Книги з теми "Viscous flow Mathematical models"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 книг для дослідження на тему "Viscous flow Mathematical models".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.
Laminar viscous flow. New York: Springer, 1995.
Знайти повний текст джерелаNumerical computation of compressible and viscous flow. Reston, Virginia: American Institute of Aeronautics and Astronautics, Inc., 2014.
Знайти повний текст джерелаRose, M. E. Numerical methods for incompressible viscous flows with engineering aplications. Norfolk, Va: Department of Mechanical Engineering & Mechanics, College of Engineering & Technology, Old Dominion University, 1988.
Знайти повний текст джерелаPao, Yih-Ho. Time-dependent viscous incompressible flow past a finite flat plate. [Seattle, Wash.]: Boeing Scientific Research Laboratories, Flight Sciences Laboratory, 1986.
Знайти повний текст джерелаPao, Yih-Ho. Time-dependent viscous incompressible flow past a finite flat plate. [Seattle, Wash.]: Boeing Scientific Research Laboratories, Flight Sciences Laboratory, 1986.
Знайти повний текст джерелаBielski, W. Nonstationary flows of viscous fluids through porous elastic media: Homogenization method. Warszawa: Institute of Geophysics, Polish Academy of Sciences, 2005.
Знайти повний текст джерелаLliboutry, Luis. Very slow flows of solids: Basics of modeling in geodynamics and glaciology. Dordrecht: Martinus Nijhoff, 1987.
Знайти повний текст джерелаBartel, Robert E. Prediction of transonic vortex flows using linear and nonlinear turbulent eddy viscosity models. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.
Знайти повний текст джерелаIntroduction to the numerical analysis of incompressible viscous flows. Philadelphia: Society for Industrial and Applied Mathematics, 2008.
Знайти повний текст джерелаGolovachov, Yuri P. Numerical simulation of viscous shock layer flows. Dordrecht: Kluwer Academic Publishers, 1995.
Знайти повний текст джерелаT. F. O. de Mulder. FEGAS: A finite element solver for 2D viscous incompressible gas flows using SUPG/PSPG stabilized piecewise linear equal-order velocity-pressure interpolation on unstructured triangular grids. Rhode-Saint-Genèse, Belgium: Von Karman Institute for Fluid Dynamics, 1994.
Знайти повний текст джерелаMathematical analysis of viscoelastic flows. Philadelphia: Society for Industrial and Applied Mathematics, 2000.
Знайти повний текст джерелаVolobuev, A. N. Osnovy nessimetrichnoĭ gidromekhaniki. Saratov: SamLi︠u︡ksPrint, 2011.
Знайти повний текст джерелаMatematicheskie voprosy dinamiki vi͡azkoĭ barotropnoĭ zhidkosti na vrashchai͡ushcheĭsi͡a sfere. Moskva: Otdel vychislitelʹnoĭ matematiki AN SSSR, 1989.
Знайти повний текст джерелаMavriplis, Dimitri. Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаHulsen, Martinus Antonius. Analysis and numerical simulation of the flow of viscoelastic fluids. Delft: Delft University Press, 1988.
Знайти повний текст джерелаBrummelen, E. H. van. Numerical methods for steady viscous free-surface flows. Amsterdam: Centrum voor Wiskunde en Informatica, 2003.
Знайти повний текст джерелаMavriplis, Dimitri. Large-scale parallel viscous flow computations using an unstructured multigrid algorithm. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.
Знайти повний текст джерелаSigal, Ian Alejandro. Accuracy issues on unstructured grids. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.
Знайти повний текст джерелаSigal, Ian Alejandro. Accuracy issues on unstructured grids. Ottawa: National Library of Canada, 2002.
Знайти повний текст джерелаFredericks, J. J. Vorticity measurements within the bottom boundary layer in the Strait of Juan De Fuca. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1998.
Знайти повний текст джерелаIUTAM Symposium on Numerical Simulation of Non-Isothermal Flow of Viscoelastic Liquids (1993 Kerkrade, Netherlands). IUTAM Symposium on Numerical Simulation of Non-Isothermal Flow of Viscoelastic Liquids: Proceedings of an IUTAM symposium held in Kerkrade, the Netherlands, 1-3 November 1993. Dordrecht: Kluwer Academic Publishers, 1995.
Знайти повний текст джерелаButtà, Paolo, Guido Cavallaro, and Carlo Marchioro. Mathematical Models of Viscous Friction. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14759-8.
Повний текст джерелаCanright, David. Rayleigh-Taylor instability of a viscous film overlying a pasive fluid. Monterey, Calif: Naval Postgraduate School, 1989.
Знайти повний текст джерелаMulticomponent flow modeling. Boston: Birkhäuser, 1999.
Знайти повний текст джерелаAs, S. C. van. Traffic flow theory. 3rd ed. [Pretoria]: SARB Chair in Transportation Engineering, Dept. of Civil Engineering, University of Pretoria, 1990.
Знайти повний текст джерелаKolev, Nikolay Ivanov. Multiphase flow dynamics. Berlin: Springer, 2002.
Знайти повний текст джерелаIntegrated flow modeling. Amsterdam: Elsevier Science B.V., 2000.
Знайти повний текст джерелаTraffic flow fundamentals. Englewood Cliffs, N.J: Prentice Hall, 1990.
Знайти повний текст джерелаMultiphase flow dynamics. 2nd ed. Berlin: Springer, 2005.
Знайти повний текст джерелаKolev, Nikolay Ivanov. Multiphase flow dynamics. 4th ed. Berlin: Springer, 2011.
Знайти повний текст джерелаJepson, Allan D. Mixture models for optical flow computation. Toronto: University of Toronto, Dept. of Computer Science, 1993.
Знайти повний текст джерелаEvans, Martin D. D. Understanding order flow. Cambridge, MA: National Bureau of Economic Research, 2005.
Знайти повний текст джерелаVreugdenhil, C. B. Numerical methods for shallow-water flow. Dordrecht: Kluwer Academic Publishers, 1994.
Знайти повний текст джерелаVreugdenhil, Cornelis Boudewijn. Numerical methods for shallow-water flow. Dordrecht: Kluwer Academic Publishers, 1994.
Знайти повний текст джерелаSaville, D. A. Mathematical models of continuous flow electrophoresis: Final report. [Princeton, N.J.]: Princeton University, 1986.
Знайти повний текст джерелаPettersson, Reif B. A., ed. Statistical theory and modeling for turbulent flow. 2nd ed. Hoboken, N.J: Wiley, 2010.
Знайти повний текст джерелаKutija, Vedrana. Flow adaptive schemes. Rotterdam: A.A. Balkema, 1996.
Знайти повний текст джерелаJ, Felcman, and Straškraba I, eds. Mathematical and computational methods for compressible flow. Oxford: Clarendon Press, 2003.
Знайти повний текст джерелаDay, Alastair L. Mastering cash flow and valuation modelling. New York: Pearson Financial Times/Prentice Hall, 2012.
Знайти повний текст джерелаSaarenvirta, Kari Tapio. Evaluation of turbulence models for internal flow. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.
Знайти повний текст джерелаLuckner, Ludwig. Migration processes in the soil and groundwater zone. Chelsea, Mich: Lewis Publishers, 1991.
Знайти повний текст джерелаAnalytic element modeling of groundwater flow. San Diego: Academic Press, 1995.
Знайти повний текст джерелаAfrican Institute of Mathematical Sciences, ed. Understanding fluid flow. Cambridge: Cambridge University Press, 2009.
Знайти повний текст джерелаRijn, L. C. van. Mathematical models for sediment concentration profiles in steady flow. Delft: Delft Hydraulics Laboratory, 1985.
Знайти повний текст джерелаNATO Advanced Study Institute on Cerebral Blood Flow: Mathematical Models, Instrumentation, and Imaging Techniques for the Study of CBF (1986 L'Aquila, Italy). Cerebral blood flow: Mathematical models, instrumentation, and imaging techniques. New York: Plenum Press, 1988.
Знайти повний текст джерелаRies, Kernell G. Methods for estimating low-flow statistics for Massachusetts streams. Northborough, MA: U.S. Dept. of the Interior, U.S. Geological Survey, 2000.
Знайти повний текст джерелаRies, Kernell G. Methods for estimating low-flow statistics for Massachusetts streams. Northborough, Mass: U.S. Dept. of the Interior, U.S. Geological Survey, 2000.
Знайти повний текст джерелаRies, Kernell G. Methods for estimating low-flow statistics for Massachusetts streams. Northborough, Mass: U.S. Dept. of the Interior, U.S. Geological Survey, 2000.
Знайти повний текст джерелаNovotný, A. Introduction to the mathematical theory of compressible flow. Oxford: Oxford University Press, 2004.
Знайти повний текст джерела