Добірка наукової літератури з теми "Virtual tomography"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Virtual tomography".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Virtual tomography"

1

Sutton, Mark, Imran Rahman, and Russell Garwood. "VIRTUAL PALEONTOLOGY—AN OVERVIEW." Paleontological Society Papers 22 (September 2016): 1–20. http://dx.doi.org/10.1017/scs.2017.5.

Повний текст джерела
Анотація:
AbstractVirtual paleontology is the study of fossils through three-dimensional digital visualizations; it represents a powerful and well-established set of tools for the analysis and dissemination of fossil data. Techniques are divisible into tomographic (i.e., slice-based) and surface-based types. Tomography has a long predigital history, but the recent explosion of virtual paleontology has resulted primarily from developments in X-ray computed tomography (CT), and of surface-based technologies (e.g., laser scanning). Destructive tomographic methods include forms of physical-optical tomography (e.g., serial grinding); these are powerful but problematic techniques. Focused Ion Beam (FIB) tomography is a modern alternative for microfossils; it is also destructive but is capable of extremely high resolutions. Nondestructive tomographic methods include the many forms of CT, which are the most widely used data-capture techniques at present, but are not universally applicable. Where CT is inappropriate, other nondestructive technologies (e.g., neutron tomography, magnetic resonance imaging, optical tomography) can prove suitable. Surface-based methods provide portable and convenient data capture for surface topography and texture, and might be appropriate when internal morphology is not of interest; technologies include laser scanning, photogrammetry, and mechanical digitization. Reconstruction methods that produce visualizations from raw data are many and various; selection of an appropriate workflow will depend on many factors, but is an important consideration that should be addressed prior to any study. The vast majority of three-dimensional fossils can now be studied using some form of virtual paleontology, and barriers to broader adaptation are being eroded. Technical issues regarding data sharing remain problematic. Technological developments continue; those promising tomographic recovery of compositional data are of particular relevance to paleontology.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Seuss, Hannes, Rolf Janka, Matthias Hammon, Alexander Cavallaro, Michael Uder, and Peter Dankerl. "Virtual Computed Tomography Colonography." Academic Radiology 25, no. 8 (August 2018): 1046–51. http://dx.doi.org/10.1016/j.acra.2017.12.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Buckler, Andrew J., Eva Karlöf, Mariette Lengquist, T. Christian Gasser, Lars Maegdefessel, Ljubica Perisic Matic, and Ulf Hedin. "Virtual Transcriptomics." Arteriosclerosis, Thrombosis, and Vascular Biology 41, no. 5 (May 5, 2021): 1738–50. http://dx.doi.org/10.1161/atvbaha.121.315969.

Повний текст джерела
Анотація:
Objective: Therapeutic advancements in atherosclerotic cardiovascular disease have improved prevention of ischemic stroke and myocardial infarction, but diagnostic methods for atherosclerotic plaque phenotyping to aid individualized therapy are lacking. In this feasibility study, we aimed to elucidate plaque biology by decoding the molecular phenotype of plaques through analysis of computed-tomography angiography images, making a predictive model for plaque biology referred to as virtual transcriptomics. Approach and Results: We employed machine intelligence using paired computed-tomography angiography and transcriptomics from carotid endarterectomies of 40 patients undergoing stroke-preventive surgery for carotid stenosis. Computed tomography angiographies were analyzed with novel software for accurate characterization of plaque morphology and plaque transcriptomes obtained from microarrays, followed by mathematical modeling for prediction of molecular signatures. Four hundred fourteen coding and noncoding RNAs were robustly predicted using supervised models to estimate gene expression based on plaque morphology. Examples of predicted transcripts included ion transporters, cytokine receptors, and a number of microRNAs whereas pathway analyses demonstrated enrichment of several biological processes relevant for the pathophysiology of atherosclerosis and plaque instability. Finally, the ability of the models to predict plaque gene expression was demonstrated using computed tomography angiographies from 4 sequestered patients and comparisons with transcriptomes of corresponding lesions. Conclusions: The results of this pilot study show that atherosclerotic plaque phenotyping by image analysis of conventional computed-tomography angiography can elucidate the molecular signature of atherosclerotic lesions in a multiscale setting. The study holds promise for optimized personalized therapy in the prevention of myocardial infarction and ischemic stroke, which warrants further investigations in larger cohorts.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Y., and W. Q. Yang. "Virtual electrical capacitance tomography sensor." Journal of Physics: Conference Series 15 (January 1, 2005): 183–88. http://dx.doi.org/10.1088/1742-6596/15/1/031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mendelson, Richard M., and Geoffrey M. Forbes. "Computed tomography colonography (virtual colonoscopy): Review." Australasian Radiology 46, no. 1 (March 2002): 1–12. http://dx.doi.org/10.1046/j.1440-1673.2001.00988.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wichmann, Julian L., Eva-Maria Nöske, Johannes Kraft, Iris Burck, Jens Wagenblast, Anne Eckardt, Claudia Frellesen, et al. "Virtual Monoenergetic Dual-Energy Computed Tomography." Investigative Radiology 49, no. 11 (November 2014): 735–41. http://dx.doi.org/10.1097/rli.0000000000000077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Carrascosa, Patricia, Carlos Capuñay, Baronio Mariano, Elba Martín López, Carrascosa Jorge, Mario Borghi, Carlos Sueldo, and Sergio Papier. "Virtual hysteroscopy by multidetector computed tomography." Abdominal Imaging 33, no. 4 (July 10, 2007): 381–87. http://dx.doi.org/10.1007/s00261-007-9270-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Delvecchio, Fernando C., Brian K. Auge, Alon Z. Weizer, Ricardo M. Brizuela, Ari D. Silverstein, Paul K. Pietrow, Joan P. Heneghan, and Glenn M. Preminger. "Computed tomography urography, three-dimensional computed tomography and virtual endoscopy." Current Opinion in Urology 12, no. 2 (March 2002): 137–42. http://dx.doi.org/10.1097/00042307-200203000-00010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Amelina, Inna D., Lev N. Shevkunov, Aleksey M. Karachun, Alexander E. Mikhnin, and Denis V. Nesterov. "Diagnosis and t-staging of gastric cancer: comparison of standard computed tomography and computed-tomographic pneumogastrography." Bulletin of the Russian Military Medical Academy 23, no. 2 (July 12, 2021): 99–106. http://dx.doi.org/10.17816/brmma70384.

Повний текст джерела
Анотація:
The advantages of computed tomographic pneumogastrography with the possibility of three-dimensional visualization and virtual gastroscopy in diagnosing gastric cancer are considered. The study included 479 patients with histologically diagnosed gastric cancer who were treated at the National Medical Research Center of Oncology named after N.N. Petrov from 2011 to 2018. 232 patients received preoperative chemotherapy. All patients underwent surgery: 70 in the volume of endoscopic dissection, 40 proximal subtotal resection, 166 distal subtotal resection, 203 gastrectomy. All patients at the preoperative stage underwent staging computed tomography on a 64-slice X-ray computed tomograph: 208 patients underwent computed tomography according to the standard protocol without targeted preparation of the stomach for the study, 271 patients with targeted preparation of the stomach for the study according to the computed tomographic pneumogastrography protocol. The sensitivity of the computed tomography in assessing the T-stage was assessed by comparison with pathomorphological data. Of the 208 patients who underwent computed tomography according to the standard protocol, a gastric cancer was detected in 111 (53.4%), out of 271 patients who underwent computed tomography pneumogastrography, a gastric cancer was detected in 267 (98.52%), which is a statistically significant difference in comparing computed tomography methods (Pearson, 144.223, df = 1; p 0.001). There are statistically significant differences when comparing computed tomography according to the standard protocol and computed tomographic pneumogastrography in detecting gastric cancer for all tumor categories: T/yT1 8.2 and 94.4% (Pearson, 99.205, df = 1; p 0.001), T/yT2 47.8 and 100% (Pearson, 24.681, df = 1; p 0.001), T/yT3 72.3 and 100% (Pearson, 33.114, df = 1; p 0.001), T/yT4 90.0 and 100% (Pearson, 4.789, df = 1; p = 0.029) respectively. There are also statistically significant differences when comparing the sensitivity of computed tomography according to the standard protocol and computed tomographic pneumogastrography in determining tumor invasion for all tumor categories: T/yT1 0 and 69.4% (Pearson, 67.880, df = 1; p 0.001), T/yT2 26.1 and 71.1% (Pearson, 11.666, df = 1; p 0.001), T/yT3 32.9 and 84.6% (Pearson, 54.900, df = 1; p 0.001), T/yT4 73.3 and 95.7% (Pearson, 7.916, df = 1; p = 0.005) respectively. In general, the sensitivity of the computed tomography according to the standard protocol for determining the T-stage of gastric cancer was 28.4%, computed tomographic pneumogastrography 77.1% (Pearson, 113.505, df = 1; p 0.001). Computed tomographic pneumogastrography with the possibility of three-dimensional visualization and virtual gastroscopy significantly increases the indicators of the effectiveness of diagnosing gastric cancer both early forms (category T1) and with deeper invasion (categories T2T4), demonstrates high sensitivity in determining T/yT-stages.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sato, Masaaki, Kazuhiro Nagayama, Hideki Kuwano, Jun-ichi Nitadori, Masaki Anraku, and Jun Nakajima. "Role of post-mapping computed tomography in virtual-assisted lung mapping." Asian Cardiovascular and Thoracic Annals 25, no. 2 (January 11, 2017): 123–30. http://dx.doi.org/10.1177/0218492316689351.

Повний текст джерела
Анотація:
Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Virtual tomography"

1

Downham, Alexander David. "True 3D Digital Holographic Tomography for Virtual Reality Applications." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1513204001924421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Аврунін, О. Г., L. A. Averyanova, V. M. Golovenko, and O. Sklyar. "E-Learning of Functioning Principles Medical Intrascopy Systems." Thesis, Varna, Bulgaria, 2007. http://openarchive.nure.ua/handle/document/8276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nicolson, Heather Johan. "Exploring the Earth's subsurface with virtual seismic sources and receivers." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5726.

Повний текст джерела
Анотація:
Traditional methods of imaging the Earth’s subsurface using seismic waves require an identifiable, impulsive source of seismic energy, for example an earthquake or explosive source. Naturally occurring, ambient seismic waves form an ever-present source of energy that is conventionally regarded as unusable since it is not impulsive. As such it is generally removed from seismic data and subsequent analysis. A new method known as seismic interferometry can be used to extract useful information about the Earth’s subsurface from the ambient noise wavefield. Consequently, seismic interferometry is an important new tool for exploring areas which are otherwise seismically quiet, such as the British Isles in which there are relatively few strong earthquakes. One of the possible applications of seismic interferometry is the ambient noise tomography method (ANT). ANT is a way of using interferometry to image subsurface seismic velocity variations using seismic (surface) waves extracted from the background ambient vibrations of the Earth. To date, ANT has been used to successfully image the Earth’s crust and upper-mantle on regional and continental scales in many locations and has the power to resolve major geological features such as sedimentary basins and igneous and metamorphic cores. In this thesis I provide a review of seismic interferometry and ANT and apply these methods to image the subsurface of north-west Scotland and the British Isles. I show that the seismic interferometry method works well within the British Isles and illustrate the usefulness of the method in seismically quiet areas by presenting the first surface wave group velocity maps of the Scottish Highlands and across the British Isles using only ambient seismic noise. In the Scottish Highlands, these maps show low velocity anomalies in sedimentary basins such as the Moray Firth and high velocity anomalies in igneous and metamorphic centres such as the Lewisian complex. They also suggest that the Moho shallows from south to north across Scotland, which agrees with previous geophysical studies in the region. Rayleigh wave velocity maps from ambient seismic noise across the British Isles for the upper and mid-crust show low velocities in sedimentary basins such as the Midland Valley, the Irish Sea and the Wessex Basin. High velocity anomalies occur predominantly in areas of igneous and metamorphic rock such as the Scottish Highlands, the Southern Uplands, North-West Wales and Cornwall. In the lower crust/upper mantle, the Rayleigh wave maps show higher velocities in the west and lower velocities in the east, suggesting that the Moho shallows generally from east to west across Britain. The extent of the region of higher velocity correlates well with the locations of British earthquakes, agreeing with previous studies that suggest British seismicity might be influenced by a mantle upwelling beneath the west of the British Isles. Until the work described in Chapter 6 of this thesis was undertaken in 2009, seismic interferometry was concerned with cross-correlating recordings at two receivers due to a surrounding boundary of sources, then stacking the cross-correlations to construct the inter-receiver Green’s function. A key element of seismic wave propagation is that of source-receiver reciprocity i.e. the same wavefield will be recorded if its source and receiver locations and component orientations are reversed. By taking the reciprocal of its usual form, in this thesis I show that the impulsive-source form of interferometry can also be used in the opposite sense: to turn any energy source into a virtual sensor. This new method is demonstrated by turning earthquakes in Alaska and south-west USA into virtual seismometers located beneath the Earth’s surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Malusek, Alexandr. "Calculation of scatter in cone beam CT : Steps towards a virtual tomograph." Doctoral thesis, Linköping : Department of Medical and Health Sciences, Linköping University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kang, Fatima Maria de Angelis. "Análise quantitativa de modelos de prototipagem rápida baseados em dados de tomografia volumétrica, por meio de inspeção de engenharia reversa tridimensional." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/23/23139/tde-27102009-095334/.

Повний текст джерела
Анотація:
O objetivo neste estudo foi avaliar a reprodutibilidade quantitativa dos modelos tridimensionais gerados por meio de imagens de tomografia volumétrica de feixe cônico, obtidos por dois tomógrafos volumétricos NEWTOM 9000 DVT (i- (Quantitative Radiology, Verona, Itália) e i-CAT (Imaging Sciencies Int. Hatfield, Pensilvânia. Estados Unidos da América), submetidos à inspeção de engenharia reversa. Uma mandíbula macerada foi digitalizada por meio do SCANNER 3D VIVID 910, com precisão de 0,01 mm, associado à fotometria digital, sendo utilizado o software GEOMAGIC STUDIO, e assim obteve-se um modelo considerado padrão ouro. Posteriormente realizamos o exame de tomografia volumétrica de feixe cônico, na mesma mandíbula nos dois tomógrafos volumétricos, obtendo-se assim os modelos virtuais tridimensionais. Por meio de um alinhamento das geometrias do padrão ouro com os modelos virtuais resultantes da tomografia do aparelho NEWTOM 9000 DVT e do i-CAT, foram observadas as possíveis discrepâncias. Concluímos que estas alterações encontradas após a análise quantitativa das diversas regiões foram menores nas imagens adquiridas pelo tomógrafo volumétrico de feixe cônico modelo i-CAT, e portanto possibilitam a geração de modelos de prototipagem rápida de melhor qualidade.
The purpose of this study was to evaluate the quantitative reproductability of the 3d models created using CT images. The images used were obtained from two different cone beam tomographs: NEWTOM 9000 DVT (Quantitative Radiology, Verona, Italy) and i-CAT ( Imaging Sciences Int., Hatfield, EUA) and then inspected through reverse engineering processing software. A dry mandible was digitalized using a 3D Scanner VIVID 910 and the GEOMAGIC STUDIO software to obtain a 0,01mm precision model considered to be our gold standard. Two distinct 3D virtual models were then created after submitting the same dry mandible to a cone beam exam on both tomographs (NEWTOM and i-Cat). Possible discrepancies between the 3D models and the gold standard were analyzed through and alignment of their geometries. After evaluating the discrepancies at the different sites of the models, we concluded that the virtual model obtained using the i-Cat tomograph images was more accurate and therefore of greater quality.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chouika, Nabil. "Generalized Parton Distributions and their covariant extension : towards nucleon tomography." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS259/document.

Повний текст джерела
Анотація:
Les Distributions de Partons Généralisées (GPDs) encodent les corrélations entre impulsion longitudinale et position transverse des partons dans les hadrons et permettent d'imager la structure du nucléon en 2+1 dimensions. Elles ont été étudiées théoriquement et expérimentalement pendant deux décennies et une nouvelle ère expérimentale débute actuellement (à Jefferson Lab et COMPASS, mais aussi à l'avenir à un collisionneur électron-ion) pour les extraire avec grande précision. La difficulté est que seul un accès expérimental indirect est possible, à travers divers canaux de diffusion exclusive et les observables associés. Cela implique de prendre nécessairement en compte les nombreuses contraintes théoriques si l'on veut concevoir des modèles fiables pour la phénoménologie. En particulier, deux contraintes cruciales sont les propriétés de "polynomialité" et de "positivité". L'approche de cette thèse consiste à tirer partie des deux propriétés en modélisant d'abord les fonctions d'onde sur le cône de lumière des premiers états de Fock du nucléon, permettant d'obtenir une GPD dans la région appelée DGLAP via overlap où le nombre de partons est conservé, puis l'étendre de manière covariante à la région ERBL, avec une inversion de transformée de Radon. In fine, le but est d'appliquer cette procédure à un modèle de quark-constituant pour GPDs de valence, ce qui permettrait de produire de manière inédite pour ce genre de modèle des résultats à comparer à l'expérience (sur le processus de diffusion Compton profondément virtuelle en l’occurrence). Pour atteindre cette objectif, on utilise la librairie PARTONS sous différentes hypothèses perturbatives
Generalized Parton Distributions (GPDs) encode the correlations between longitudinal momentum and transverse position of partons inside hadrons and can give access to a picture of the nucleon structure in 2+1 dimensions. They have been studied theoretically and experimentally for almost two decades and a new experimental era is starting (at JLab and COMPASS currently, and in the future at an EIC) to extract them. The difficulty is that only an indirect experimental access is so far possible, through different exclusive channels and various observables. Therefore, one has to take into account the many theoretical constraints to be able to produce accurate models and rely on their phenomenology. Two important constraints are called the polynomiality and positivity properties. The approach of this thesis is to make use of both of them by first modeling low Fock states light-front wave-functions, which gives a GPD in the DGLAP region by a parton number conserved overlap, and then covariantly extending this GPD to the ERBL region, through an inverse radon transform. In fine, the goal is to apply this on a constituent quark-like model for valence GPDs, which would allow to produce a phenomenological output (on DVCS data for instance) from this kind of models, which was impossible before. We make use of the versatile PARTONS framework to achieve this under various perturbative QCD assumptions
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Steuwe, Andrea [Verfasser], and Hans-Ulrich [Akademischer Betreuer] Kauczor. "Spatially resolved quantification of radiation exposure associated with computed tomography examinations – Towards the development of virtual dosimetry / Andrea Steuwe ; Betreuer: Hans-Ulrich Kauczor." Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/1193347297/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schanandore, James. "Examination of Age at Death Methods and the Effects on Estimation Accuracy when Applied to Computed Tomography Scans and Virtual Models of Mummies." Diss., North Dakota State University, 2015. http://hdl.handle.net/10365/24808.

Повний текст джерела
Анотація:
Three-dimensional (3D) medical imaging provides a method to non-invasively examine the sub-surface structures of a mummified body, particularly the skeleton. The unique nature of both natural and anthropogenic mummification processes causes inconsistencies for estimating accurate age at death for a particular mummy or group of mummies. These inaccuracies are compounded when age at death methods are used in relation to 3D virtual models. There is a need for the examination of methods being used in mummy case studies and how they are being applied to the 3D virtual models. My research encompassed three studies that addressed the relationship of and the variability when estimating age at death of mummies using radiological imaging. In one study, 146 published case studies were examined for which methods were used to estimate age at death. This study found that articles often provided an assessment of age, but many failed to specify the methods used to calculate the estimated age, and if specified methods were limited to certain areas of the body. In a second study, a cohort of age at death methods was applied to a sample of 17 adult mummies and it was determined that some methods do not transpose well and consequently provided inaccurate age at death estimations when applied to 3D virtual models. Modifications to traditional osteological approaches for age estimation were sometimes necessary due to the presence of soft tissue and post-mortem changes to the body. This study proposes that more methods are needed that utilize the tools available for radiological images in order to limit the variability of transposing a traditional age at death method to virtual 3D models. In the third study, the rim height of the auricular surface was measured using computed tomography scans of 97 living or recently deceased individuals’. These measurements targeted areas around the edge of the surface, for example the height of the apex above the surface. The rim height above the surface produced models that can accurately predict age at death.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rosa, Vera Lúcia Mestre. "Cefalostato virtual-posicionamento inicial para a padronização na marcação de pontos craniométricos em imagens obtidas por tomografia computadorizada, para uso em cefalometria." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/23/23139/tde-19122009-122434/.

Повний текст джерела
Анотація:
Objetivo: O desenvolvimento da tecnologia em diagnóstico odontológico por imagem através dos Tomógrafos Computadorizados por Feixe Cônico, tornou possível e acessível a avaliação cefalométrica através de reconstruções volumétricas do crânio. Parâmetros baseados em evidências científicas são necessários para implementar o seu uso. Alguns parâmetros utilizados na cefalometria convencional (bidimensional) deverão ser esquecidos, outros deverão ser adaptados, outros, ainda, deverão ser criados. Propomos aqui a criação de um Cefalostato Virtual para orientação do crânio em TC, com a utilização de pontos intracranianos, que são mais estáveis. Também propomos a criação do ponto TS e da linha TS-Pg em substituição ao ponto S e ao eixo Y de crescimento de Downs, respectivamente. Além disso, propomos a linha Ba-Op como referência para casos de assimetria faciais onde não é possível a utilização do plano Horizontal de Frankfurt, em casos, por exemplo, de síndromes que afetem os pontos de referências mais externos. Métodos: 49 crânios pertencentes ao do Museu de Anatomia UNIFESP, foram escaneados em um tomógrafo computadorizado por feixe cônico (TCFC), na clínica ISOOrthographic, São Paulo. As pontuações foram realizadas em dois momentos, com espaçamento de uma semana. Foram calculadas estatisticamente medidas-resumo (média, quartis, mínimo, máximo e desvio padrão). Foram calculadas também as correlações intraclasse e correlações de Pearson entre o Eixo Y (S-Gn) e linha entre os pontos TS e Pg. Resultados: Apesar de se observar uma baixa reprodutibilidade nas coordenadas, para os pontos CE, Pg e Gn, foi observada alta correlação entre as medidas angulares em questão. Para descrever a inclinação do Eixo Y em função da inclinação da Linha TS e Pg adotou-se um modelo de regressão linear simples descrito pela equação abaixo: Ang Sö- Gn = 0,989 Ang TS Pgi i Conclusões: o uso do Cefalostato Virtual na orientação de Crânios em Tomografia Computadorizada é factível e favorece a reprodução do posicionamento craniano; apesar da baixa reprodutibilidade intra observador dos pontos CE, Pg e Gn, novos critérios tridimensionais na definição destes pontos poderiam aumentar a precisão na sua localização; a alta reprodutibilidade intra observador para os pontos Op, TS e N, sugere que os critérios anatômicos próprios das estruturas estudadas favorecem a sua determinação; o ponto TS apresentou maior reprodutibilidade do que o ponto S, embora esta diferença não tenha sido estatisticamente significante, podendo-se substituir o ponto S pelo TS em estudos futuros; existe alta correlação entre a linha entre os pontos TS e Pg e o Eixo Y; a avaliação do comportamento da inclinação da linha orbitomeática (HF) com relação à linha Básio-Opístio sugere que na presença de alterações cranianas este relacionamento propicie auxílio no diagnóstico das alterações craniofaciais.
Objective: The development of new technology in dental diagnosis by cone beam CT (CBCT) image, made possible and accessible the realization of cephalometric evaluation through volumetric reconstructions of the skull. Scientific parameters with evidence-based are needed to implement its use. Some parameters used in conventional cephalometry (2D) maybe need to be forgotten, others should be adapted, and others still to be created. In this research we propose to create a Virtual Cephalostat orientation of the skull in CT, with the intracranial landmarks, because they are more stable. We propose the creation of landmark TS (Tubercle Sella) and the TS-Pg line to replace the landmark S (Sella) and the Y-axis of growth (Downs), respectively. Furthermore, we propose to use the Basion-Opistion line as a reference for cases of craniofacial asymmetry where is not possible to use the Frankfurt horizontal plane, as in some cases of syndromes that affects the most external landmarks. Methods: 49 skulls of Anatomy Museum of UNIFESP Federal University of São Paulo, were scanned in a CBCT. The analyses were performed in 2 stages, within 1-week space. Statistics measurements were calculated (mean, quartiles, minimum, maximum and standard deviation). We also calculated the intraclass correlations (ICC) and the Pearson correlations between the Y axis (S-Gn) and the line between landmarks TS-Pg. Results: Even if there is a low reproducibility in the coordinates for landmarks EC (Ethmoidal Crest), Pg and Gn it was observed a high correlation between the angular measures in question. To describe the inclination of the Y axis according to the slope of the line adopted TS and Pg a simple linear regression model is used, showed by the equation bellow: Ang Sö- Gn = 0,989 Ang TS Pgi i Conclusions: The use of the Virtual Cephalostat in orientation of skulls using CBCT is feasible and facilitates the reproduction of the skull position, despite the low intra observer reproducibility of landmarks EC, Pg and Gn, new 3D criteria in the definition of these landmarks could increase the precision in its location. The high intra observer reproducibility at the landmarks Op, N and TS, suggests that the anatomical criteria themselves promote their reliability; The TS landmark showed a higher reproducibility than the S landmark, even though the difference was not statistically significant, and it should be replaced by the landmark TS in future studies. There is a high correlation between the TS - Pg line and Y-axis. The relationship between the slope of the HF plane and Ba -Op line suggests that in the presence of the alteration of morphology in craniofacial structure, this relationship offer help in the diagnosis of craniofacial changes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Töpperwien, Mareike [Verfasser], Tim [Akademischer Betreuer] Salditt, Tim [Gutachter] Salditt, and Florian [Gutachter] Rehfeldt. "3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography / Mareike Töpperwien ; Gutachter: Tim Salditt, Florian Rehfeldt ; Betreuer: Tim Salditt." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://d-nb.info/1162339675/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Virtual tomography"

1

M, Galdino Gregory, ed. Virtual colonoscopy. Philadelphia: Lippincott Williams & Wilkins, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

H, Kim David, ed. CT colonography: Principles and practice of virtual colonoscopy. Philadelphia: Elsevier/Saunders, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1961-, Yoshida Hiroyuki, Cai Wenli, and International Conference on Medical Image Computing and Computer-Assisted Intervention (13th : 2010 : Beijing, China), eds. Virtual colonoscopy and abdominal imaging: Computational challenges and clinical opportunities : second international workshop held in conjunction with MICCAI 2010, Beijing, China, September 20, 2010, revised selected papers. Heidelberg: Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

3D Computed Tomography Virtual Intravascular Endoscopy. Nova Science Publishers Inc, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yee, Judy. Virtual Colonoscopy. Lippincott Williams & Wilkins, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

H, Dachman Abraham, ed. Atlas of virtual colonoscopy. New York: Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Atlas of Virtual Colonoscopy. Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

(Foreword), A. L. Baert, Philippe Lefere (Editor), and Stefaan Gryspeerdt (Editor), eds. Virtual Colonoscopy: A Practical Guide (Medical Radiology / Diagnostic Imaging). Springer, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Virtual Colonoscopy A Practical Guide. Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

(Foreword), A. L: Baert, A. J. Aschoff (Contributor), C. I. Bartram (Contributor), T. R. Fleiter (Contributor), S. Gottschalk (Contributor), R. Klingebiel (Contributor), N. Meiri (Contributor), et al., eds. Virtual Endoscopy and Related 3D Techniques (Medical Radiology / Diagnostic Imaging). Springer, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Virtual tomography"

1

Capuñay, Carlos, and Patricia Carrascosa. "Computed Tomography Virtual Hysterosalpingography." In Clinical Atlas of CT Virtual Hysterosalpingography, 1–6. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66207-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Carrascosa, Patricia, Carlos Capuñay, Carlos E. Sueldo, and Juan Mariano Baronio. "Technical Aspects of Multislice Computed Tomography." In CT Virtual Hysterosalpingography, 3–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07560-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mang, Thomas, Patricia Carrascosa, Philippe Lefere, Tanya Chawla, Mehdi Cadi, Patrick Rogalla, Martina Morrin, et al. "Global Implementation of Computed Tomography Colonography." In Atlas of Virtual Colonoscopy, 9–53. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5852-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Prajapati, Suresh I., David R. Rodriguez, and Charles Keller. "Microscopic Computed Tomography-Based Virtual Histology of Embryos." In Methods in Molecular Biology, 291–96. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-60327-292-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bevacqua, Martina, Lorenzo Crocco, Loreto Di Donato, Tommaso Isernia, and Roberta Palmeri. "Virtual Experiments and Compressive Sensing for Subsurface Microwave Tomography." In Compressive Sensing of Earth Observations, 177–98. Boca Raton, FL : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315154626-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Orlowska, Marta, Rafal Jozwiak, and Piotr Regulski. "Virtual Tooth Extraction from Cone Beam Computed Tomography Scans." In Recent Developments and Achievements in Biocybernetics and Biomedical Engineering, 275–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66905-2_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gluecker, T., P. Jornod, S. Proietti, W. Keller, A. Blum, G. Dorta, R. Meuli, and P. Schnyder. "CT Colonography (Virtual Colonoscopy) with Multidetector Computed Tomography — Preliminary Results." In Multislice CT, 77–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-59441-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Marques da Silva, A. M., E. C. Hoffmann, E. G. Link, A. B. Trombetta, F. Bacim, and J. A. Borges. "Three-dimensional virtual preoperative implant planning P3Dental using computed tomography images." In IFMBE Proceedings, 916–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wildermuth, Simon, Ninoslav Teodorovic, Paul R. Hilfiker, and Borut Marincek. "Three-Dimensional Imaging and Virtual Reality Applications of Multislice Computed Tomography." In Multislice CT: A Practical Guide, 37–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59450-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shahidi, R., V. Argiro, S. Napel, L. Gray, H. P. McAdams, G. D. Rubin, C. F. Beaulieu, R. B. Jeffrey, and A. Johnson. "Assessment of several virtual endoscopy techniques using computed tomography and Perspective Volume Rendering." In Lecture Notes in Computer Science, 521–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0046993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Virtual tomography"

1

Brackenhoff, Joeri, Joost van der Neut, Giovanni Meles, Patrick Marty, and Christian Boehm. "Virtual ultrasound transducers in the human brain." In Ultrasonic Imaging and Tomography, edited by Nicole V. Ruiter and Nick Bottenus. SPIE, 2022. http://dx.doi.org/10.1117/12.2611779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Wenjing, Yushi Tsubota, Atsuro Suzuki, Kazuhiro Yamanaka, Takahide Terada, Kenichi Kawabata, Hiroko Yamashita, Fumi Kato, Mutsumi Nishida, and Megumi Satoh. "High SNR emission method with virtual point source in ultrasound computed tomography." In Ultrasonic Imaging and Tomography, edited by Nicole V. Ruiter and Brett C. Byram. SPIE, 2019. http://dx.doi.org/10.1117/12.2506954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Oida, Daisuke, Kensuke Oikawa, Tai-Ang Wang, Meng-Tsan Tsai, Shuichi Makita, and Yoshiaki Yasuno. "Virtual multi-directional optical coherence tomography." In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV, edited by Joseph A. Izatt and James G. Fujimoto. SPIE, 2020. http://dx.doi.org/10.1117/12.2548902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Fu, Umberto Villa, Seonyeong Park, Shenghua He, and Mark A. Anastasio. "A framework for ultrasound computed tomography virtual imaging trials that employs anatomically realistic numerical breast phantoms." In Ultrasonic Imaging and Tomography, edited by Nicole V. Ruiter and Brett C. Byram. SPIE, 2021. http://dx.doi.org/10.1117/12.2582260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ducros, N., A. Bassi, C. D'Andrea, G. Valentini, M. Schweiger, and S. Arridge. "Virtual source patterns for fluorescence tomography." In 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012). IEEE, 2012. http://dx.doi.org/10.1109/isbi.2012.6235489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bacca-Moreno, J. L., and R. Enriquez-Caldera. "Virtual instrument for electrical capacitance tomography." In 2013 23rd International Conference on Electronics, Communications and Computing (CONIELECOMP). IEEE, 2013. http://dx.doi.org/10.1109/conielecomp.2013.6525758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Valentini, G., N. Ducros, A. Bassi, C. D’Andrea, M. Schweiger, and S. Arridge. "Virtual source patterns for fluorescence tomography." In Biomedical Optics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/biomed.2012.bw4a.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Allegra, D., E. Ciliberto, P. Ciliberto, F. L. M. Milotta, G. Petrillo, F. Stanco, and C. Trombato. "Virtual unrolling using X-ray computed tomography." In 2015 23rd European Signal Processing Conference (EUSIPCO). IEEE, 2015. http://dx.doi.org/10.1109/eusipco.2015.7362908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Xinmai, Meng-Lin Li, and Lihong V. Wang. "Photoacoustic tomography with a virtual point detector." In Biomedical Optics (BiOS) 2007, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2007. http://dx.doi.org/10.1117/12.698367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Winetraub, Yonatan, Edwin Yuan, Itamar Terem, Caroline Yu, Maiya Mao, Megan Megan, Jacqueline Yu, et al. "Non-invasive virtual biopsy using optical coherence tomography." In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV, edited by Joseph A. Izatt and James G. Fujimoto. SPIE, 2021. http://dx.doi.org/10.1117/12.2583272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії