Статті в журналах з теми "Visualization modeling"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Visualization modeling.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Visualization modeling".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Constant, Jean. "Knowledge Visualization in Crystal Modeling." International Journal of Creative Interfaces and Computer Graphics 10, no. 2 (July 2019): 1–16. http://dx.doi.org/10.4018/ijcicg.2019070101.

Повний текст джерела
Анотація:
3D graphics visualization is equal part mathematics, geometry, and design. Based on the knowledge visualization framework, the author investigates the structure of a mineral to find if meaningful visualization pertaining to the field of art can be extracted from scientific resource. Working with the lines, spheres, and polygons that characterize crystal at the nanoscale provided the author an exceptional environment from which to extract coherent visualizations sustainable in the art environment. The outcome was tested in a variety of interactive platforms and opened a larger debate on cross-pollination between science and arts. Additionally, the experiment provided new ground of investigation for unexpected connections between mathematics, earth sciences, and local cultures.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kunii, Tosiyasu L., Hirobumi Nishida, and Masaki Hilaga. "Topological Modeling for Visualization." Journal of Advanced Mathematics and Applications 1, no. 1 (September 1, 2012): 134–50. http://dx.doi.org/10.1166/jama.2012.1010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Max, N., R. Crawfis, and D. Williams. "Visualization for climate modeling." IEEE Computer Graphics and Applications 13, no. 4 (July 1993): 34–40. http://dx.doi.org/10.1109/38.219448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dahmen, Wolfgang, and Tom-Michael Thamm-Schaar. "Cubicoids: modeling and visualization." Computer Aided Geometric Design 10, no. 2 (April 1993): 89–108. http://dx.doi.org/10.1016/0167-8396(93)90013-s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Reda, Khairi, Andrew E. Johnson, Michael E. Papka, and Jason Leigh. "Modeling and evaluating user behavior in exploratory visual analysis." Information Visualization 15, no. 4 (July 25, 2016): 325–39. http://dx.doi.org/10.1177/1473871616638546.

Повний текст джерела
Анотація:
Empirical evaluation methods for visualizations have traditionally focused on assessing the outcome of the visual analytic process as opposed to characterizing how that process unfolds. There are only a handful of methods that can be used to systematically study how people use visualizations, making it difficult for researchers to capture and characterize the subtlety of cognitive and interaction behaviors users exhibit during visual analysis. To validate and improve visualization design, it is important for researchers to be able to assess and understand how users interact with visualization systems under realistic scenarios. This article presents a methodology for modeling and evaluating the behavior of users in exploratory visual analysis. We model visual exploration using a Markov chain process comprising transitions between mental, interaction, and computational states. These states and the transitions between them can be deduced from a variety of sources, including verbal transcripts, videos and audio recordings, and log files. This model enables the evaluator to characterize the cognitive and computational processes that are essential to insight acquisition in exploratory visual analysis and reconstruct the dynamics of interaction between the user and the visualization system. We illustrate this model with two exemplar user studies, and demonstrate the qualitative and quantitative analytical tools it affords.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yang, Chang, Hao Li, Peng Gao, Yu Feng Mao, and Rong Chun Zhang. "Research on Modeling and Visualization Method of Geological Objects Based on VRML." Applied Mechanics and Materials 448-453 (October 2013): 3766–71. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.3766.

Повний текст джерела
Анотація:
Geological strata conditions is restriction to the design and construction of projects .The significance of three-dimensional modeling of engineering rock mass is obviously for both construction and monitoring.However,the existing three-dimensional modeling methods have the disadvantages of low productivity and huge amounts of data . Focusing on these problems, a fast modelling method used to build geological model is presented in this paper. Compared with the special geological 3D modeling and analysis software ,VRML has many merits such as flexible visualization method, good transplantation of the visualization achievements , and independent platform . VRML also has the feasibility of low-bandwidth and the real-time visualization and browsing of the models .It is well suited to the visualization requirement of drilling data and cross-sectional data ,and provides a new solution for the realization of the geological visualization.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Denney, Dennis. "Reservoir Simulation and Visualization: Fracture-Flow Modeling and Visualization." Journal of Petroleum Technology 56, no. 04 (April 1, 2004): 64–65. http://dx.doi.org/10.2118/0404-0064-jpt.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kohlhammer, J., K. Nazemi, T. Ruppert, and D. Burkhardt. "Toward Visualization in Policy Modeling." IEEE Computer Graphics and Applications 32, no. 5 (September 2012): 84–89. http://dx.doi.org/10.1109/mcg.2012.107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Groller, E., R. T. Rau, and W. Strasser. "Modeling and visualization of knitwear." IEEE Transactions on Visualization and Computer Graphics 1, no. 4 (1995): 302–10. http://dx.doi.org/10.1109/2945.485617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Huai, Yaolin Shi, David A. Yuen, Zhenzhen Yan, Xiaoru Yuan, and Chaofan Zhang. "Modeling and Visualization of Tsunamis." Pure and Applied Geophysics 165, no. 3-4 (April 2008): 475–96. http://dx.doi.org/10.1007/s00024-008-0324-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dorin, Alan, and Nicholas Geard. "The Practice of Agent-Based Model Visualization." Artificial Life 20, no. 2 (April 2014): 271–89. http://dx.doi.org/10.1162/artl_a_00129.

Повний текст джерела
Анотація:
We discuss approaches to agent-based model visualization. Agent-based modeling has its own requirements for visualization, some shared with other forms of simulation software, and some unique to this approach. In particular, agent-based models are typified by complexity, dynamism, nonequilibrium and transient behavior, heterogeneity, and a researcher's interest in both individual- and aggregate-level behavior. These are all traits requiring careful consideration in the design, experimentation, and communication of results. In the case of all but final communication for dissemination, researchers may not make their visualizations public. Hence, the knowledge of how to visualize during these earlier stages is unavailable to the research community in a readily accessible form. Here we explore means by which all phases of agent-based modeling can benefit from visualization, and we provide examples from the available literature and online sources to illustrate key stages and techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Wong, Pak Chung, Harlan Foote, David L. Kao, Ruby Leung, and Jim Thomas. "Multivariate Visualization with Data Fusion." Information Visualization 1, no. 3-4 (December 2002): 182–93. http://dx.doi.org/10.1057/palgrave.ivs.9500024.

Повний текст джерела
Анотація:
We discuss a fusion-based visualization method to analyze a multivariate climate dataset and its metadata. The primary difference between a conventional visualization and a fusion-based visualization is that the former draws on a single image whereas the latter draws on multiple see-through layers, which are then overlaid on each other to form the final visualization. We propose optimized colormaps to highlight subtle features that would not be shown with conventional colormaps. We present fusion techniques that integrate multiple single-purpose visualization techniques into the same viewing space. Our highly flexible fusion approach allows scientists to explore multiple parameters concurrently by mixing and matching images without frequently reconstructing new visualizations from the data for every possible combination. Although our primary visualization application is climate modeling, we show with examples that our fundamental design - fusing layers of data images for multivariate visualization - can be generalized for other information visualization applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Šafhalter, Andrej, Srečko Glodež, and Karin Bakračevič Vukman. "DEVELOPING SPATIAL VISUALIZATION WITH 3D MODELING." Problems of Education in the 21st Century 46, no. 1 (October 1, 2012): 131–37. http://dx.doi.org/10.33225/pec/12.46.131.

Повний текст джерела
Анотація:
The research was carried out in 2011 among 22 pupils from 14 – 15years old. The purpose of the pilot study was to determine the influence of 3D modeling on the spatial visualization of pupils, as well as the gender difference in the spatial visualization of the tested pupils and the progress of this visualization in individual genders. In addition, it tried to determine whether the sensory style of the pupils, visual, auditory or kinesthetic, influences spatial perception and the development of spatial visualization. Pupils were divided into two groups, the test group and the control group. Pupils in the test group attended a 3D modeling extra-curricular activity for twelve teaching hours in the second evaluation period of the 2010/2011 school year. Spatial visualization was determined with a modified spatial visualization test, namely before the extra-curricular activity and afterwards. The modified test consisted of different spatial visualization tests: PSVT: R, MCT, MRT, DAT: SR, and tests of rotation within a plane. For 3D modeling exercises pupils used the open-source software Google SketchUp. None of the tested pupils have encountered the mentioned software before. After a second testing, the test group showed greater progress in solving spatial visualization tasks in comparison with the control group, while gender differences were minimal. The results of the spatial visualization test were also compared with the sensory style of pupils, which was filled out by all the pupils included in the study. In the 2011/2012 school year a broader study is underway, involving almost two hundred pupils of various elementary schools in Slovenia. Key words: spatial visualization, 3D modeling, perception styles.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Rezaldi, Muhammad Yudhi, Rabiah Abdul Kadir, Mohamad Taha Ijab, Azlina Ahmad, Didit Widiatmoko Soewardikoen, and Apip Apip. "Identification of Aesthetic Values for Visualization Media of Flood Disaster Modeling." Journal of Visual Art and Design 12, no. 2 (December 31, 2020): 120–31. http://dx.doi.org/10.5614/j.vad.2020.12.2.3.

Повний текст джерела
Анотація:
Many flood modelings use geovisualization techniques but are very complicated and can only be understood by researchers or practitioners. There is a need for modelings that are informative and can be understood by ordinary people for the purpose of disaster mitigation. This research analyzed a flood modeling geovisualization sample to find out the extent to which aesthetic values are used in that modeling. For breaking down the modeling, an analytical approach was used as well as physioplastic, ideoplastic, and judgment analyses. Then, the modeling was evaluated through a questionnaire that was distributed using Google Forms to 40 respondents with a background as visual communication design students. The questionnaire was presented using closed questions and a visual analogue scale. The aesthetic parameters used for measuring were: lighting, color, two-dimensional field, three-dimensional field, time/motion, and sound. The evaluation results showed that the flood modeling geovisualization sample did not use aesthetics effectively. Modeling representations need to be simplified into visualizations using a well-planned aesthetic concept to make them more informative. Hopefully, the result of this research will make flood modeling more impactful and easier to understand by ordinary people through the application of aesthetic values such as those addressed in the questionnaire.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Lima, Hugo B., Carlos G. R. Dos Santos, and Bianchi S. Meiguins. "A Survey of Music Visualization Techniques." ACM Computing Surveys 54, no. 7 (July 2021): 1–29. http://dx.doi.org/10.1145/3461835.

Повний текст джерела
Анотація:
Music Information Research (MIR) comprises all the research topics involved in modeling and understanding music. Visualizations are frequently adopted to convey better understandings about music pieces, and the association of music with visual elements has been practiced historically and extensively. We investigated papers related to music visualization and organized the proposals into categories according to their most prominent aspects: their input features, the aspects visualized, the InfoVis technique(s) used, if interaction was provided, and users’ evaluations. The MIR and the InfoVis community can benefit by identifying trends and possible new research directions within the music visualization topic.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Harper, Christofer M., Daniel Tran, and Edward Jaselskis. "Implementation of Visualization and Modeling Technologies for Transportation Construction." Journal of Civil Engineering and Construction 11, no. 1 (December 31, 2021): 29–40. http://dx.doi.org/10.32732/jcec.2022.11.1.29.

Повний текст джерела
Анотація:
State departments of transportation (DOTs) increasingly use visualization and modeling technologies for delivering transportation projects across the United States. Advanced and innovative technologies have the ability to improve various construction processes and tasks while making the construction process more efficient and productive. Visualization and modeling technologies, which include building information modeling for infrastructure, light detection and ranging, virtual reality, and augmented reality, are becoming more commonplace in transportation construction. Yet, the use of these technologies varies among state DOTs. The intent of this study is to investigate the use of visualization and modeling technologies for transportation construction. This study employed a triangulation research methodology including an extensive literature review, survey questionnaire of DOTs, and seven case studies. Results of the study show that 92% of state DOTs use visualization and modeling technologies for construction. Then, 81% of DOTs use visualization and modeling technologies for constructability reviews, 38% use them for documentation of as-builts and simulating bridge and structure construction, and 35% use them for quality management, inspections, and monitoring progress of work. The main barriers to using visualization and modeling technologies include legal concerns with using digital models as contract documents, incompatibilities in software and hardware between the DOTs and contracted parties, and the appropriate knowledge, skills, and abilities required to use visualization and modeling technologies for construction. The findings from this study provides valuable information for state DOTs to approach their implementation and use of visualization and modeling technologies for transportation construction delivery.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Li, Xiaojun, and Hehua Zhu. "Modeling and Visualization of Underground Structures." Journal of Computing in Civil Engineering 23, no. 6 (November 2009): 348–54. http://dx.doi.org/10.1061/(asce)0887-3801(2009)23:6(348).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Madi, M. M., and D. J. Walton. "Modeling and visualization of layered objects." Computers & Graphics 23, no. 3 (June 1999): 331–42. http://dx.doi.org/10.1016/s0097-8493(99)00042-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Malyanov, Ilya, Brian J. d'Auriol, and Sungyoung Lee. "Visualization experience and related process modeling." Journal of Visual Languages & Computing 24, no. 4 (August 2013): 223–33. http://dx.doi.org/10.1016/j.jvlc.2013.03.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kunii, Tosiyasu L., Hirobumi Nishida, and Masaki Hilaga. "Applications of Topological Modeling and Visualization." Journal of Advanced Mathematics and Applications 1, no. 2 (December 1, 2012): 165–80. http://dx.doi.org/10.1166/jama.2012.1013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Caldwell, Douglas R. "Physical Terrain Modeling for Geographic Visualization." Cartographic Perspectives, no. 38 (March 1, 2001): 66–72. http://dx.doi.org/10.14714/cp38.795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Szafir, Danielle Albers. "Modeling Color Difference for Visualization Design." IEEE Transactions on Visualization and Computer Graphics 24, no. 1 (January 2018): 392–401. http://dx.doi.org/10.1109/tvcg.2017.2744359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Drapikowski, Pawel. "Surface modeling—Uncertainty estimation and visualization." Computerized Medical Imaging and Graphics 32, no. 2 (March 2008): 134–39. http://dx.doi.org/10.1016/j.compmedimag.2007.10.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Krishnamurthy, Narayanan, Siddharth Maddali, Jeffrey A. Hawk, and Vyacheslav N. Romanov. "9Cr steel visualization and predictive modeling." Computational Materials Science 168 (October 2019): 268–79. http://dx.doi.org/10.1016/j.commatsci.2019.03.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Chen, Guang Zhong, Bing Zhang, Yue Yang, Jin Han, and Lin Jun Tong. "3D Visualization Automatic Modeling of Helical Rotors." Applied Mechanics and Materials 321-324 (June 2013): 1721–24. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.1721.

Повний текст джерела
Анотація:
Structure of Helical rotor is complicated.3D visualization automatic modeling of Helical Rotors with CAD could make the design of product more efficient. Scheme of 3D visualization automatic modeling of Helical Rotors is described in detail and Generation Principle of end surface curve of rotor and Scanning helix is analyzed deeply in the paper. With the further development of SolidWorks by Visual C#, 3D Visualization Automatic Modeling of Helical Rotors is accomplished .
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ahn, Jae-Wook, and Peter Brusilovsky. "Adaptive Visualization of Search Results: Bringing User Models to Visual Analytics." Information Visualization 8, no. 3 (January 25, 2009): 167–79. http://dx.doi.org/10.1057/ivs.2009.12.

Повний текст джерела
Анотація:
Adaptive visualization is a new approach at the crossroads of user modeling and information visualization. Taking into account information about a user, adaptive visualization attempts to provide user-adapted visual presentation of information. This paper proposes Adaptive VIBE, an approach for adaptive visualization of search results in an intelligence analysis context. Adaptive VIBE extends the popular VIBE visualization framework by infusing user model terms as reference points for spatial document arrangement and manipulation. We explored the value of the proposed approach using data obtained from a user study. The result demonstrated that user modeling and spatial visualization technologies are able to reinforce each other, creating an enhanced level of user support. Spatial visualization amplifies the user model's ability to separate relevant and non-relevant documents, whereas user modeling adds valuable reference points to relevance-based spatial visualization.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Jiang, Ting Yao, Le Le Cui, and Jia Heng Li. "An Implementation of 3D Landslide Geological Modeling and Visualization." Advanced Materials Research 594-597 (November 2012): 2338–43. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.2338.

Повний текст джерела
Анотація:
Three-dimensional (3D) geological modeling and visualization of landslide is very important for landslide monitoring and stability evaluation. Unfortunately there have not been very efficient methods to realize this modeling and visualization process currently. An implementation of 3D landslide geological modeling and visualization based on a hybrid data structure of TIN and GTP is introduced in this paper. The proposed implementation method includes three sections: pre-processing terrain data for known or history data; 3D modeling of landslide terrain surface, slip surface and geological structure surfaces; construction of 3D landslide geological model and 3D visualization of landslide model through java 3D API. The introduced method contributes to a new approach to landslide research.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Qin, Feiwei, Haibin Xia, Yong Peng, and Zizhao Wu. "Integrated Modeling, Simulation, and Visualization for Nanomaterials." Complexity 2018 (2018): 1–16. http://dx.doi.org/10.1155/2018/5083247.

Повний текст джерела
Анотація:
Computer aided modeling and simulation of nanomaterials can describe the correlation between the material’s microstructure and its macroscopic properties quantitatively. In this paper, we propose an integrated modeling, simulation, and visualization approach for designing nanomaterials. Firstly, a fast parametric modeling method for important nanomaterials such as graphene, nanotubes, and MOFs is proposed; secondly, the material model could be edited adaptively without affecting the validity of the model on the physical level; thirdly a preliminary calculation for nanomaterials’ energy is implemented based on the theory of surface fitting; finally, an integrated framework of nanomaterials modeling, simulation, and visualization is designed and implemented. Experimental results show that the proposed approach is feasible and effective.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Luo, Gong Yin, Kang Ling Guan, De Yong Liao, Shan Yang, and Yu Lin Zhuang. "The Computer Room Modeling and Data Display Based on Three Dimensional Visualization." Applied Mechanics and Materials 741 (March 2015): 248–53. http://dx.doi.org/10.4028/www.scientific.net/amm.741.248.

Повний текст джерела
Анотація:
This paper introduces the communication room modeling and data display method based on 3D visualization technology, proposes the overall architecture and function architecture of the Three Dimensional Visualization communication room, and depicts the panoramic display of 3D computer operation monitoring from four aspects such as 3D monitoring visualization, 3D assets visualization, 3D wiring visualization and 3D statistical visualization.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Huang, Bin Jie, Xiao Lin Zhao, Chun Shan, Zhi Qiang Li, and Jing Feng Xue. "A Method to Creating Visualization Model with Consistency Rule in Paradigm." Applied Mechanics and Materials 513-517 (February 2014): 1998–2003. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.1998.

Повний текст джерела
Анотація:
The coordination modeling language Paradigm addresses collaboration between components in terms of dynamic constraints. The consistency rule is a key notion in Paradigm. However, the original process of visualization modeling is without consistency rule, leading to complex. For this reason, by analyzing the theory of modeling in Paradigm and getting the relation between consistency rule and visualization modeling, the paper provides a method for visualization modeling with consistency rule. The method gets the input at first, and then creates state items, by checking states and action in the rule. Besides, getting the mouse events, it creates corresponding phase and traps to model. As the experiment, the method implements the process as design. The method brought in is valid for simplifying the process of creating visualization model.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Huber, Mike. "Teaching Differential Equations with Modeling and Visualization." CODEE Journal 7, no. 1 (2010): 1–8. http://dx.doi.org/10.5642/codee.201007.01.03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Volkovich, Zeev, Oleg Granichin, Oleg Redkin, and Olga Bernikova. "Modeling and visualization of media in Arabic." Journal of Informetrics 10, no. 2 (May 2016): 439–53. http://dx.doi.org/10.1016/j.joi.2016.02.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Constant, Jean. "Knowledge visualization and nano-crystal modeling geometry." Applied Surface Science 473 (April 2019): 668–72. http://dx.doi.org/10.1016/j.apsusc.2018.12.198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Dragićević, Suzana. "Modeling and Visualization for Spatial Decision Support." Cartography and Geographic Information Science 35, no. 2 (January 2008): 75–76. http://dx.doi.org/10.1559/152304008784090612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Xiao, Yingcai, and John P. Ziebarth. "FEM-based scattered data modeling and visualization." Computers & Graphics 24, no. 5 (October 2000): 775–89. http://dx.doi.org/10.1016/s0097-8493(00)00078-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Basak, Tanmay, Debayan Das, and Pratibha Biswal. "Heatlines: Modeling, visualization, mixing and thermal management." Progress in Energy and Combustion Science 64 (January 2018): 157–218. http://dx.doi.org/10.1016/j.pecs.2017.08.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

WU, Qiang. "On three-dimensional geological modeling and visualization." Science in China Series D 47, no. 8 (2004): 739. http://dx.doi.org/10.1360/02yd0475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Maciejewski, Ross, Philip Livengood, Stephen Rudolph, Timothy F. Collins, David S. Ebert, Robert T. Brigantic, Courtney D. Corley, George A. Muller, and Stephen W. Sanders. "A pandemic influenza modeling and visualization tool." Journal of Visual Languages & Computing 22, no. 4 (August 2011): 268–78. http://dx.doi.org/10.1016/j.jvlc.2011.04.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Shimosaka, Masamichi, Taketoshi Mori, Akinori Fujii, and Tomomasa Sato. "Discriminative Data Visualization for Daily Behavior Modeling." Advanced Robotics 23, no. 4 (January 2009): 429–41. http://dx.doi.org/10.1163/156855309x408763.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Li, Qingquan, Bijun Li, Yuguang Li, and Jing Chen. "3D Modeling and Visualization Based on Laserscanning." Annals of GIS 6, no. 2 (December 2000): 159–64. http://dx.doi.org/10.1080/10824000009480545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Runions, Adam, Martin Fuhrer, Brendan Lane, Pavol Federl, Anne-Gaëlle Rolland-Lagan, and Przemyslaw Prusinkiewicz. "Modeling and visualization of leaf venation patterns." ACM Transactions on Graphics 24, no. 3 (July 2005): 702–11. http://dx.doi.org/10.1145/1073204.1073251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Mustafa, Ghulam, and Abad Ali Shah. "Modeling and Visualization of Scattered Positive Data." Information Technology Journal 6, no. 1 (December 15, 2006): 103–9. http://dx.doi.org/10.3923/itj.2007.103.109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lyubartsev, V. G., and S. P. Lyubartseva. "Visualization of the results of hydrothermodynamic modeling." Physical Oceanography 17, no. 5 (September 2007): 303–11. http://dx.doi.org/10.1007/s11110-007-0024-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zuo, Fenghua, Jun Li, and Xiaoyong Sun. "Exploring Population Pharmacokinetic Modeling with Resampling Visualization." BioMed Research International 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/585687.

Повний текст джерела
Анотація:
Background. In the last decade, population pharmacokinetic (PopPK) modeling has spread its influence in the whole process of drug research and development. While targeting the construction of the dose-concentration of a drug based on a population of patients, it shows great flexibility in dealing with sparse samplings and unbalanced designs. The resampling approach has been considered an important statistical tool to assist in PopPK model validation by measuring the uncertainty of parameter estimates and evaluating the influence of individuals.Methods. The current work describes a graphical diagnostic approach for PopPK models by visualizing resampling statistics, such as case deletion and bootstrap. To examine resampling statistics, we adapted visual methods from multivariate analysis, parallel coordinate plots, and multidimensional scaling.Results. Multiple models were fitted, the information of parameter estimates and diagnostics were extracted, and the results were visualized. With careful scaling, the dependencies between different statistics are revealed. Using typical examples, the approach proved to have great capacity to identify influential outliers from the statistical perspective, which deserves special attention in a dosing regimen.Discussion. By combining static graphics with interactive graphics, we are able to explore the multidimensional data from an integrated and systematic perspective. Complementary to current approaches, our proposed method provides a new way for PopPK modeling analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Antunes, Francisco, Bernardete Ribeiro, and Francisco Pereira. "Probabilistic modeling and visualization for bankruptcy prediction." Applied Soft Computing 60 (November 2017): 831–43. http://dx.doi.org/10.1016/j.asoc.2017.06.043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Santo, Harold P. "Graphics and visualization for finite element modeling." Finite Elements in Analysis and Design 19, no. 4 (May 1995): 225. http://dx.doi.org/10.1016/0168-874x(95)00003-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Chen, S. James, and Dirk Schäfer. "Three-Dimensional Coronary Visualization, Part 1: Modeling." Cardiology Clinics 27, no. 3 (August 2009): 433–52. http://dx.doi.org/10.1016/j.ccl.2009.03.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Huertas, Jorge A., Daniel Duque, Ethel Segura-Durán, Raha Akhavan-Tabatabaei, and Andrés L. Medaglia. "Evacuation dynamics: a modeling and visualization framework." OR Spectrum 42, no. 3 (June 3, 2019): 661–91. http://dx.doi.org/10.1007/s00291-019-00548-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kim, Daeyeoul, and Jinmo Kim. "Procedural modeling and visualization of multiple leaves." Multimedia Systems 23, no. 4 (February 22, 2016): 435–49. http://dx.doi.org/10.1007/s00530-016-0503-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Shchegoleva, L. V., D. V. Gudach, and A. V. Kabonen. "Algorithm for tree growth modeling and visualization." Forestry Bulletin 26, no. 1 (February 2022): 50–57. http://dx.doi.org/10.18698/2542-1468-2022-1-50-57.

Повний текст джерела
Анотація:
The developed algorithm for modeling the growth of a tree using the example of European spruce (Picea abies) for three-dimensional visualization of plant development is presented. A special structure of classes is proposed that form the internal structure of a tree by a set of interconnected shoots that grow from buds. They store the numerical characteristics of the structure (age, trunk diameter, shoots length and the volume of tree photosynthetic biomass) and the spatial coordinates of structural elements on the parent object (last year’s shoot). The algorithm for modeling the growth of a spruce tree includes the generation of random values for the characteristics of shoots and buds. The proposed algorithm makes it possible to realize the structural diversity of branching processes and the stochastic nature of development under the conditions of tree growth in the Republic of Karelia.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії