Добірка наукової літератури з теми "Visual suppression"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Visual suppression".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Visual suppression"

1

Volkmann, Frances C. "Human visual suppression." Vision Research 26, no. 9 (January 1986): 1401–16. http://dx.doi.org/10.1016/0042-6989(86)90164-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kim, Back-Soon, Ku-Soo Guen, Eui-Kyung Bang, Eui-Kyung Goh, and Kyong-Myong Chon. "Visuaul suppression test in normal subjects." Journal of Clinical Otolaryngology Head and Neck Surgery 2, no. 1 (May 1991): 51–57. http://dx.doi.org/10.35420/jcohns.1991.2.1.51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

DeAngelis, G. C., J. G. Robson, I. Ohzawa, and R. D. Freeman. "Organization of suppression in receptive fields of neurons in cat visual cortex." Journal of Neurophysiology 68, no. 1 (July 1, 1992): 144–63. http://dx.doi.org/10.1152/jn.1992.68.1.144.

Повний текст джерела
Анотація:
1. The response to an optimally oriented stimulus of both simple and complex cells in the cat's striate visual cortex (area 17) can be suppressed by the superposition of an orthogonally oriented drifting grating. This effect is referred to as cross-orientation suppression. We have examined the spatial organization and tuning characteristics of this suppressive effect with the use of extracellular recording techniques. 2. For a total of 75 neurons, we have measured the size of each cell's excitatory receptive field by use of rectangular patches of drifting sinusoidal gratings presented at the optimal orientation and spatial frequency. The length and width of these grating patches are varied independently. Receptive-field length and width are determined from the dimensions of the smallest grating patch required to elicit a maximal response. 3. The extent of the area from which cross-orientation suppression originates has been measured in an analogous manner. Each neuron is excited by a patch of drifting grating the same size as the receptive field. The response to this stimulus is modulated by a superimposed patch of grating having an orthogonal orientation. After selecting the spatial frequency that produces maximal suppression, the response of each cell is examined as a function of the length and width of the orthogonal (suppressive) grating patch. Results from 29 cells show that the dimensions of the orthogonal grating patch required to elicit maximal suppression are similar to, or smaller than, the dimensions of the excitatory receptive field. Thus cross-orientation suppression originates from within the receptive field. 4. For some cells the spatial frequency tuning of the suppressive effect is much broader than the spatial frequency tuning for excitation. In these cases it is possible to find a spatial frequency that produces suppression but not excitation. With the use of a suppressive stimulus having this spatial frequency, we examined the strength of suppression as a function of orientation for 11 cells. These tests show that suppression occurs at all orientations, including the preferred orientation for excitation. In some cases, suppression is somewhat stronger at the preferred orientation for excitation than at any other orientation. 5. For 12 cells we varied the relative spatial phase between the optimally oriented and orthogonal gratings. In all cases the magnitude of suppression is largely independent of the relative spatial phase. 6. For three binocular cells we examined whether the suppressive effect of a grating oriented orthogonal to the optimum could be mediated dichoptically.(ABSTRACT TRUNCATED AT 400 WORDS)
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kimura, Rui, and Izumi Ohzawa. "Time Course of Cross-Orientation Suppression in the Early Visual Cortex." Journal of Neurophysiology 101, no. 3 (March 2009): 1463–79. http://dx.doi.org/10.1152/jn.90681.2008.

Повний текст джерела
Анотація:
Responses of a visual neuron to optimally oriented stimuli can be suppressed by a superposition of another grating with a different orientation. This effect is known as cross-orientation suppression. However, it is still not clear whether the effect is intracortical in origin or a reflection of subcortical processes. To address this issue, we measured spatiotemporal responses to a plaid pattern, a superposition of two gratings, as well as to individual component gratings (optimal and mask) using a subspace reverse-correlation method. Suppression for the plaid was evaluated by comparing the response to that for the optimal grating. For component stimuli, excitatory and negative responses were defined as responses more positive and negative, respectively, than that to a blank stimulus. The suppressive effect for plaids was observed in the vast majority of neurons. However, only ∼30% of neurons showed the negative response to mask-only gratings. The magnitudes of negative responses to mask-only stimuli were correlated with the degree of suppression for plaid stimuli. Comparing the latencies, we found that the suppression for the plaids starts at about the same time or slightly later than the response onset for the optimal grating and reaches its maximum at about the same time as the peak latency for the mask-only grating. Based on these results, we propose that in addition to the suppressive effect originating at the subcortical stage, delayed suppressive signals derived from the intracortical networks act on the neuron to generate cross-orientation suppression.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mrsic-Flogel, Thomas, and Mark Hübener. "Visual Cortex: Suppression by Depression?" Current Biology 12, no. 16 (August 2002): R547—R549. http://dx.doi.org/10.1016/s0960-9822(02)01049-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bishop, Christopher W., Sam London, and Lee M. Miller. "Visual Influences on Echo Suppression." Current Biology 21, no. 3 (February 2011): 221–25. http://dx.doi.org/10.1016/j.cub.2010.12.051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kadunce, Daniel C., J. William Vaughan, Mark T. Wallace, Gyorgy Benedek, and Barry E. Stein. "Mechanisms of Within- and Cross-Modality Suppression in the Superior Colliculus." Journal of Neurophysiology 78, no. 6 (December 1, 1997): 2834–47. http://dx.doi.org/10.1152/jn.1997.78.6.2834.

Повний текст джерела
Анотація:
Kadunce, Daniel C., J. William Vaughan, Mark T. Wallace, Gyorgy Benedek, and Barry E. Stein. Mechanisms of within- and cross-modality suppression in the superior colliculus. J. Neurophysiol. 78: 2834–2847, 1997. The present studies were initiated to explore the basis for the response suppression that occurs in cat superior colliculus (SC) neurons when two spatially disparate stimuli are presented simultaneously or in close temporal proximity to one another. Of specific interest was examining the possibility that suppressive regions border the receptive fields (RFs) of unimodal and multisensory SC neurons and, when activated, degrade the neuron's responses to excitatory stimuli. Both within- and cross-modality effects were examined. An example of the former is when a response to a visual stimulus within its RF is suppressed by a second visual stimulus outside the RF. An example of the latter is when the response to a visual stimulus within the visual RF is suppressed when a stimulus from a different modality (e.g., auditory) is presented outside its (i.e., auditory) RF. Suppressive regions were found bordering visual, auditory, and somatosensory RFs. Despite significant modality-specific differences in the incidence and effectiveness of these regions, they were generally quite potent regardless of the modality. In the vast majority (85%) of cases, responses to the excitatory stimulus were degraded by ≥50% by simultaneously stimulating the suppressive region. Contrary to expectations and previous speculations, the effects of activating these suppressive regions often were quite specific. Thus powerful within-modality suppression could be demonstrated in many multisensory neurons in which cross-modality suppression could not be generated. However, the converse was not true. If an extra-RF stimulus inhibited center responses to stimuli of a different modality, it also would suppress center responses to stimuli of its own modality. Thus when cross-modality suppression was demonstrated, it was always accompanied by within-modality suppression. These observations suggest that separate mechanisms underlie within- and cross-modality suppression in the SC. Because some modality-specific tectopetal structures contain neurons with suppressive regions bordering their RFs, the within-modality suppression observed in the SC simply may reflect interactions taking place at the level of one input channel. However, the presence of modality-specific suppression at the level of one input channel would have no effect on the excitation initiated via another input channel. Given the modality-specificity of tectopetal inputs, it appears that cross-modality interactions require the convergence of two or more modality-specific inputs onto the same SC neuron and that the expression of these interactions depends on the internal circuitry of the SC. This allows a cross-modality suppressive signal to be nonspecific and to degrade any and all of the neuron's excitatory inputs.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Joo, Sung Jun, and Scott O. Murray. "Contextual effects in human visual cortex depend on surface structure." Journal of Neurophysiology 111, no. 9 (May 1, 2014): 1783–91. http://dx.doi.org/10.1152/jn.00671.2013.

Повний текст джерела
Анотація:
Neural responses in early visual cortex depend on stimulus context. One of the most well-established context-dependent effects is orientation-specific surround suppression: the neural response to a stimulus inside the receptive field of a neuron (“target”) is suppressed when it is surrounded by iso-oriented compared with orthogonal stimuli (“flankers”). Despite the importance of orientation-specific surround suppression in potentially mediating a number of important perceptual effects, including saliency, contour integration, and orientation discrimination, the underlying neural mechanisms remain unknown. The suppressive signal could be inherited from precortical areas as early as the retina and thalamus, arise from local circuits through horizontal connections, or be fed back from higher visual cortex. Here, we show, using two different methodologies, measurements of scalp-recorded event-related potentials (ERPs) and behavioral contrast adaptation aftereffects in humans, that orientation-specific surround suppression is dependent on the surface structure in an image. When the target and flankers can be grouped on the same surface (independent of their distance), orientation-specific surround suppression occurs. When the target and flankers are on different surfaces (independent of their distance), orientation-specific surround suppression does not occur. Our results demonstrate a surprising role of high-level, global processes such as grouping in determining when contextual effects occur in early visual cortex.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baker, Daniel H., Greta Vilidaite, and Alex R. Wade. "Steady-state measures of visual suppression." PLOS Computational Biology 17, no. 10 (October 13, 2021): e1009507. http://dx.doi.org/10.1371/journal.pcbi.1009507.

Повний текст джерела
Анотація:
In the early visual system, suppression occurs between neurons representing different stimulus properties. This includes features such as orientation (cross-orientation suppression), eye-of-origin (interocular suppression) and spatial location (surround suppression), which are thought to involve distinct anatomical pathways. We asked if these separate routes to suppression can be differentiated by their pattern of gain control on the contrast response function measured in human participants using steady-state electroencephalography. Changes in contrast gain shift the contrast response function laterally, whereas changes in response gain scale the function vertically. We used a Bayesian hierarchical model to summarise the evidence for each type of gain control. A computational meta-analysis of 16 previous studies found the most evidence for contrast gain effects with overlaid masks, but no clear evidence favouring either response gain or contrast gain for other mask types. We then conducted two new experiments, comparing suppression from four mask types (monocular and dichoptic overlay masks, and aligned and orthogonal surround masks) on responses to sine wave grating patches flickering at 5Hz. At the occipital pole, there was strong evidence for contrast gain effects in all four mask types at the first harmonic frequency (5Hz). Suppression generally became stronger at more lateral electrode sites, but there was little evidence of response gain effects. At the second harmonic frequency (10Hz) suppression was stronger overall, and involved both contrast and response gain effects. Although suppression from different mask types involves distinct anatomical pathways, gain control processes appear to serve a common purpose, which we suggest might be to suppress less reliable inputs.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lunghi, Claudia, Luca Lo Verde, and David Alais. "Touch Accelerates Visual Awareness." i-Perception 8, no. 1 (January 2017): 204166951668698. http://dx.doi.org/10.1177/2041669516686986.

Повний текст джерела
Анотація:
To efficiently interact with the external environment, our nervous system combines information arising from different sensory modalities. Recent evidence suggests that cross-modal interactions can be automatic and even unconscious, reflecting the ecological relevance of cross-modal processing. Here, we use continuous flash suppression (CFS) to directly investigate whether haptic signals can interact with visual signals outside of visual awareness. We measured suppression durations of visual gratings rendered invisible by CFS either during visual stimulation alone or during visuo-haptic stimulation. We found that active exploration of a haptic grating congruent in orientation with the suppressed visual grating reduced suppression durations both compared with visual-only stimulation and to incongruent visuo-haptic stimulation. We also found that the facilitatory effect of touch on visual suppression disappeared when the visual and haptic gratings were mismatched in either spatial frequency or orientation. Together, these results demonstrate that congruent touch can accelerate the rise to consciousness of a suppressed visual stimulus and that this unconscious cross-modal interaction depends on visuo-haptic congruency. Furthermore, since CFS suppression is thought to occur early in visual cortical processing, our data reinforce the evidence suggesting that visuo-haptic interactions can occur at the earliest stages of cortical processing.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Visual suppression"

1

Mucke, Sven. "Visual suppression during dynamic ocular accommodation." Thesis, Glasgow Caledonian University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vilidaite, Greta. "Neural noise and suppression in visual processing." Thesis, University of York, 2017. http://etheses.whiterose.ac.uk/19685/.

Повний текст джерела
Анотація:
Signal transduction in sensory systems is affected by two major neural mechanisms: neural noise and suppression. Both of these factors present limits on the perceptual abilities of the observer. For example, in contrast discrimination both elevate thresholds. Suppression and neural noise have been implicated in normal sensory development, ageing and several neurological disorders. Of particular interest are autism spectrum conditions (ASCs), in which both neural noise and suppressive mechanisms seem to be atypical. This thesis addresses several issues surrounding the measurement and neural implications of neural noise and suppression. Firstly, it investigates where in the brain neural noise affects sensory processing. Using machine learning algorithms to analyse electro- and magneto-encephalography data, it was found that the main source of neural noise is early sensory cortex. Secondly, it compares psychophysical paradigms used to dissociate the effects of noise and suppression, and suggests refined methods, in particular, using double-pass consistency. Thirdly, it investigates the neural effects of modulating neural noise and suppression selectively using transcranial magnetic stimulation (TMS). It reveals that two existing TMS protocols are suitable for this: single pulses suppress neural signals, whereas triple-pulse TMS increases neural noise. Lastly, the thesis investigates neural noise and gain control (a suppressive mechanism) in ASC. The findings show a relationship between sensory noise and autistic traits in the neurotypical population. Furthermore, electrophysiology data from ASC children and adults as well as a genetic Drosophila model of autism revealed a deficit in the transient dynamics of ASC visual systems, which changes over the course of development. Striking similarities between the fruit fly (Nhe3) model and humans suggests that the genetic model is suitable for further research on ASC sensory symptoms. Taken together, this thesis expands the understanding of neural noise and suppression as well as the situations in which these mechanisms are implicated.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Couturier, Nicholas H. "LOW FREQUENCY AUDIO-VISUAL STIMULATION FOR SEIZURE SUPPRESSION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1401711802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stein, Timo. "Visual processing of social information during interocular suppression." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16547.

Повний текст джерела
Анотація:
Wir untersuchten die Verarbeitung sozial relevanter visueller Reize während “continuous flash suppression” (CFS), einer besonders wirkungsvollen Technik der interokularen Unterdrückung, die benutzt wird um Reize unsichtbar zu machen. In den Studien 1–6 maßen wir die Dauer der perzeptuellen Unterdrückung während CFS um zu testen, ob sozial relevante Reize bevorzugten Zugang zum visuellen Bewusstsein haben. Studie 1 zeigte, dass die Detektion von Gesichtern bei Erwachsenen durch Gesichtsmerkmale beeinflusst wird, welche auch Blickpräferenzen von Neugeborenen beeinflussen. Studie 2 zeigte, dass Gesichtsdetektion durch die Ethnie und Altersgruppe des zu detektierenden Gesichtes beeinflusst wird. In Studie 3 fanden wir größere Effekte der Inversion auf die Detektion von menschlichen Gesichtern und Körpern als auf andere vertraute Objekte. In Studie 4 fanden wir, dass Gesichter mit direktem Blick schneller detektiert werden als Gesichter mit abgewandtem Blick. Studie 5 deckte einen konfundieren Faktor in schematischen emotionalen Gesichtern auf. In Studie 6 fanden wir, dass die schnellere Detektion von furchtsamen im Vergleich zu neutralen Gesichtern auf hohen Raumfrequenzen beruht. Studie 7 zeigte, dass die Messung der visuellen Detektion während CFS keinen eindeutigen Nachweis für unbewusste Verarbeitung unter CFS erbringen kann. In den Studien 8 und 9 maßen wir deshalb Adaptations-Nacheffekte von Reizen, die durch CFS dauerhaft unsichtbar gemacht wurden. Studie 8 zeigte, dass lediglich monokulare Komponenten der Gesichtsform-Adaptation unbewusst ablaufen können, während komplexere Komponenten auf visuelles Bewusstsein angewiesen sind. Studie 9 zeigte, dass nur größenabhängige Komponenten von Blickrichtungen unbewusst repräsentiert werden können, während objektzentrierte Repräsentationen von Blickrichtungen visuelles Bewusstsein benötigen.
We studied the processing of socially relevant visual stimuli during continuous flash suppression (CFS), a potent interocular suppression technique that we used to render stimuli invisible. In Studies 1–6, we measured the duration of perceptual suppression during CFS to test whether socially relevant stimuli have privileged access to visual awareness. Study 1 demonstrated that face detection in adult observers is modulated by facial properties previously shown to modulate looking preferences in newborns. Study 2 revealed own-race and own-age biases in face detection, indicating that visual awareness of faces is shaped by visual experience with one’s own social group. In Study 3, we found larger effects of stimulus inversion on the detection of human faces and bodies than for other familiar objects, suggesting that detection mechanisms are preferentially tuned to conspecifics. Study 4 showed that faces with direct gaze are detected more quickly than faces with averted gaze. Study 5 revealed a confounding factor in schematic emotional faces that are considered to be well-controlled visual stimuli. In Study 6, we found that faster detection of fearful compared to neutral faces relies on high spatial frequencies, arguing against a functional role of a subcortical pathway to the amygdala. Study 7 showed that measures of visual detection during CFS cannot provide unequivocal evidence for unconscious processing under CFS. In Studies 8 and 9 we therefore measured adaptation aftereffects from stimuli rendered permanently invisible by CFS. In Study 8, we measured face shape aftereffects and found that only low-level monocular components of face shape adaptation can proceed unconsciously, whereas higher-level components depend on visual awareness. Study 9 revealed that only size-dependent low-level components of eye gaze can be represented unconsciously, while object-centered higher-level representations of eye gaze directions require visual awareness.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Annett, Judith Marion. "Effects of visual and verbal suppression on olfactory memory." Thesis, University of Ulster, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pajani, Auréliane. "Influence of predictive context on visual processing." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE028.

Повний текст джерела
Анотація:
D’après les théories inférentielles de la perception, notre cerveau tire parti des régularités statistiques présentes dans l’environnement pour générer des prédictions qui façonnent nos contenus perceptifs. Le travail réalisé pendant cette thèse inclut 3 études principales, dans le but de caractériser les déterminants neuronaux des fausses perceptions et la nature des prédictions neuronales.Les erreurs perceptives pourraient résulter d’une tentative de notre système visuel d’expliquer des entrées sensorielles imprécises par une hypothèse erronée. Dans une 1ère étude en Imagerie par Résonance Magnétique fonctionnelle (IRMf), nous montrons que les fausses détections sont associées à un état imprécis et biaisé des circuits sensoriels avant la perception.La répétition d’une image génère une activité neurale diminuée (‘Repetition Suppression’) et des temps de réponse plus courts (‘amorçage’). Ces phénomènes pourraient résulter de mécanismes prédictifs, sous une prédiction implicite de répétition. Dans une 2nde étude IRMf, nous montrons que cette prédiction ne peut pas être modulée par l’expérience, ce qui suggère une implémentation locale. Dans une série d’études comportementales, nous montrons que l’amorçage est modulé par les prédictions, suggérant un mécanisme prédictif. Notre 2nde étude IRMf montre aussi qu’une région de moyen niveau sensible aux visages code des prédictions liées à l’identité, ce qui nous informe sur la nature des prédictions visuelles.Nos résultats montrent que notre perception est façonnée par l’interaction de nos entrées sensorielles avec l’état des circuits neuronaux avant stimulation, qu’il s’agisse de l’activité spontanée ou des stimuli précédents
According to theoretical frameworks casting perception as inference, our brain can learn the statistical regularities present in the sensory world, and use this prior information to generate predictions, which in turn shape our perceptual contents. The work conducted in this PhD includes three main studies aimed at characterizing the neural determinants of misperceptions, as well as the nature of neural predictions. Perceptual errors may arise from an attempt of our visual system to 'explain' impreciseinputs with an erroneous hypothesis. In a first functional Magnetic Resonance Imaging (fMRI) study, we show that during a detection task, hallucinations are associated with animprecise and biased state of sensory circuits preceding sensation. Stimulus repetition is associated with decreased neural responses, known as Repetition Suppression, and shorter response times, known as priming. These phenomena may reflectpredictive mechanisms under an implicit prior over repetition. In a second fMRI study, we show that this putative prior cannot be changed by experience, suggesting a local, possibly hard-wired neural implementation. In a series of behavioral experiments, we show thatpriming is modulated by predictions, supporting a predictive account of this phenomenon. Our second fMRI study also shows that a mid-level face-sensitive region codes for exemplarspecific predictions, which sheds light on the nature of the predictions encoded along thevisual hierarchy. Altogether, our results speak to the dependence of perception on prior brain states. Both spontaneous activity in sensory circuits and previous stimulation interact with sensory inputsto shape our perceptual contents
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Boulay, Chadwick. "Cortical mechanisms of saccadic suppression and visual motion : a transcranial magnetic stimulation study in humans." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=83968.

Повний текст джерела
Анотація:
Anatomically, the visual system of non-human primates shows a complicated pattern of cortico-cortical connectivity. The behavioural relevance of many of these connections is unclear, as is the similarity of connectivity with that in the human brain. We used transcranial magnetic stimulation (TMS) and psychophysics to investigate connectivity among visual areas involved in (1) modulating visual perception during saccadic eye movements and (2) perceiving visual motion. Our first study demonstrated that phosphenes induced by TMS of visual cortex are perceived as more intense shortly after the onset of a saccade. This indicates that the cortical areas responsible for saccade generation are connected to those areas responsible for visual perception. Our second study suggested that, when applied with a very short inter-stimulus interval, TMS over an oculomotor region (FEF) can modulate the effect of TMS applied over a region sensitive to visual motion (V5). This suggests a monosynaptic feedback connection from FEF to V5.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Diamond, Mark R. "The effect of saccades on visual sensitivity and time perception." University of Western Australia. School of Psychology, 2003. http://theses.library.uwa.edu.au/adt-WU2003.0038.

Повний текст джерела
Анотація:
Considerable evidence indicates that visual sensitivity is reduced during saccadic eye movement. A central question has been whether saccadic suppression results from a non-visual central signal, or whether the obligate image motion that accompanies saccades is itself sufficient to mask vision. In the first of a series of experiments described here, the visual and non-visual effects of saccades were distinguished by measuring contrast sensitivity to luminance modulated low spatial frequency gratings, at 17 cd·m¯² and 0.17 cd·m¯², in saccade conditions and in conditions in which saccade-like image motion was produced by the rotation of a mirror but when observers’ eyes were kept still. The time course of suppression was examined by making measurements from well before image motion began until well after it had ended. A tenfold decrease in contrast sensitivity was found for luminance-modulated gratings with saccades, but little suppression was found with simulated saccades. Adding high contrast noise to the visual display increased the magnitude and the duration of the suppression during simulated saccades but had little effect on suppression produced by real saccades. At lower luminance, suppression was found to be reduced, and its course shallower than at higher luminance. Simulated saccades produced shallower suppression over a longer time course at both higher and lower luminance. In a second experiment the time course of contrast sensitivity to chromatically modulated gratings, at 17 cd·m¯², was examined. No suppression was found; rather there was some evidence of an enhancement of sensitivity, both before and after saccades, relative to fixation conditions. Differences in the effects of real and simulated saccades in the magnitude and time course of sensitivity loss with luminance modulated gratings suggest that saccadic suppression has an extraretinal component that acts on the magnocellular system; the pattern of enhancement found in the later experiment suggests a selective favouring of the parvocellular system both immediately prior to and immediately after saccades. The possibility that the degree of enhancement in sensitivity varies across the visual field was examined using spatially localized stimuli (either high spatial frequency chromatically modulated gratings or letter combinations). Sensitivity was found to decrease at the initial fixation point during the 75 ms prior to saccadic onset and simultaneously to improve at the saccadic target. In the immediate post-saccadic period, sensitivity at the saccadic target was found to exceed that which had been manifest at the initial fixation point prior to saccades, suggesting that post-saccadic enhancement may improve the temporal contrast between one fixation and the next. The final experiments investigated the possibility that our sense of continuity across saccades (as opposed to stability) is influenced by saccade-induced errors in locating events in time. The results of these experiments suggest that saccades can result in errors in judging (a) the time at which external events occur relative to saccadic onset, (b) the temporal order of visual events, and (c) the magnitude of temporal intervals. It is concluded that apparent time is generally foreshortened prior to saccades. This might be due to selective suppression of magnocellular activity and might function to hide saccades and their effects from our awareness. A speculative synthesis is presented based on the idea that recurrent feedback between the neocortical and cortical structures on the one hand, and the thalamic nuclei on the other, has special importance for perception around the time of saccades
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Duyck, Marianne. "Continuité perceptive autour des saccades et des clignements des yeux : rôle des mécanismes rétiniens et extra-rétiniens." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB231.

Повний текст джерела
Анотація:
L'entrée visuelle rétinienne est discontinue. D'une part les saccades causent un énorme mouvement de l'image sur la rétine 3 à 4 fois par seconde, qui devrait résulter en un floutage des hautes fréquences spatiales et une forte impression de mouvement. D'autre part, les clignements des yeux induisent une diminution temporaire drastique de la luminance toutes les 3 à 4 secondes. Dans des conditions de vision écologiques, ces conséquences visuelles des saccades et des clignements des yeux ne sont pas consciemment perçues et le monde extérieur semble continu et net : deux phénomènes que l'on peut désigner sous le terme d'omission saccadique et d'omission des clignements des yeux. Dans cette thèse, nous avons voulu mieux comprendre comment le système visuel s'accommode de ces interruptions et quels sont les mécanismes qui contribuent à la continuité perceptive autour des saccades et des clignements des yeux. Deux principaux éléments pourraient contribuer à ces omissions : l'entrée visuelle elle-même et un mécanisme extra-rétinien qui informerait le cerveau de l'interruption à venir qui agirait en modifiant le traitement de l'information autour des saccades et des clignements des yeux. Dans une première série d'expériences, nous avons étudié les caractéristiques du masquage du smear saccadique, c'est à dire dans quelle mesure la présence d'images pré et post saccadiques nettes permet de rendre compte de l'omission du smear saccadique. Plus précisément, nous avons élaboré une méthode de mesure objective du masquage du smear et examiné son étendue spatiale et son origine périphérique ou centrale. A l'aide de cette nouvelle méthode, nous avons répliqué les résultats de masquage du smear et mis en évidence que ce masquage a lieu après le site d'interaction binoculaire et résiste à des séparations spatiales entre smear et masque jusqu'à 6 deg. Dans une deuxième étude nous avons comparé la sensibilité à des réseaux sinusoïdaux de basse fréquence spatiale autour des saccades et en fixation lorsque l'entrée visuelle simule les conséquences visuelles des saccades. De plus, nous avons cherché à établir si la plus importante diminution de la sensibilité observée pour de vraies saccades en comparaison des saccades simulées peut être expliquée par les propriétés cinématiques des mouvements oculaires. L'objectif de la troisième étude était de déterminer si le masquage est suffisant pour rendre compte de l'absence de percept de mouvement autour des saccades. Pour ce faire, nous avons présenté en fixation, un stimulus dont le contenu fréquentiel est similaire à celui des scènes naturelles. Ce stimulus était présenté en mouvement avec un profil similaire à celui d'une saccade. Il pouvait être précédé et suivi de l'image statique avant et après le mouvement. Les résultats indiquent que l'amplitude du mouvement perçu diminue considérablement en présence des masques, sans toutefois annuler totalement tout percept de mouvement pour des longues durées de masques. Dans une dernière série d'études nous nous sommes intéressés à la perception de la durée autour des clignements des yeux. Dans la première expérience nous avons quantifié la contribution de la durée d'un clignement des yeux à la durée d'une période d'obscurité plus longue et dans la seconde expérience, nous avons étudié la perception de la durée d'un objet interrompu ou non par un clignement des yeux. Les résultats de ces deux expériences suggèrent l'implication d'un mécanisme extra-rétinien qui supprime la durée perçue de la période d'obscurité causée par les clignements des yeux mais pas la durée des objets visuels chevauchés par le clignement. Pris dans leur ensemble ces résultats précisent notre compréhension des contributions relatives des mécanismes rétiniens et extra-rétiniens à l'omission saccadique et l'omission des clignements des yeux
The retinal input is discontinuous. On the one hand saccades, that occur 3-4 times a minute, cause a huge motion of the image on the retina that should result in smearing of the high frequencies of the image and perceived motion. On the other hand eye blinks induce drastic transient decreases in luminance every 3-4 seconds. Under real-world conditions, those visual consequences of saccades and blinks are barely noticed and the world appears continuous and sharp: two phenomena that can be referred to as saccadic and blink omission. In this thesis we were interested in understanding how the visual system deals with these interruptions and which mechanisms contribute to perceived continuity around saccades and blinks. Two main elements could contribute to those omissions: the visual input itself and an extra-retinal mechanism informing the brain of the impending interruption that would affect information processing around saccades and blinks. In a first series of experiments we studied the characteristics of masking of the saccadic smear, the extent to which clear and still pre- and post-saccadic images are responsible for the perceptual omission of saccadic smear. In particular, we designed an objective method to measure smear masking and studied its spatial extent and whether it is of peripheral or central origin. We replicated previous results of saccadic masking with this new method and found that smear masking seems to take place after the site of binocular interaction and survives separations between smear and mask as much as 6 deg. In a second study we compared sensitivity to low-frequency gratings around saccades and in fixation when the visual input simulates the visual consequences of saccades. Moreover we tried to determine whether the greater decrease in sensitivity around real, as compared to simulated, saccades that we found could be accounted for by the cinematic properties of the eye movement. The goal of the third study was to determine if masking was sufficient to explain the lack of perceived motion during saccades. To do that we presented, during fixation, a natural scene-like stimulus moving at saccadic speeds that could be preceded and followed by the initial or final static image. Results indicate that the amplitude of perceived motion considerably decreased in the presence of pre- and post-masks, even though motion was still perceived for long mask durations. In a final series of studies, we probed duration perception around blinks. In a first experiment we quantified the contribution of the duration of a blink to a longer period of darkness and in a second experiment we tested the perceived duration of an object interrupted or not by a blink. Results suggest the involvement of an extra-retinal mechanism that suppresses the perceived duration of the darkness caused by the blink, but not the duration of visual objects that straddle the blink. Taken together these results refine our understanding of the relative contributions of retinal and extra-retinal mechanisms to saccadic and blink omission
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stein, Timo [Verfasser], John-Dylan [Akademischer Betreuer] Haynes, Philipp [Akademischer Betreuer] Sterzer, and Naotsugu [Akademischer Betreuer] Tsuchiya. "Visual processing of social information during interocular suppression / Timo Stein. Gutachter: John-Dylan Haynes ; Philipp Sterzer ; Naotsugu Tsuchiya." Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://d-nb.info/1025112334/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Visual suppression"

1

Annett, Judith M. Effects of visual and verbal suppression on olfactory memory. [S.l: The Author], 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lavallée, Marielle. Left/right ear suppressions during dichotic listening and left/right visual field errors during a tachistoscope task: Support for the connection between spiritualistic beliefs and right hemispheric activity. Sudbury, Ont: Laurentian University, Behavioural Neuroscience Program, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

National Aeronautics and Space Administration (NASA) Staff. Visual Suppression of the Vestibulo-Ocular Reflex During Space Flight. Independently Published, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Art of Suppression: Confronting the Nazi Past in Histories of the Visual and Performing Arts. University of California Press, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Potter, Pamela M. Art of Suppression: Confronting the Nazi Past in Histories of the Visual and Performing Arts. University of California Press, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bonneh, Yoram. Motion-Induced Blindness. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0103.

Повний текст джерела
Анотація:
Motion-induced blindness (MIB) is a phenomenon characterized by “visual disappearance” in which relatively small but salient visual objects may disappear from one’s awareness intermittently for several seconds when embedded within a moving pattern. It is a compelling example of multistable perception in which physically invariant stimulation leads to fluctuations in perception. The interest in MIB stems from its potential use in studying visual processing outside the locus of awareness and the neural correlates of consciousness. Current studies of MIB provide evidence against low-level suppression of the visual signal and demonstrate residual processing of the invisible. This chapter explores these and related concepts.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Blake, Randolph. Binocular Rivalry. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0105.

Повний текст джерела
Анотація:
: Binocular rivalry epitomizes the essence of a perceptual illusion in that it involves a compelling dissociation of retinal stimulation and visual experience: dissimilar monocular stimuli appear and disappear reciprocally and unpredictably over time, even though retinal images of both stimuli remain unchanged. Thus binocular rivalry is instigated when dissimilar visual stimuli are imaged on corresponding areas of the two eyes. These dissimilarities can arise from differences in form (both simple and complex), color, or direction of motion. This beguiling phenomenon—binocular rivalry—affords the psychologist a potent means for probing visual processing outside of awareness and the neurophysiologist a strategy for studying neural dynamics. Related concepts including bistable perception, interocular suppression, and neural dynamics are explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Barker, Lucy, Kelly MacKenzie, Joanne Hancox, Wanda Kozlowska, and Andrew Tatham. Paediatric ophthalmology and strabismus. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199672516.003.0009.

Повний текст джерела
Анотація:
This chapter focuses on paediatric ophthalmology and strabismus. It details the embryology, anatomy, and actions of the extraocular muscles, along with clinical skills that include patient assessment and assessment of visual acuity, binocular vision, and stereopsis, assessment of binocular single vision, and retinal correspondence and suppression. It then discusses amblyopia, the measurement and assessment of ocular deviation, the assessment of ocular movements, Hess charts, and the field of binocular single vision. In addition, it discusses concomitant strabismus (the heterophorias, esotropia, and exotropia), incomitant strabismus, the principles of strabismus surgery, general paediatric development, retinopathy of prematurity, retinoblastoma, congenital cataract, paediatric glaucoma, uveitis in children, phacomatoses, and metabolic and storage diseases.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ford, Rebecca, and Moneesh Patel. Strabismus and oculomotility. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199237593.003.0008.

Повний текст джерела
Анотація:
The chapter begins by discussing the anatomy and actions of the extraocular muscles and central control of ocular motility, before covering the key clinical skills, namely patient assessment, assessment of ocular movements, visual acuity testing, tests of stereopsis and binocular single vision, tests of retinal correspondence and suppression, and Hess charts. It then covers the key areas of clinical knowledge, including amblyopia, binocular vision and stereopsis, concomitant strabismus, incomitant strabismus, restrictive ocular motility disorders, complex ocular motility syndromes, vertical deviations , and alphabet patterns, and the key practical skills, namely the principles of strabismus surgery and other procedures in strabismus. The chapter concludes with five case-based discussions, on myopic anisometropia, esotropia, infantile esotropia, orbital floor fracture, and consecutive exotropia.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bloom, Lisa E. Climate Change and the New Polar Aesthetics. Duke University Press, 2022. http://dx.doi.org/10.1215/9781478018643.

Повний текст джерела
Анотація:
In Climate Change and the New Polar Aesthetics, Lisa E. Bloom considers the ways artists, filmmakers, and activists engaged with the Arctic and Antarctic to represent our current environmental crises and reconstruct public understandings of them. Bloom engages feminist, Black, Indigenous, and non-Western perspectives to address the exigencies of the experience of the Anthropocene and its attendant ecosystem failures, rising sea levels, and climate-led migrations. As opposed to mainstream media depictions of climate change that feature apocalyptic spectacles of distant melting ice and desperate polar bears, artists such as Katja Aglert, Subhankar Banerjee, Joyce Campbell, Judit Hersko, Roni Horn, Isaac Julien, Zacharias Kunuk, Connie Samaras, and activist art collectives take a more complex poetic and political approach. In their films and visual and conceptual art, these artists link climate change to its social roots in colonialism and capitalism while challenging the suppression of information about environmental destruction and critiquing Western art institutions for their complicity. Bloom’s examination and contextualization of new polar aesthetics makes environmental degradation more legible while demonstrating that our own political agency is central to imagining and constructing a better world.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Visual suppression"

1

Wu, Charles Q. "Computational and Neural Mechanisms for Visual Suppression." In Advances in Neural Networks - ISNN 2010, 230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13318-3_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ibbotson, Michael R. "Intrasaccadic Motion: Neural Evidence for Saccadic Suppression and Postsaccadic Enhancement." In Dynamics of Visual Motion Processing, 239–57. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0781-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Beuth, Frederik, Amirhossein Jamalian, and Fred H. Hamker. "How Visual Attention and Suppression Facilitate Object Recognition?" In Artificial Neural Networks and Machine Learning – ICANN 2014, 459–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11179-7_58.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Chen, Minh N. Do, and Jue Wang. "Robust Image and Video Dehazing with Visual Artifact Suppression via Gradient Residual Minimization." In Computer Vision – ECCV 2016, 576–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46475-6_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sasaki, Tsuyoshi, Shoma Fushimi, Yong Jian Nyioh, and Kazuhiko Terashima. "Novel Virtual Training System for Learning the Sway Suppression of Rotary Crane by Presenting Joystick Motion or Visual Information." In Informatics in Control, Automation and Robotics, 233–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10891-9_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yan, Xiujun, Zhonghua Li, and Lin Chen. "Prototype Monitoring of Cavitation in Valve Culvert of Qianwei Shiplock." In Lecture Notes in Civil Engineering, 553–64. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_48.

Повний текст джерела
Анотація:
AbstractThe working condition of water valve is an important sign of the success for navigation lock design, and the valve cavitation characteristics and suppression technology is the key technical challenge in the design of high head navigation lock, in the view of the “flat bottom & top spreading” with the condition of “less project quantities, convenient construction” simple type corridor with the head of 19 m in Qianwei ship lock, the method of combining the physical model test and prototype observation are both adopt to this research. Through the physical model test, the cavitation position, cavitation characteristics and the effect of natural ventilation on cavitation suppression are comprehensively determined by analyzing the change law of cavitation noise intensity from several cavitation noise sensors under different opening conditions during the opening process, also the visual observation of flow state and auditory observation. Prototype observation focuses on the effect of self-aerated technology of valve lintel. When the air pipe outside the value lintel position is closed, there are evident in the cavitation pulse signal, and the maximum strength can reach to 182Pa, the “crackling” of cavitation collapse could be clearly felt at the top of the value, occasionally with 2–3 times slight “muffled thunder”, The results show that the valve section has stronger cavitation during the opening process of value. On the contrary, when self-aerated of valve lintel was realized, the maximum ventilatory capacity was 0.169 m3/s, which was close to the 0.170 m3/s calculated by the physical model in the design stage, and no cavitation pulse signal was detected among the valve wells on both sides, and the process line was “stable” with the maximum noise intensity only about 10 Pa, no sound of cavitation collapse was heard at the top of the valve section during the whole valve opening process. The comparison of value steeve vibration also verifies the effect of self-aerated technology of valve lintel at the same times. The results show that self-aerated technology of valve lintel can significantly inhibit the cavitation of valve segment of this form.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Miura, Naoki, Ujike Hiroyasu, and Michiko Ohkura. "Influence of Fixation Point Movement on Visually Induced Motion Sickness Suppression Effect." In Advances in Intelligent Systems and Computing, 277–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94944-4_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Potter, Pamela M. "Visual and Performing Arts in Nazi Germany." In Art of Suppression, 1–47. University of California Press, 2016. http://dx.doi.org/10.1525/california/9780520282346.003.0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"1. Visual and Performing Arts in Nazi Germany: What Is Known and What Is Believed." In Art of Suppression, 1–47. University of California Press, 2019. http://dx.doi.org/10.1525/9780520957961-004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Irwin, David E. "Eye Movements And Visual Cognitive Suppression." In Psychology of Learning and Motivation, 265–93. Elsevier, 2003. http://dx.doi.org/10.1016/s0079-7421(03)01008-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Visual suppression"

1

Barrett, Ron, and Joris Melkert. "UAV visual signature suppression via adaptive materials." In Smart Structures and Materials, edited by Edward V. White. SPIE, 2005. http://dx.doi.org/10.1117/12.599056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Tianhong, Lijie Fan, Yuan Yuan, Hao He, Yonglong Tian, Rogerio Feris, Piotr Indyk, and Dina Katabi. "Addressing Feature Suppression in Unsupervised Visual Representations." In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2023. http://dx.doi.org/10.1109/wacv56688.2023.00146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lutsky, Maksim G., Viktor M. Sineglazov, and Vitaly S. Ishchenko. "Suppression of Noise in Visual Navigation Systems." In 2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD). IEEE, 2021. http://dx.doi.org/10.1109/apuavd53804.2021.9615405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

He, Yijia, Yue Guo, Aixue Ye, Feng Wen, and Kui Yuan. "Robust Dense Visual Odometry with boundary pixel suppression." In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2016. http://dx.doi.org/10.1109/robio.2016.7866542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Xin, Fu Liu, Youli Wei, and Huantian Zhou. "Infrared-visual image sequence fusion algorithm with noise suppression." In ISPDI 2013 - Fifth International Symposium on Photoelectronic Detection and Imaging, edited by Haimei Gong, Zelin Shi, Qian Chen, and Jin Lu. SPIE, 2013. http://dx.doi.org/10.1117/12.2035003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Kaiwen, Jin Gao, Haowei Liu, Liang Li, Bing Li, and Weiming Hu. "Exploring Motion Information for Distractor Suppression in Visual Tracking." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2022. http://dx.doi.org/10.1109/cvprw56347.2022.00209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xia, Yan, and Zhou Zhao. "Cross-modal Background Suppression for Audio-Visual Event Localization." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Osbourn, Gordon C. "Illusory Mach bands: visual artifacts or tokens of perceived illumination changes?" In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fb4.

Повний текст джерела
Анотація:
Illusory Mach bands have long been regarded as artifacts of edge-enhancing mechanisms, yet key properties have remained unexplained. We present a quantitative model that treats Mach bands as the useful end products of a hypothesized mechanism for distinguishing certain illumination and reflectance changes in a scene. The model mechanism selectively locates illumination changes associated with shadow penumbra boundaries and labels these with Mach bands while suppressing detection of other types of image boundaries (e.g., abrupt object edges) and high frequency image noise. The noise suppression mechanism requires a penumbra contrast sensitivity maximum from general principles alone that matches published data. Model calculations on both idealized intensity patterns and video images demonstrate that the key spatial and spatial-frequency characteristics of Mach bands are quantitatively accounted for. The long-puzzling absence of Mach bands at abrupt edges (where typical edge enhancers produce maximal responses) also follows directly from the model mechanism and is associated with the ability to distinguish cast shadow illumination changes (with penumbra edges) from reflectance changes at abrupt object boundaries in an image. The useful detection selectivity and noise suppression properties required by the Mach band model suggest the operation of a distinct component of the visual system that contributes to lightness perception.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Yana, Kanza Khan, Lingling Lv, and Pamela Cosman. "Binocular suppression based visual masking model for stereo image watermarking." In 2015 IEEE 16th International Conference on Communication Technology (ICCT). IEEE, 2015. http://dx.doi.org/10.1109/icct.2015.7399788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Song, Jianwei, and Ruoyu Yang. "Feature Boosting, Suppression, and Diversification for Fine-Grained Visual Classification." In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9534004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Visual suppression"

1

Winterbottom, Marc D., Robert Patterson, Byron J. Pierce, and Amanda Taylor. Visual Suppression of Monocularly Presented Symbology Against a Fused Background in a Simulation and Training Environment. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada464062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії