Добірка наукової літератури з теми "Virus de l'hépatite B – Morphogenèse"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Virus de l'hépatite B – Morphogenèse".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Virus de l'hépatite B – Morphogenèse"
Degos, F., F. Tron, and JP Benhamou. "Virus de l'hépatite B et vaccination." médecine/sciences 4, no. 10 (1988): 629. http://dx.doi.org/10.4267/10608/3759.
Повний текст джерелаTiollais, P., A. Dejean, and MA Buendia. "Virus de l'hépatite-B et hépatocarcinome." médecine/sciences 6, no. 2 (1990): 96. http://dx.doi.org/10.4267/10608/4097.
Повний текст джерелаWagner, A., F. Denis, S. Ranger-Rogez, V. Loustaud-Ratti, and S. Alain. "Génotypes du virus de l'hépatite B." Immuno-analyse & Biologie Spécialisée 19, no. 6 (December 2004): 330–42. http://dx.doi.org/10.1016/j.immbio.2004.10.002.
Повний текст джерелаGrob, Peter J., and Philippe C. Frei. "Virus et pathogénie de l'hépatite B." Sozial- und Präventivmedizin SPM 43, S1 (January 1998): S79—S83. http://dx.doi.org/10.1007/bf02042184.
Повний текст джерелаKahn, A. "Souris transgéniques et virus de l'hépatite B." médecine/sciences 2, no. 1 (1986): 48. http://dx.doi.org/10.4267/10608/3414.
Повний текст джерелаRoingeart, P., and C. Hourioux. "Le bourgeonnement du virus de l'hépatite B." médecine/sciences 15, no. 2 (1999): 234. http://dx.doi.org/10.4267/10608/1317.
Повний текст джерелаSoussan, P., F. Garreau, C. Bréchot, and D. Kremsdorf. "Une nouvelle protéine du virus de l'hépatite B." médecine/sciences 16, no. 6-7 (2000): 855. http://dx.doi.org/10.4267/10608/1746.
Повний текст джерелаAjana, F. "Les variants du virus de l'hépatite B virale." Journal de Pédiatrie et de Puériculture 19, no. 2 (March 2006): 52–55. http://dx.doi.org/10.1016/j.jpp.2005.12.005.
Повний текст джерелаZoulim, F., JL Gaudin, and C. Trepo. "Structure des virus de l'hépatite B et delta." Immuno-analyse & Biologie Spécialisée 6, no. 2 (April 1991): 11–16. http://dx.doi.org/10.1016/s0923-2532(05)80265-0.
Повний текст джерелаRoingeard, P., and A. Goudeau. "La culture du virus de l'hépatite B in vitro." médecine/sciences 8, no. 1 (1992): 61. http://dx.doi.org/10.4267/10608/3044.
Повний текст джерелаДисертації з теми "Virus de l'hépatite B – Morphogenèse"
Le, Duff Yann. "Etude de déterminants d'entrée virale et de morphogenèse du virus de l'hépatite B." Paris 7, 2010. http://www.theses.fr/2010PA077232.
Повний текст джерелаThe budding mechanism of the Hepatitis B Virus (HBV) is entirely dépendent on its envelope proteins. These proteins form oligomers and spontaneously bud into the lumen of the endoplasmic réticulum (ER), mainly as empty subviral particles that are secreted in large quantities by infected cells. The envelope proteins occasionally recruit HBV nucleocapsids leading to the formation of complete virions also called Dane particles. Ribonucleoproteins of the Hepatitis Delta Virus (HDV) take advantage of this unusal budding mechanism: they bind to the envelope proteins and are secreted as HDV virions. There are three HBV envelope proteins: the small protein S-AgHBs, the medium protein M-AgHBs, and the large protein L-AgHBs. They share a common C-terminal domain but the size of their N-terminal domains differs. The S protein contains only the S domain, while the M and the L proteins consist respectively of the S and preS2 domains, and the S, preS2, and preSl domains. The S-AgHBs protein drives HBV and HDV budding. This integral protein is synthesized at the ER membrane. Its N-terminal region contains two transmembrane domains forming a first cytosolic loop and an antigenic loop (AGL) that is presented at the surface of the viruses. Its C-terminal domain is highly hydrophobic and predicted as a membrane domain. In addition two infectivity determinants have been identified on the preSl domain and the AGL. First our study aimed at characterizing the mechanism of action of the two infectivity determinants. Our results indicate that these determinants are functionaly independant at viral entry. The role of the AGL may require the intervention of many surface proteins while only a few domains of preSl are sufficient for infection. Finally, the mode of action of the preSl domain seems to be mediated by an allosteric cooperation of its sub-elements. The second part of our study aimed at specifying the topology of the C-terminal domain of the S-AgHBs protein in order to further characterize its role in HBV et HDV morphogenesis. This region most likely associates with cellular membranes through the 154-174 and 202-226 domains. The 202-226 residues are highly hydrophobic and may be implicated, together with the 71-102 region, in the surface proteins dimerization. The 154-174 region is presumably organized as an amphipathic helix, which is parallel to membranes. It may participate in cholesterol recruitment. Lastly, residues 193-204 may be exposed cytoplasm in agreement their role in HDV ribonucleoprotein recruitment
Patient, Romuald. "Obtention de particules sous-virales d'enveloppe du virus de l'hépatite C." Thesis, Tours, 2008. http://www.theses.fr/2008TOUR3108.
Повний текст джерелаN/a
Hourioux, Christophe. "Interactions entre les protéines d'enveloppe et les protéines de capside au cours de la morphogenèse virale : étude comparée du virus de l'hépatite B, de son satellite delta, et du virus de l'immunodéficience humaine de type 1." Tours, 1999. http://www.theses.fr/1999TOUR3307.
Повний текст джерелаJulithe, Romain. "Etude fonctionnelle des protéines d'enveloppe du virus de l'hépatite B dans l'assemblage et le caractère infectieux des virions HBV et HDV." Paris 7, 2013. http://www.theses.fr/2013PA077256.
Повний текст джерелаThere are 10 genotypes of hepatitis B virus (HBV) in the world. The HBV and hepatitis delta virus (HDV) envelope proteins have, in the position 146 of the common's domain, a N-Glycosylation site. Only 50% of these proteins are always glycosylated, whatever the genotype. The first part of my project consists in studying the influence of the HBV genetic variability with regard to the envelope protein's activities at different step of the viral circle and with regard to the neutralization's efficiency of anti-HBSAG antibodies. The results show that variations in the aminoacid sequence of the HBV proteins have minor consequences on the assembly/secretion of subviral particles (SVP), HDV virions and the infectivity. However, sequence variations in the epitope of the A-determinant of the antigenic loop (AGL) affect the neutralizing activity of the anti-HBSAG antibodies. The second part of my project consists on determining the function(s) associated with the N146 glycosylation of the envelope proteins. Our results show that N146 glycosylation isn't essential for the HBV SVP and HDV virions production, but important for the assembly/secretion of the HBV virions. This glycosylation is not required for infectivity and hyperglycosylated envelope proteins - by adding several glycosylation sites in the AGL - is compatible with the SVP production and the conservation of the infectivity, in the AGL presents less than 4 glycans. We also show that hyperglycosylation prevents access of the anti-HBSAG Monoconal antibodies to epitope of the A-determinant
Jammart, Baptiste. "Étude in vitro de l'association du virus de l'hépatite C avec les lipoprotéines de l'hôte." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10082/document.
Повний текст джерелаHepatitis C virus (HCV) mainly infects hepatocytes. It is unique in its ability to impair host lipidmetabolism, leading to major liver dysfunctions as, for instance, hepatic steatosis or insulinresistance. In vivo, serum virions have a low and variable density, reflecting their association withlow- and very-low-density lipoproteins (LDL and VLDL). Hence, the existence of lipo-viro-particles(LVP), containing both viral components as well as apolipoprotein B (apoB) and E (apoE), has beensuggested. These LVPs could play an important role in viral persistence. However, this associationbetween HCV and apoB has not been observed in vitro, using the currently available cell culturemodels.Therefore, during my PhD, I have worked at setting up a new cell culture model, which wascapable of producing both VLDL and HCV particles, and therefore would enable the study of theinterplay between both synthesis pathways. First of all, we characterized lipoprotein production indifferent hepatocyte cell lines and confirmed that Huh7.5 cells, usually used to study HCV in vitro,were deficient for VLDL secretion, whereas two other cell lines, HepG2 and HepaRG, were able toproduce quasi-physiological VLDLs. Therefore, in a second time, we used HepG2 cells to replicate aHCV strain containing a selection gene and to characterize viral particle production. Surprisingly,VLDL-producing HepG2 cells were also unable to secrete LVPs, but rather secreted apoE-positive andapoB-negative viral particles, which were similar to ones Huh7.5 cells produced. This suggests thatthe ability to produce LVPs does not correlate with the ability to produce VLDL
Pastor, Florentin. "Etude des intéractions protéine-protéine entre l'enveloppe et la capside virale au cours de la morphogénèse du Virus de l'Hépatite B (VHB)." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR3810.
Повний текст джерелаSome late phases of the hepatitis B virus (HBV) cycle are still poorly understood, such as the viral particle assembly. It is known that the capsid formed by the multimerization of the core protein around the viral DNA acquires its three envelope proteins (S, M, L) by viral budding, however the involved molecular signals remain poorly known. To explore the interactions between these viral proteins, approaches such as confocal microscopy and the realization of specific co-immunoprecipitations have been developed. In a context that may or may not reflect the complete HBV lifecycle, these approaches show the existence of specific interactions between the matrix domain (MD, L protein) and the matrix interaction domain (MBD, core protein). These results, in accordance with the data in the literature, make it possible to specify at a molecular level the required interactions between structural proteins during the HBV morphogenesis
Abdul, Fabien. "Développement et évaluation de nouvelles stratégies pour le traitement des hépatites B chroniques, dans le modèle du canard de Pékin infecté par le DHBV." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10284.
Повний текст джерелаDevelopment and evaluation of new strategies for treating chronic hepatitis B in the model of Peking duck infected with DHBVChronic infection with Hepatitis B virus (HBV) is the major cause of liver cirrhosis and hepatocellular carcinoma, leading to more than one million deaths each year. The low success rate of current therapies against HBV infection shows the need of alternative therapeutics. Thus, we studied a new strategy based on the use of antisense molecules (PNAs) coupled with cell penetrating peptides (CPPs). We have shown that PNAs targeting the DHBV encapsidation signal coupled to CPPs penetrated into the cells and led to an inhibition of viral replication. In addition, we have demonstrated an antiviral activity of the CCP (Arg)8 itself. We then evaluate the mechanism of antiviral action of this CPP in vitro and have shown that it inhibited the late stages of viral morphogenesis, leading to a strong inhibition of the release of viral particles. Furthermore, we were interested in evaluating immunotherapeutic strategies, based on DNA vaccination. We have demonstrated the benefits of co-administration of cytokines (IFNy), with a DNA vaccine directed against the DHBV large envelope protein (preS/S), enhancing the magnitude of humoral response and enhancing neutralizing anti-DHBV antibody response. Finally we evaluated the benefits of a heterologous immunization approach or prime-boost immunization involving DNA vaccination and a recombinant viral vector (AdenoCELO) encoding the DHBV preS/S and IFNy proteins. We have shown that heterologous immunization induced a humoral response stronger than that induced by homologous immunization. By contrast, the heterologous prime-boost strategy was less effective than homologous DNA immunization for therapy of chronic DHBV-carrier ducks
Jenna, Sarah. "Etude de la morphogenèse du virus de l'hépatite delta." Aix-Marseille 1, 1998. http://www.theses.fr/1998AIX11042.
Повний текст джерелаKassab, Somar. "Variabilité du virus de l'hépatite B." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0056/document.
Повний текст джерелаThe genetic polymorphism of hepatitis B virus (HBV) has been investigated tounderstand its impact on disease evolution, with discordant results. This could be due to thenarrow range of genotype and plasmatic viral load in these studies.We analysed complete genome variability of circulating HBV, in 422 chronicallyinfected patients. All were naive of anti-viral treatement and 38% had a plasmatic viral loadbelow 103 UI/mL. After optimisation of full length genome PCR amplification, we obtainedSanger sequences for more than 90% of HBV genome in 320 samples. We detected by directsequencing multiples co-infections that were confirmed by clonal pyrosequencing in 27samples. Defective viruses were always observed in co-infection with wild type virus. Directsequences showed a large representation of the most frequent genotypes (A to E), but also 60potential inter-genotypic recombinants. Clonal pyrosequencing and vectorial sequencingshowed that these potential recombinants were co-infections with different genotypes orintermediate genotypes located between close genotypes. These observations are incontradiction with the hypothesis described in the literature on recombination by geneticmaterial exchange.This study will be completed by a correlation analysis between the polymorphisms andmarkers of bad prognosis during HBV-induced disease
Ait, Goughoulte Malika. "Etude de la morphogenèse de pseudo-virions du virus de l'hépatite C." Tours, 2006. http://www.theses.fr/2006TOUR3304.
Повний текст джерелаOur laboratory has developed a system allowing the production of HCV-like particles (HCV-LPs) in mammalian cells. In the absence of a complete HCV-LPs budding, this system was first used to exclude the putative role of cofactors such as the untranslated regions of the HCV genome, the p7 and F proteins in the virus particle morphogenesis. Although this model displays abortive HCV-LPs budding, it remains an useful tool for studies of the early events of HCV assembly mammalian cells. Inded this model allowed us to demonstrate that the HCV core proteine alone was able to generate HCV-LPs. This work further showed that the cleavage of the core protein by a cellular enzyme, the signal peptide peptidase (SPP), is required for HCV budding. Our study shed also some light on the HCV core residues involved in the SPP cleavage
Книги з теми "Virus de l'hépatite B – Morphogenèse"
Parent, Raymond. Analyse des cas de chlamydiose, de gonorrhee d'infection par le virus de l'hépatite B et de syphilis déclarés au Québec par année civile 1993-1997. [Québec]: Gouvernement du Quebec, Ministère de la santé et des services sociaux, Centre de coordination sur le sida, 1999.
Знайти повний текст джерелаЧастини книг з теми "Virus de l'hépatite B – Morphogenèse"
"Histoire de la vaccination contre le virus de l’hépatite B." In De la jaunisse à l'hépatite C, 63–72. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-84254-203-0.c009.
Повний текст джерела