Статті в журналах з теми "Visible Photoluminescence"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Visible Photoluminescence.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Visible Photoluminescence".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Nešpůrek, Stanislav, František Schauer, and Andrey Kadashchuk. "Visible Photoluminescence in Polysilanes." Monatshefte fuer Chemie/Chemical Monthly 132, no. 1 (January 30, 2001): 159–68. http://dx.doi.org/10.1007/s007060170155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nishitani, H., H. Nakata, T. Ohyama, and Yasufumi Fujiwara. "Visible Photoluminescence of Porous Silicon." Materials Science Forum 117-118 (January 1993): 513–18. http://dx.doi.org/10.4028/www.scientific.net/msf.117-118.513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gasanly, N. M., and K. Goksen. "Visible photoluminescence from chain Tl4In3GaSe8semiconductor." Journal of Physics: Condensed Matter 18, no. 26 (June 19, 2006): 6057–64. http://dx.doi.org/10.1088/0953-8984/18/26/023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schmuki, P., D. J. Lockwood, H. J. Labbé, and J. W. Fraser. "Visible photoluminescence from porous GaAs." Applied Physics Letters 69, no. 11 (September 9, 1996): 1620–22. http://dx.doi.org/10.1063/1.117050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Murayama, Kazuro, Seiichi Miyazaki, and Masataka Hirose. "Visible Photoluminescence from Porous Silicon." Japanese Journal of Applied Physics 31, Part 2, No. 9B (September 15, 1992): L1358—L1361. http://dx.doi.org/10.1143/jjap.31.l1358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meneses-Franco, Ariel, Marcelo Campos-Vallette, Sergio Vásquez, and Eduardo Soto-Bustamante. "Er-Doped Nanostructured BaTiO3 for NIR to Visible Upconversion." Materials 11, no. 10 (October 12, 2018): 1950. http://dx.doi.org/10.3390/ma11101950.

Повний текст джерела
Анотація:
Photoluminescent mechanisms in erbium-doped barium titanate nanoparticle systems were studied. Er3+ ions were introduced into the BaTiO3 lattice by the sol-gel method. The resulting Er3+ concentration was between 0% and 5%, with Ba/Ti ratios of 1.008 and 0.993. The stoichiometry of Ba and Ti concentrations in the lattice influenced the doping mechanism and placement of erbium ions in the lattice structure. Our research shows the existence of a strong correlation between Ba/Ti ratios, erbium concentration, phase structure and doping site location on the upconversion photoluminescence mechanisms. Competing upconversion emissions 2H11/2/4S3/2→4I15/2 at 523 and 548 nm respectively and other photoluminescent mechanisms as 4I9/2→4I11/2 around 4000 nm (2500 cm−1) were studied using Raman and emission spectroscopy. The upconversion process is predominant over other photoluminescent decay when the material presents high distortion in the surrounding activator.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pizani, P. S., H. C. Basso, F. Lanciotti, T. M. Boschi, F. M. Pontes, E. Longo, and E. R. Leite. "Visible photoluminescence in amorphous ABO3 perovskites." Applied Physics Letters 81, no. 2 (July 8, 2002): 253–55. http://dx.doi.org/10.1063/1.1494464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aksenov, Igor, and Katsuaki Sato. "Visible photoluminescence of Zn‐doped CuAlS2." Applied Physics Letters 61, no. 9 (August 31, 1992): 1063–65. http://dx.doi.org/10.1063/1.107717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kawaguchi, Toshihiko, and Shin Miyazima. "Visible Photoluminescence from Si Microcrystalline Particles*." Japanese Journal of Applied Physics 32, Part 2, No. 2B (February 15, 1993): L215—L217. http://dx.doi.org/10.1143/jjap.32.l215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zanatta, A. R., M. J. V. Bell, and L. A. O. Nunes. "Visible photoluminescence fromEr3+ions ina−SiNalloys." Physical Review B 59, no. 15 (April 15, 1999): 10091–98. http://dx.doi.org/10.1103/physrevb.59.10091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Okada, Takeru, and Eiji Ohta. "Visible Photoluminescence from Evaporated SiOxThin Films." Japanese Journal of Applied Physics 41, Part 1, No. 11A (November 15, 2002): 6413–16. http://dx.doi.org/10.1143/jjap.41.6413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bisero, D., F. Corni, C. Nobili, R. Tonini, G. Ottaviani, C. Mazzoleni, and L. Pavesi. "Visible photoluminescence from He‐implanted silicon." Applied Physics Letters 67, no. 23 (December 4, 1995): 3447–49. http://dx.doi.org/10.1063/1.115275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kanemitsu, Yoshihiko, Katsunori Suzuki, Soichiro Kyushin, and Hideyuki Matsumoto. "Visible photoluminescence from silicon-backbone polymers." Physical Review B 51, no. 19 (May 15, 1995): 13103–10. http://dx.doi.org/10.1103/physrevb.51.13103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Sun, K. W., S. H. Sue, and C. W. Liu. "Visible photoluminescence from Ge quantum dots." Physica E: Low-dimensional Systems and Nanostructures 28, no. 4 (September 2005): 525–30. http://dx.doi.org/10.1016/j.physe.2005.05.063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Koshida, Nobuyoshi, and Hideki Koyama. "Efficient Visible Photoluminescence from Porous Silicon." Japanese Journal of Applied Physics 30, Part 2, No. 7B (July 15, 1991): L1221—L1223. http://dx.doi.org/10.1143/jjap.30.l1221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Xu, Shang, Ya Li Nan, and Ling Sun. "Visible Photoluminescence of Gas Phase Synthesized Well-Defined Germanium Oxide Nanoparticles." Applied Mechanics and Materials 618 (August 2014): 28–32. http://dx.doi.org/10.4028/www.scientific.net/amm.618.28.

Повний текст джерела
Анотація:
Substoichiometric germanium oxide nanoparticles were synthesized through gas aggregation process with a careful control on the size, composition and crystallinity of the nanoparticles. The nanoparticles show broad room temperature photoluminescence (PL) in the 470nm to 600nm wavelength region. The microstructure and optical properties of the nanoparticles were investigated. We found that the photoluminescence behavior of the nanoparticles is critically influenced by their compositions. Through temperature-dependent photoluminescence and time-resolved photoluminescence spectroscopy, we concluded that the broad PL band originated from the defects in the GeOx shell layers, rather than the quantum-confinement effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mau, Alexandre, Guillaume Noirbent, Céline Dietlin, Bernadette Graff, Didier Gigmes, Frédéric Dumur, and Jacques Lalevée. "Panchromatic Copper Complexes for Visible Light Photopolymerization." Photochem 1, no. 2 (August 4, 2021): 167–89. http://dx.doi.org/10.3390/photochem1020010.

Повний текст джерела
Анотація:
In this work, eleven heteroleptic copper complexes were designed and studied as photoinitiators of polymerization in three-component photoinitiating systems in combination with an iodonium salt and an amine. Notably, ten of them exhibited panchromatic behavior and could be used for long wavelengths. Ferrocene-free copper complexes were capable of efficiently initiating both the radical and cationic polymerizations and exhibited similar performances to that of the benchmark G1 system. Formation of acrylate/epoxy IPNs was also successfully performed even upon irradiation at 455 nm or at 530 nm. Interestingly, all copper complexes containing the 1,1′-bis(diphenylphosphino)ferrocene ligand were not photoluminescent, evidencing that ferrocene could efficiently quench the photoluminescence properties of copper complexes. Besides, these ferrocene-based complexes were capable of efficiently initiating free radical polymerization processes. The ferrocene moiety introduced in the different copper complexes affected neither their panchromatic behaviors nor their abilities to initiate free radical polymerizations.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Colder, Alban, Friedrich Huisken, Enrico Trave, Gilles Ledoux, Olivier Guillois, Cécile Reynaud, Herbert Hofmeister, and Eckhard Pippel. "Strong visible photoluminescence from hollow silica nanoparticles." Nanotechnology 15, no. 3 (January 7, 2004): L1—L4. http://dx.doi.org/10.1088/0957-4484/15/3/l01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Ito, Toshimichi, Kenji Motoi, Osamu Arakaki, Akimitsu Hatta, and Akio Hiraki. "Visible Photoluminescence from Anodically Oxidized Porous Silicon." Japanese Journal of Applied Physics 33, Part 2, No. 7A (July 1, 1994): L941—L944. http://dx.doi.org/10.1143/jjap.33.l941.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Wang, H. Q., G. Z. Wang, L. C. Jia, C. J. Tang, and G. H. Li. "Polychromatic visible photoluminescence in porous ZnO nanotubes." Journal of Physics D: Applied Physics 40, no. 21 (October 19, 2007): 6549–53. http://dx.doi.org/10.1088/0022-3727/40/21/014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Jiang, Jiangong, Kunji Chen, Xinfan Huang, Duan Feng, and Dayou Sun. "A Novel Ge Nanostructure Exhibiting Visible Photoluminescence." Chinese Physics Letters 10, no. 10 (October 1993): 630–33. http://dx.doi.org/10.1088/0256-307x/10/10/016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Xu, M., S. Xu, Y. C. Ee, Clare Yong, J. W. Chai, S. Y. Huang, and J. D. Long. "Visible photoluminescence from the annealed TEOS SiO2." Materials Science and Engineering: B 128, no. 1-3 (March 2006): 89–92. http://dx.doi.org/10.1016/j.mseb.2005.11.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Pivin, J. C., and M. Sendova-Vassileva. "Visible photoluminescence of ion irradiated polysiloxane films." Solid State Communications 106, no. 3 (April 1998): 133–38. http://dx.doi.org/10.1016/s0038-1098(98)00016-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Okamoto, Shinji, and Yoshihiko Kanemitsu. "Visible photoluminescence from silicon single quantum wells." Journal of Luminescence 72-74 (June 1997): 380–82. http://dx.doi.org/10.1016/s0022-2313(96)00346-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Pearsall, T. P., Jeff C. Adams, J. N. Kidder, P. S. Williams, S. A. Chambers, John Lach, D. T. Schwartz, and Brett Z. Nosho. "Bright visible photoluminescence in thin silicon films." Thin Solid Films 222, no. 1-2 (December 1992): 200–204. http://dx.doi.org/10.1016/0040-6090(92)90068-m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Shimizu‐Iwayama, Tsutomu, Katsunori Fujita, Setsuo Nakao, Kazuo Saitoh, Tetsuo Fujita, and Noriaki Itoh. "Visible photoluminescence in Si+‐implanted silica glass." Journal of Applied Physics 75, no. 12 (June 15, 1994): 7779–83. http://dx.doi.org/10.1063/1.357031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Klyui, N. I., Yu P. Piryatinskii, and V. A. Semenovich. "Intensive visible photoluminescence of a-C:H:N films." Materials Letters 35, no. 5-6 (June 1998): 334–38. http://dx.doi.org/10.1016/s0167-577x(97)00266-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Schoisswohl, M., J. L. Cantin, M. Chamarro, H. J. von Bardeleben, T. Morgenstern, E. Bugiel, W. Kissinger, and R. C. Andreu. "Structure and visible photoluminescence of porousSi1−xGex." Physical Review B 52, no. 16 (October 15, 1995): 11898–903. http://dx.doi.org/10.1103/physrevb.52.11898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Sawada, S., N. Hamada, and N. Ookubo. "Mechanisms of visible photoluminescence in porous silicon." Physical Review B 49, no. 8 (February 15, 1994): 5236–45. http://dx.doi.org/10.1103/physrevb.49.5236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Torchynska, T. V., A. Vivas Hernandez, A. V. Kolobov, Y. Goldstein, E. Savir, and J. Jedrzejewski. "Visible photoluminescence of Ge enriched SiOx layers." Journal of Electron Spectroscopy and Related Phenomena 137-140 (July 2004): 619–22. http://dx.doi.org/10.1016/j.elspec.2004.02.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Pizani, P. S., M. R. Joya, F. M. Pontes, L. P. S. Santos, M. Godinho, E. R. Leite, and E. Longo. "Tunable visible photoluminescence of powdered silica glass." Journal of Non-Crystalline Solids 354, no. 2-9 (January 2008): 476–79. http://dx.doi.org/10.1016/j.jnoncrysol.2007.07.053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Chen, Joseph H., Dawen Pang, Paul Wickboldt, Hyeonsik M. Cheong, and William Paul. "Visible room-temperature photoluminescence from oxidized germanium." Journal of Non-Crystalline Solids 198-200 (May 1996): 128–31. http://dx.doi.org/10.1016/0022-3093(95)00666-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Li, Heping, Siya Huang, Wei Zhang, and Wei Pan. "Visible photoluminescence from amorphous barium titanate nanofibers." Journal of Alloys and Compounds 551 (February 2013): 131–35. http://dx.doi.org/10.1016/j.jallcom.2012.10.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zhang, W. F., M. S. Zhang, and Z. Yin. "Microstructures and Visible Photoluminescence of TiO2 Nanocrystals." physica status solidi (a) 179, no. 2 (June 2000): 319–27. http://dx.doi.org/10.1002/1521-396x(200006)179:2<319::aid-pssa319>3.0.co;2-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Gladysheva, Nadezhda B., Vadim V. Gruzdov, Yurii V. Kolkovskii, Yulii A. Kontsevoy, and Evgenii F. Pevtsov. "Control of yellow photoluminescence in AlGaN/GaN heterostructures." Modern Electronic Materials 5, no. 2 (June 1, 2019): 87–89. http://dx.doi.org/10.3897/j.moem.5.2.51391.

Повний текст джерела
Анотація:
Photoluminescence with the peak corresponding to yellow color of the visible spectrum (so-called yellow luminescence) originates from deep levels in the GaN buffer layers of heterostructures and depends on heterostructure growth conditions. In turn deep levels affect the resistance of Ohmic contacts of microwave transistors fabricated from these heterostructures. This determines the reliability of GaN microwave transistor operation. Two types of units for control of photoluminescence with the peak in the yellow visible spectral region have been designed with the aim to control the quality of AlGaN/GaN/SiC and AlGaN/GaN/Al2O3 heterostructures. One of the units is used for fast control of yellow photoluminescence and the other for photoluminescence mapping on heterostructure wafer surfaces. Examples of photoluminescence maps for structures grown on different substrates have been given.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Rauwel, Protima, Martin Salumaa, Andres Aasna, Augustinas Galeckas, and Erwan Rauwel. "A Review of the Synthesis and Photoluminescence Properties of Hybrid ZnO and Carbon Nanomaterials." Journal of Nanomaterials 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/5320625.

Повний текст джерела
Анотація:
Photoluminescent ZnO carbon nanomaterials are an emerging class of nanomaterials with unique optical properties. They each, ZnO and carbon nanomaterials, have an advantage of being nontoxic and environmentally friendly. Their cost-effective production methods along with simple synthesis routes are also of interest. Moreover, ZnO presents photoluminescence emission in the UV and visible region depending on the synthesis routes, shape, size, deep level, and surface defects. When combined with carbon nanomaterials, modification of surface defects in ZnO allows tuning of these photoluminescence properties to produce, for example, white light. Moreover, efficient energy transfer from the ZnO to carbon nanostructures makes them suitable candidates not only in energy harvesting applications but also in biosensors, photodetectors, and low temperature thermal imaging. This work reviews the synthesis and photoluminescence properties of 3 carbon allotropes: carbon quantum or nanodots, graphene, and carbon nanotubes when hybridized with ZnO nanostructures. Various synthesis routes for the hybrid materials with different morphologies of ZnO are presented. Moreover, differences in photoluminescence emission when combining ZnO with each of the three different allotropes are analysed.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Galdámez-Martinez, Andres, Guillermo Santana, Frank Güell, Paulina R. Martínez-Alanis, and Ateet Dutt. "Photoluminescence of ZnO Nanowires: A Review." Nanomaterials 10, no. 5 (April 29, 2020): 857. http://dx.doi.org/10.3390/nano10050857.

Повний текст джерела
Анотація:
One-dimensional ZnO nanostructures (nanowires/nanorods) are attractive materials for applications such as gas sensors, biosensors, solar cells, and photocatalysts. This is due to the relatively easy production process of these kinds of nanostructures with excellent charge carrier transport properties and high crystalline quality. In this work, we review the photoluminescence (PL) properties of single and collective ZnO nanowires and nanorods. As different growth techniques were obtained for the presented samples, a brief review of two popular growth methods, vapor-liquid-solid (VLS) and hydrothermal, is shown. Then, a discussion of the emission process and characteristics of the near-band edge excitonic emission (NBE) and deep-level emission (DLE) bands is presented. Their respective contribution to the total emission of the nanostructure is discussed using the spatial information distribution obtained by scanning transmission electron microscopy−cathodoluminescence (STEM-CL) measurements. Also, the influence of surface effects on the photoluminescence of ZnO nanowires, as well as the temperature dependence, is briefly discussed for both ultraviolet and visible emissions. Finally, we present a discussion of the size reduction effects of the two main photoluminescent bands of ZnO. For a wide emission (near ultra-violet and visible), which has sometimes been attributed to different origins, we present a summary of the different native point defects or trap centers in ZnO as a cause for the different deep-level emission bands.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Chu, Tien Dung, та Hoang Nam Nguyen. "Synthesis and Characteristics of Multifunctional Magneto-luminescent Nanoparticles by an Ultrasonic Wave-assisted Stӧber Method". Journal of Physical Science 32, № 3 (25 листопада 2021): 75–87. http://dx.doi.org/10.21315/jps2021.32.3.6.

Повний текст джерела
Анотація:
Multifunctional magneto-luminescent nanoparticles (NPs) were synthesised by an ultrasonic wave-assisted Stöber method. The multifunctional NPs are composed of magnetic NPs (Fe3O4) and photoluminescent quantum dots (QDs) (ZnS:Mn) in amorphous silica (SiO2) matrix, which was confirmed by X-ray diffraction, Raman scattering spectroscopy, and transmission electron microscopy (TEM). The multifunctional NPs have high saturation magnetisation at room temperature simultaneously with strong photoluminescence (PL) in visible light, which is promising for biomedical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Yang, Leon, Devon Reed, Kofi W. Adu, and Ana Laura Elias Arriaga. "Quantum Confinement Effect in the Absorption Spectra of Graphene Quantum Dots." MRS Advances 4, no. 3-4 (2019): 205–10. http://dx.doi.org/10.1557/adv.2019.18.

Повний текст джерела
Анотація:
ABSTRACTOur preliminary investigation of the absorption and the photoluminescence response of selectively separated graphene quantum dots using centrifugation indicate that the photoluminescence is more sensitive to the size of the quantum dot than the absorption. We observed ∼143nm blueshift from 623nm to 480nm in the visible region of the photoluminescence with increasing successive centrifugation (decreasing size) and not in the corresponding absorption spectra in the visible region. However, for the first time, we observed a blueshift in the absorption spectra in the UV regions that is tentatively attributed to quantum confinement. Further detailed work is underway to confirm the blueshift in the absorption and correlate with deep UV photoluminescence and morphological quantification of the quantum dots size distribution using high resolution transmission electron microscope.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Ghosh, Ramesh, and P. K. Giri. "Efficient visible light photocatalysis and tunable photoluminescence from orientation controlled mesoporous Si nanowires." RSC Advances 6, no. 42 (2016): 35365–77. http://dx.doi.org/10.1039/c6ra05339d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Григорьев, Л. В., И. С. Морозов, Н. В. Журавлев, А. А. Семенов та А. А. Никитин. "Фотолюминесцентные и фотоэлектрические свойства тонкопленочной структуры ZnO-LiNbO-=SUB=-3-=/SUB=- в ультрафиолетовом и видимом диапазонах спектра". Физика и техника полупроводников 54, № 3 (2020): 232. http://dx.doi.org/10.21883/ftp.2020.03.49024.9294.

Повний текст джерела
Анотація:
In article are presebted the results of study the structural, optical, photoluminescent and photoelectric properties structure of the layer thin-film ZnO on the monocrystal LiNbO3 substrate. Presents the results of X-ray structural analysis of a zinc oxide thin film synthesized on a single-crystal lithium niobate substrate and on a KU-1 quartz substrate are presented. Are presented the results investigations of transmission spectra, reflection spectra and absorption spectra in the ultraviolet and visible spectral range. Are presented investigations spectral dependence of photoluminescence and the spectral dependence of the photoconductivity currents in the thin film structure of ZnO-LiNbO3 and the structure of ZnO-SiO2 in the ultraviolet and visible spectral range.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

XU, XIAOYONG, ZHULIN JIN, CHUNXIANG XU, JIYUAN GUO, ZENGLIANG SHI, J. PAN, and JINGGUO HU. "DEFECT-ORIGIN AND STABILITY OF VISIBLE EMISSION IN ZnO NANOPILLARS." Functional Materials Letters 05, no. 03 (September 2012): 1240001. http://dx.doi.org/10.1142/s1793604712400012.

Повний текст джерела
Анотація:
ZnO nanopillars with the strong violet photoluminescence were fabricated via the vapor-phase transport method. The annealing effect on photoluminescence property was probed to indicate the defect-origins of visible emissions and their thermodynamic stabilities. Moreover, the electron structures of ZnO with zinc interstitial, oxygen vacancy and oxygen interstitial were calculated based on the density functional theory. Three important points were demonstrated: zinc interstitial as an instable donor determines the violet emission and the concentration of free carriers; oxygen vacancy as a steady donor is responsible for the green emission; and oxygen interstitial may induce the yellow-green emission and lead to the red-shift and asymmetry of photoluminescence spectra. These results are beneficial to understand the defect-origins of the visible emissions and their stabilities in ZnO nanostructures, and extending optical and electronic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Григорьев, Л. В., Я. Б. Егорова, Н. А. Быков, А. А. Семенов та А. А. Никитин. "Оптические и фотолюминесцентные свойства тонкопленочной структуры ZnO-ЦТСЛ в ультрафиолетовом и видимом диапазонах спектра". Журнал технической физики 127, № 12 (2019): 986. http://dx.doi.org/10.21883/os.2019.12.48697.226-19.

Повний текст джерела
Анотація:
The results of a study of the structural, optical, and photoluminescent properties of the thin-film structure ZnO/ferroelectric ceramics PLZT are presented. The results of X-ray diffraction analysis of a zinc oxide film synthesized on a PLZT substrate and on a quartz substrate are presented. The transmission spectra, reflection spectra, absorption spectra, and spectral dependence of the photoluminescence of the thin-film structure of ZnO- PLZT and the structure of ZnO-SiO2 in the ultraviolet and visible spectral ranges are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Pizani, Paulo S., M. R. Joya, F. M. Pontes, L. P. S. Santos, M. Godinho Jr, E. R. Leite, and Elson Longo. "Defect-Induced Photoluminescence of Powdered Silica Glass." Defect and Diffusion Forum 273-276 (February 2008): 479–84. http://dx.doi.org/10.4028/www.scientific.net/ddf.273-276.479.

Повний текст джерела
Анотація:
Visible photoluminescence was generated in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The broad emission band maximum shows a linear dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. The photoluminescence was attributed to defect generation related to unsatisfied chemical bonds due to the high surface area. Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that the powder is composed by nanocrystallites with about 10-20 nanometers immersed in an amorphous media.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Aksenov, Igor, Tetsuya Kai, Nobuyuki Nishikawa, and Katsuaki Sato. "Visible Photoluminescence in Undoped and Zn-doped CuAlS2." Japanese Journal of Applied Physics 32, S3 (January 1, 1993): 153. http://dx.doi.org/10.7567/jjaps.32s3.153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

MAKIMURA, Tetsuya, Taiji MIZUTA, and Kouichi MURAKAMI. "Formation Dynamics and Visible Photoluminescence of Silicon Nanoparticles." Review of Laser Engineering 28, no. 6 (2000): 338–41. http://dx.doi.org/10.2184/lsj.28.338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

WU, Hai Ping, Akiko OKANO, and Kunio TAKAYANAGI. "Visible Photoluminescence from Size-Dispersed Si Nanoparticle Films." Review of Laser Engineering 28, no. 6 (2000): 354–58. http://dx.doi.org/10.2184/lsj.28.354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Abay, B., H. Efeoglu, Y. K. Yogurtçu, and M. Alieva. "Low-temperature visible photoluminescence spectra of Tl2GaInSe4layered crystals." Semiconductor Science and Technology 16, no. 9 (August 10, 2001): 745–49. http://dx.doi.org/10.1088/0268-1242/16/9/302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wellner, A., R. E. Palmer, J. G. Zheng, C. J. Kiely, and K. W. Kolasinski. "Mechanisms of visible photoluminescence from nanoscale silicon cones." Journal of Applied Physics 91, no. 5 (March 2002): 3294–98. http://dx.doi.org/10.1063/1.1448394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Gao, Ting, Song Tong, Xiangqin Zheng, Xinglong Wu, Liming Wang, and Ximao Bao. "Strong visible photoluminescence from Ge/porous Si structure." Applied Physics Letters 72, no. 25 (June 22, 1998): 3312–13. http://dx.doi.org/10.1063/1.121634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії