Добірка наукової літератури з теми "Viterbo conjecture"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Viterbo conjecture".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Viterbo conjecture"
Abbondandolo, Alberto, Barney Bramham, Umberto L. Hryniewicz, and Pedro A. S. Salomão. "Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere." Compositio Mathematica 154, no. 12 (November 6, 2018): 2643–80. http://dx.doi.org/10.1112/s0010437x18007558.
Повний текст джерелаBalitskiy, Alexey. "Equality Cases in Viterbo’s Conjecture and Isoperimetric Billiard Inequalities." International Mathematics Research Notices 2020, no. 7 (April 19, 2018): 1957–78. http://dx.doi.org/10.1093/imrn/rny076.
Повний текст джерелаKarasev, Roman, and Anastasia Sharipova. "Viterbo’s Conjecture for Certain Hamiltonians in Classical Mechanics." Arnold Mathematical Journal 5, no. 4 (December 2019): 483–500. http://dx.doi.org/10.1007/s40598-019-00129-4.
Повний текст джерелаValverde-Albacete, Francisco J., and Carmen Peláez-Moreno. "The Rényi Entropies Operate in Positive Semifields." Entropy 21, no. 8 (August 8, 2019): 780. http://dx.doi.org/10.3390/e21080780.
Повний текст джерелаGutt, Jean, Michael Hutchings, and Vinicius G. B. Ramos. "Examples around the strong Viterbo conjecture." Journal of Fixed Point Theory and Applications 24, no. 2 (April 20, 2022). http://dx.doi.org/10.1007/s11784-022-00949-6.
Повний текст джерелаShelukhin, Egor. "Viterbo conjecture for Zoll symmetric spaces." Inventiones mathematicae, July 7, 2022. http://dx.doi.org/10.1007/s00222-022-01124-x.
Повний текст джерелаShelukhin, Egor. "Symplectic cohomology and a conjecture of Viterbo." Geometric and Functional Analysis, October 31, 2022. http://dx.doi.org/10.1007/s00039-022-00619-2.
Повний текст джерелаEdtmair, O. "Disk-Like Surfaces of Section and Symplectic Capacities." Geometric and Functional Analysis, July 16, 2024. http://dx.doi.org/10.1007/s00039-024-00689-4.
Повний текст джерелаAbbondandolo, Alberto, and Gabriele Benedetti. "On the local systolic optimality of Zoll contact forms." Geometric and Functional Analysis, February 3, 2023. http://dx.doi.org/10.1007/s00039-023-00624-z.
Повний текст джерелаRudolf, Daniel. "Viterbo’s conjecture as a worm problem." Monatshefte für Mathematik, December 18, 2022. http://dx.doi.org/10.1007/s00605-022-01806-x.
Повний текст джерелаДисертації з теми "Viterbo conjecture"
Dardennes, Julien. "Non-convexité symplectique des domaines toriques." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES102.
Повний текст джерелаConvexity plays a special role in symplectic geometry, but it is not a notion that is invariant by symplectomorphism. In a seminal work, Hofer, Wysocki and Zehnder showed that any strongly convex domain is dynamically convex, a notion that is invariant by symplectomorphism. For more than twenty years, the existence or not of dynamically convex domains that are not symplectomorphic to a convex domain has remained an open question. Recently, Chaidez and Edtmair answered this question in dimension 4. They established a "quantitative" criterion of symplectic convexity and constructed dynamically convex domains that do not satisfy this criterion. In this thesis, we use this criterion to construct new examples of such domains in dimension 4, which have the additional property of being toric. Moreover, we estimate the constants involved in this criterion. This work in collaboration with Jean Gutt and Jun Zhang was later used by Chaidez and Edtmair to solve the initial question in all dimensions. Furthermore, in collaboration with Jean Gutt, Vinicius G.B.Ramos and Jun Zhang, we study the distance from dynamically convex domains to symplectically convex domains. We show that in dimension 4, this distance is arbitrarily large with respect to a symplectic analogue of the Banach-Mazur distance. Additionally, we independently reprove the existence of dynamically convex domains that are not symplectically convex in dimension 4
Частини книг з теми "Viterbo conjecture"
Hofer, Helmut, Alberto Abbondandolo, Urs Frauenfelder, and Felix Schlenk. "Examples around the strong Viterbo conjecture." In Symplectic Geometry, 677–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19111-4_22.
Повний текст джерелаEkeland, Ivar. "Viterbo’s Proof of Weinstein’s Conjecture in R 2n." In Periodic Solutions of Hamiltonian Systems and Related Topics, 131–37. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3933-2_11.
Повний текст джерела