baignent dans un environnement radiatif hostile qui conditionne en partie leur fiabilité et leur durée de vie en opération : les ceintures de Van Allen. Afin de les protéger, il est nécessaire de caractériser la dynamique des électrons énergétiques piégés dans les ceintures radiatives. Elle est déterminée essentiellement par les interactions entre les électrons énergétiques et les ondes électromagnétiques existantes.

Le travail de cette thèse a consisté à concevoir un schéma numérique original pour la résolution du système d'équations modélisant ces interactions : les équations de Vlasov-Maxwell relativistes. Notre choix s'est orienté vers des méthodes d'intégration directe. Nous proposons trois nouvelles méthodes spectrales pour discrétiser en impulsion les équations : une méthode de Galerkin et deux méthodes de type collocation. Ces approches sont basées sur des fonctions de Hermite qui ont la particularité de dépendre d'un facteur d'échelle permettant d'obtenir une bonne résolution en vitesse.

Nous présentons dans ce manuscript les calculs conduisant à la discrétisation et à la résolution du problème de Vlasov-Poisson monodimensionnel ainsi que les résultats numériques obtenus. Puis nous étudions les extensions possibles des méthodes au problème complet relativiste. Afin de réduire les temps de calcul, une parallélisation et une optimisation des algorithmes ont été mises en \oe uvre. Enfin, les calculs de validation du code 1Dx-3Dv, à partir d'instabilités de types Weibel et whistlers, à une ou deux espèces d'électrons, sont détaillés.
8

Zhang, Mei. "Some problems on conservation laws and Vlasov-Poisson-Boltzmann equation /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b23749465f.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D.)--City University of Hong Kong, 2009.
"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [90]-94)
9

Bourne, Emily. "Non-uniform numerical schemes for the modelling of turbulence in the 5D GYSELA code." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse s'inscrit dans le cadre des simulations de plasma fusion et son objectif est double: (i) développer des méthodes numériques innovantes adaptées au schéma semi-lagrangien utilisé dans le code 5D gyrocinétique GYSELA, capables de résoudre le problème de grande amplitude de fluctuations et de variation de température au bord du plasma et (ii) prendre en compte des configurations magnétiques plus réalistes que les celles jusqu'alors simulées dans le code. Je présente une nouvelle approche pour la quadrature par splines qui limite le conditionnement pour l'obtention des coefficients de quadrature. Je présente une approche splines locales avec transport des dérivées entre chaque patch et démontrons sa stabilité pour une advection semi-lagrangienne. Les études approfondies des méthodes semi-lagrangiennes basées sur des splines non-uniformes ont été réalisées sur un modèle Vlasov-Poisson 1D-1V utilisé pour l'étude de la gaine dans un plasma. Le code VOICE (mini-application de GYSELA) qui est aussi utilisé pour les simulations de gaine a été modifié et optimisé sur GPU pour prendre en compte un maillage non-équidistant.Les matrices covariantes de transformations pour une nouvelle géométrie ont été dérivées et implémentées dans le code pour les équations de Vlasov 5D. Cette configuration magnétique plus réaliste a été validée numériquement sur les benchmarks linéaires d'étude des GAMs. Une plate-forme de tests du solveur de Poisson 2D a été développée pour pouvoir comparer numériquement ce solveur à 2 autres solveurs multigrilles: l'un qui utilise des volumes finis sur un maillage cartésien uniforme et l'autre, qui utilise des différences finies sur un maillage logique
This thesis lies within the context of fusion plasma simulations and it has a double objective: (i) develop new scalable numerical methods, adapted to the semi-lagrangian scheme used in the 5D gyrokinetic GYSELA code, capable of solving the problem of large fluctuations and temperature variations at the edge of the plasma, and (ii) take into account more realistic magnetic configurations than the concentric circles currently simulated by the code. I present a new approach for quadrature using splines, which limits the condition number for the procurement of such quadrature coefficients. I present a local spline method where derivatives are transported between patches, and show its stability for semi-lagrangian advection. The semi-lagrangian method based on non-uniform splines on a Vlasov-Poisson 1D-1V model is used for studies of the plasma sheath. The existing VOICE code (which is a mini version of GYSELA), designed to study such problems, has been modified and optimised on a GPU to operate on a non-uniform mesh. Co-variant and contra-variant transformation matrices of a new realistic magnetic configuration were derived and implemented in the code to allow the 5D Vlasov equations to take into account new geometry. The inclusion of this new magnetic configuration has been successfully numerically validated on the linear benchmarks used for GAM studies. In parallel, a test platform for the 2D Poisson solver was developed in order to numerically compare this spline finite elements solver to two other multi-grid solvers: (i) a solver using finite volumes on a uniform cartesian mesh with embedded boundaries, and (ii) a solver using finite differences on a logical mesh
10

Badsi, Mehdi. "Etude mathématiques et simulations numériques de modèles de gaines bi-cinétiques." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les résultats présentés dans cette thèse portent sur la construction et la simulation numérique de modèles théoriques de plasmas en présence d'une paroi absorbante. Ces modèles se basent sur des systèmes de Vlasov-Poisson ou Vlasov-Ampère à deux espèces en présence de conditions limites. Les solutions stationnaires recherchées vérifient l'équilibre des flux de charges dans la direction perpendiculaire à la paroi. Cette propriété s'appelle l'ambipolarité. A travers l'étude d'une équation de Poisson non linéaire, on montre le caractère bien posé d'un système de Vlasov-Poisson stationnaire 1d-1v pour lequel on détermine des distributions de particules entrantes et un potential au mur qui induisent l'ambipolarité et une densité de charge positive. On donne également une estimation de la taille de la couche limite au mur. Ces résultats sont illustrés numériquement. On prouve ensuite la stabilité linéaire des solutions stationnaires électroniques pour un modèle de Vlasov-Ampère instationnaire. Enfin, on étudie un modèle de Vlasov-Poisson stationnaire 1d-3v en présence d'un champ magnétique constant et parallèle à la paroi. On détermine les distributions de particules entrantes et un potentiel au mur qui induisent l'ambipolarité. On étudie une équation de Poisson non linéaire associée au modèle à l'aide d'une fonctionnelle non linéaire d'énergie qui admet des minimiseurs. On établit des bornes de paramètres à l'intérieur desquelles notre modèle s'applique et on propose une interprétation des résultats
This thesis focuses on the construction and the numerical simulation theoretical models of plasmas in interaction with an absorbing wall. These models are based on two species Vlasov-Poisson or Vlasov-Ampère systems in the presence of boundary conditions. The expected stationary solutions must verify the balance of the flux of charges in the orthogonal direction to the wall. This feature is called the ambipolarity.Through the study of a non linear Poisson equation, we prove the well-posedness of 1d-1v stationary Vlasov-Poisson system, for which we determine incoming particles distributions and a wall potential that induces the ambipolarity as well as a non negative charge density hold. We also give a quantitative estimates of the thickness of the boundary layer that develops at the wall. These results are illustrated numerically. We prove the linear stability of the electronic stationary solution for a non-stationary Vlasov-Ampère system. Finally, we study a 1d-3v stationary Vlasov-Poisson system in the presence of a constant and parallel to the wall magnetic field . We determine incoming particles distributions and a wall potential so that the ambipolarity holds. We study a non linear Poisson equation through a non linear functional energy that admits minimizers. We established some bounds on the numerical parameters inside which, our model is relevant and we propose an interpretation of the results

Книги з теми "Vlasov-Poisson equations":

1

Colombo, Maria. Flows of Non-smooth Vector Fields and Degenerate Elliptic Equations: With Applications to the Vlasov-Poisson and Semigeostrophic Systems. Pisa: Scuola Normale Superiore, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Deruelle, Nathalie, and Jean-Philippe Uzan. Kinetic theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.
3

Colombo, Maria. Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations: With Applications to the Vlasov-Poisson and Semigeostrophic Systems. Edizioni della Normale, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Vlasov-Poisson equations":

1

Colombo, Maria. "The Vlasov-Poisson system." In Flows of Non-smooth Vector Fields and Degenerate Elliptic Equations, 189–230. Pisa: Scuola Normale Superiore, 2017. http://dx.doi.org/10.1007/978-88-7642-607-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Majda, George. "On Singular Solutions of the Vlasov-Poisson Equations." In Vortex Flows and Related Numerical Methods, 67–75. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8137-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cao, Yunbai, and Chanwoo Kim. "On Some Recent Progress in the Vlasov–Poisson–Boltzmann System with Diffuse Reflection Boundary." In Recent Advances in Kinetic Equations and Applications, 93–114. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82946-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Glassey, Robert T., and Jack Schaeffer. "Global Solution of the Cauchy Problem for the Relativistic Vlasov-Poisson Equation with Cylindrically Symmetric Data." In Dispersive Transport Equations and Multiscale Models, 121–32. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4419-8935-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kormann, Katharina, and Eric Sonnendrücker. "Sparse Grids for the Vlasov–Poisson Equation." In Lecture Notes in Computational Science and Engineering, 163–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28262-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Laidin, Tino, and Thomas Rey. "Hybrid Kinetic/Fluid Numerical Method for the Vlasov-Poisson-BGK Equation in the Diffusive Scaling." In Springer Proceedings in Mathematics & Statistics, 229–37. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40860-1_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rein, Gerhard. "Collisionless Kinetic Equations from Astrophysics – The Vlasov–Poisson System." In Handbook of Differential Equations: Evolutionary Equations, 383–476. Elsevier, 2007. http://dx.doi.org/10.1016/s1874-5717(07)80008-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"The limit from the one-dimensional Schrödinger-Poisson to Vlasov-Poisson equations." In Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations, 37–79. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/cln/017/03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Saikia, Banashree, and Paramananda Deka. "UNSTABLE ELECTROSTATIC WAVES ASSOCIATED WITH DENSITY AND TEMPERATURE GRADIENTS IN AN INHOMOGENEOUS PLASMA." In Advancements in Fine Particle Plasmas [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1002644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A study is carried out on the amplification of electrostatic Bernstein waves in the presence of drift wave turbulence in an inhomogeneous plasma. We have considered the Vlasov-Poisson system of equations for the interaction among the waves. In this investigation, we have considered a particle distribution model in which an external force due to density and temperature gradients present in the system is incorporated. The resonant mode of drift wave turbulence interacts with plasma particles through resonant interactions. These accelerated particles transfer their energy to Bernstein waves through a modulated field. This nonlinear wave interaction process is based on weak turbulence theory and is known as the Plasma maser effect. In this process, we have evaluated the fluctuating parts of the distribution function owing to the presence of turbulent resonant waves, the modulation field of interacting waves, and the non-resonant Bernstein waves by integrating along the unperturbed particles orbit from a set of linearized Vlasov equations. The nonlinear dispersion relation for Bernstein waves is presented to analyse the influence of gradient parameters.
10

"The Vlasov–Poisson Equations as an Analogy to the Euler Equations for the Study of Weak Solutions." In Vorticity and Incompressible Flow, 498–542. Cambridge University Press, 2001. http://dx.doi.org/10.1017/cbo9780511613203.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Vlasov-Poisson equations":

1

Malkov, E. A., and A. N. Kudryavtsev. "Validation of the GPU code for solving multidimensional Vlasov-Poisson equations." In HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2020): Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, dedicated to the 90th anniversary of the birth of RI Soloukhin. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0029196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Скубачевский, Александр, and Юлия Беляева. "Stationary solutions of the Vlasov--Poisson equations in torus and applications to the theory of high temperature plasma." In International scientific conference "Ufa autumn mathematical school - 2021". Baskir State University, 2021. http://dx.doi.org/10.33184/mnkuomsh2t-2021-10-06.37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shadwick, B. A., and M. Carrie. "A time-implicit algorithm for solving the Vlasov-Poisson equation." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6634925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kulikova, Irina V. "Methods of Electronic Optics Simulation Based on Numerical Solving the Vlasov-Poisson Equation." In 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2020. http://dx.doi.org/10.1109/apede48864.2020.9255528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rossmanith, James A., David C. Seal, and Andrew J. Christlieb. "A high-order positivity preserving method for the Vlasov-Poisson equation on unstructured grids." In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Vlasov-Poisson equations":

1

W.W. Lee and R.A. Kolesnikov. On Higher-order Corrections to Gyrokinetic Vlasov-Poisson Equations in the Long Wavelength Limit. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/950698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

W. W. Lee, and R. A. Kolesnikov. Response to Comment on "On Higher-Order Corrections to Gyrokinetic Vlasov-Poisson Equations in the Long Wavelength Limit [Phys. Plasmas 16, 044506 (2009)]". Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/969307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії