Дисертації з теми "Viral tracings"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-16 дисертацій для дослідження на тему "Viral tracings".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Beier, Kevin. "Viral Tracing of Neuronal Circuitry." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10241.
Повний текст джерелаBaba, Aïssa Hind. "Anatomie et physiologie des voies de sortie du cervelet chez le rongeur." Thesis, Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLE018.
Повний текст джерелаAccurate sensory acquisition and perception are key features to survival. Though many parameters underlying the processing of sensory information is known, several aspects are still poorly understood, such as the exact contribution of each cerebral structure. Here, we analyze the cerebellar contribution to sensory processing in the mouse whisker system. We identify an anatomical and physiological disynaptic projection from the cerebellar nuclei to the primary sensory cortex, involving notably by the posterior medial thalamus (POm). The modulation of this strong driver-like cerebello-thalamic projection induces an impairment in a fine sensory discrimination task, and its co-activation along with peripheral inputs induces the increased recruitment of POm projections to layer I of sensory cortex. Taken together, our results show that the cerebellum targets non-motor cortical areas and can directly modulate sensory processing through a higher order thalamic nucleus, the POm
Haberl, Matthias. "Studying Neuronal Connectivity in the Mouse Brain in Normal Condition and Fragile X Syndrome." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0480/document.
Повний текст джерелаThe goal of this work was the investigation of the anatomical and functionalconnectivity of neuronal networks and the development of novel tools for thispurpose. Since the latter aspect is a major focus of current neuroscience, we firstsought a novel viral tracer enabling sparse neuronal reconstruction and neuronclassification. We then applied this and other techniques to probe neuronalconnectivity defects in Fragile X Syndrome.In the first part we discussed the merits and drawbacks of a emergingtechnique using a new type of viral vector that allows in a unique manner mapping ofthe input of a given brain area.In the second part we developed, departing from this viral vector, a newvariant to facilitate the tracing and reconstructing of morphologic features of neurons.We showed the strength of this anterograde variant of the recombinant glycoproteindeletedrabies virus for computational reconstruction of all key morphologicalfeatures of neurons: dendrites, spines, long-ranging axons throughout the brain andbouton terminals.In the third part we examined alterations in the wiring of brain structures inthe Fragile X Syndrome (FXS). FXS is the most common inherited mental retardationand most frequent genetic form of autism, leading to learning and memory deficits,repetitive behavior, seizures and hypersensitivity to sensory (e.g. visual) stimuli. Oneof the eminent hypotheses in the autism field assumes a local hyper- connectivityphenotype but hypo-connectivity for long-ranging connections. To test this hypothesisin a FXS mouse model we used magnetic resonance imaging, to scan the entire brainand measure the anatomical and functional connectivity. This allowed us to identifyconnectivity alterations in several areas that we further explored using viral tracers.Using retrograde rabies virus to count the number of neurons projecting to such areaswe confirmed an altered input connectivity to the primary visual cortex, which couldcontribute to the altered visual information processing. We discovered an overallreduced anatomical and functional long-range connectivity between several brainareas, identifying FXS as pathology of neuronal connectivity, which might explain thedifficulties several rescue strategies aiming at molecular targets are currently facing
Keefe, Kathleen Mary. "In Vivo Visualization of Neural Pathways in the Rat Spinal Cord Using Viral Tracing." Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/521830.
Повний текст джерелаPh.D.
Much of our understanding of the fascinating complexity of neuronal circuits comes from anatomical tracing studies that use dyes or fluorescent markers to highlight pathways that run through the brain and spinal cord. Viral vectors have been utilized by many previous groups as tools to highlight pathways or deliver transgenes to neuronal populations to stimulate growth after injury. In a series of studies, we explore anterograde and retrograde tracing with viral vectors to trace spinal pathways and explore their contribution to behavior in a rodent model. In a separate study, we explore the effect of stimulating intrinsic growth programs on regrowth of corticospinal tract (CST) axons after contusive injury. In the first study, we use self-complimentary adeno associated viral (scAAV) vectors to trace long descending tracts in the spinal cord. We demonstrate clear and bright labeling of cortico-, rubro- and reticulospinal pathways without the need for IH, and show that scAAV vectors transduce more efficiently than single stranded AAV (ssAAV) in neurons of both injured and uninjured animals. This study demonstrates the usefulness of these tracers in highlighting pathways descending from the brain. Retrograde tracing is also a key facet of neuroanatomical studies involving long distance projection neurons. In the next study, we highlight a lentivirus that permits highly efficient retrograde transport (HiRet) from synaptic terminals within the cervical and lumbar enlargements of the spinal cord. By injecting HiRet, we can clearly identify supraspinal and propriospinal circuits innervating MN pools relating to forelimb and hindlimb function. We observed robust labeling of propriospinal neurons, including high fidelity details of dendritic arbors and axon terminals seldom seen with chemical tracers. In addition, we examine changes in interneuronal circuits occurring after a thoracic contusion, highlighting populations that potentially contribute to spontaneous behavioral recovery in this lesion model. In a related study, we use a modified version of HiRet as part of a multi-vector system that synaptically silences neurons to explore the contribution of the rubrospinal tract (RST) and CST to forelimb motor behavior in an intact rat. This system employs Tetanus toxin at the neuronal synapse to prevent release of neurotransmitter via cleavage of vesicle docking proteins, effectively preventing the propagation of action potentials in those neurons. We find that shutdown of the RST has no effect on gross forelimb motor function in the intact state, and that shutdown of a small population of CST neurons in the FMC has a modest effect on grip strength. These studies demonstrate that the HiRet lentivirus is a unique tool for examining neuronal circuitry and its contribution to function. In the final study, we explore stimulation of the Phosphoinositide 3-kinase/Rac-alpha serine/threonine Protein Kinase (PI3K/AKT) growth pathway by antagonizing phosphatase and tensin homolog (PTEN), a major inhibitor, to encourage growth of CST axons after a contusive injury. We use systemic infusions of four distinct PTEN antagonist peptides (PAPs) targeted at different sites of the PTEN protein. We find robust axonal growth and sprouting caudal to a contusion in a subset of animals infused with PAPs targeted to the PTEN enzymatic pocket, including typical morphology of growing axons. Serotonergic fiber growth was unaffected by peptide infusion and did not correlate with CST fiber density. Though some variability was seen in the amount of growth within our animal groups, we find these PTEN antagonist peptides a promising and clinically relevant tool to encourage CST sprouting, and a potentially useful addition to therapies using combinatory strategies to enhance growth. These studies demonstrate that viral tracing is a powerful tool for mapping spinal pathways and elucidating their ability to reform spinal circuits after injury. Viral vectors can be used in both anterograde and retrograde tracing studies to highlight intricacies of neuronal cell bodies, axons and dendritic arbors with a high degree of fidelity. In the injured state, these tools can help identify pathways that contribute to spontaneous recovery of function by highlighting those that reform circuits past an injury site. In the uninjured state, these vectors can contain neuronal silencing methods that help define the contribution of specific pathways to behavior.
Temple University--Theses
DeBlander, Leah. "Analysis of active neural circuits and synaptic mechanisms of memory." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23906.
Повний текст джерела10000-01-01
Tanabe, Soshi. "Developing novel techniques for primate neural network analyses by retrograde gene transfer with viral vectors." Kyoto University, 2020. http://hdl.handle.net/2433/253133.
Повний текст джерелаLiu, Yang. "Neural Crosstalk Between Sympathetic Nervous System and Sensory Circuits to Brown Adipose Tissue." Digital Archive @ GSU, 2013. http://digitalarchive.gsu.edu/biology_theses/44.
Повний текст джерелаPrevosto, Vincent. "Sensorimotor encoding in the primate posterior parietal cortex : electrophysiological and retrograde transneuronal tracing studies." Paris 6, 2008. http://www.theses.fr/2008PA066225.
Повний текст джерелаKuramoto, Eriko. "Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron tracing study using viral vectors." Kyoto University, 2009. http://hdl.handle.net/2433/124305.
Повний текст джерелаNakamura, Hisashi. "Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single neuron tracing study with viral vectors." Kyoto University, 2016. http://hdl.handle.net/2433/216156.
Повний текст джерелаKyoto University (京都大学)
0048
新制・論文博士
博士(医学)
乙第13040号
論医博第2115号
新制||医||1017(附属図書館)
33032
京都大学大学院医学研究科医学専攻
(主査)教授 渡邉 大, 教授 影山 龍一郎, 教授 髙橋 良輔
学位規則第4条第2項該当
Pavlopoulos, Alexandros Ikaros. "Characterization of the synaptic connectivity patterns of genetically defined neuron types in circuits that regulate dopamine and serotonin." Thesis, KTH, Skolan för teknik och hälsa (STH), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154201.
Повний текст джерелаFrezel, Noémie. "Modulation du traitement sensoriel par des projections descendantes directes du cortex somatosensoriel vers la moelle épinière." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE018.
Повний текст джерелаNoxious stimuli are sensed by specialized sensory neurons of the peripheral nervous system called nociceptors. The nociceptive information is then processed in the spinal cord dorsal horn, which contains local interneurons and projection neurons that send axons to the brain. Supraspinal areas in turn project downwards to the spinal cord where they contribute to the gating of nociceptive signals. Exaggerated and abnormal pain sensitivity is accompanied by alterations in spinal processing and descending pain control systems. The connection between the somatosensory cortex in particular and the spinal cord is conserved in mammals, but very little is known about its role in modulating spinal sensory processing. A major challenge of studying neuronal circuits is to specifically label and target defined groups or subgroups of neurons. Classical approaches include targeting of genetically defined neuronal populations based on the expression of a marker gene. However, this is not always sufficient to define functionally distinct groups of neurons. Here, we describe and used genetic and viral tageting strategies based on the connectivity pattern of the neurons as well as the expression of one or two marker genes. In particular, we used a combination of transgenic mouse lines and intraspinal and cortical injections of recombinant viral vectors to identify and target specific neurons in the cortex and lumbar spinal cord. We identified a population of pyramidal neurons in the somatosensory cortex that project directly to the spinal dorsal horn (S1-CST neurons). These neurons make direct contacts onto c-maf expressing interneurons in the deep dorsal horn which also receive direct inputs from low threshold mechanosensory primary afferents. Additionnally, pharmacogenetic manipulation of c-maf neurons led to altered processing of mechanical stimuli. These results identify two elements of a circuit that integrates descending inputs from the cortex with peripheral sensory signals and contributes to the modulation of somatosensory perception
Noftz, William Andrew. "Cholinergic Projections to the Inferior Colliculus." Kent State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1598536937354225.
Повний текст джерелаHerent, Coralie. "Respiratory Adaption to Running Exercise : A Behavioral and Neuronal Circuits Study in Mice Absent Phasing of Respiratory and Locomotor Rhythms in Running Mice Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons Afadin Signaling at the Spinal Neuroepithelium Regulates Central Canal Formation and Gait Selection." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL001.
Повний текст джерелаDuring running, ventilation increases to match the augmented energetic demand. Yet the presumed neuronal substrates for this running hyperpnea have remained elusive. To fill this gap, we have, in mice, examined the interactions between i) limb movements and respiratory cycles, and ii) locomotor and respiratory neural networks. First, by combining electromyographic recordings (EMG) of the diaphragm with limb video-tracking in running mice, we show that, for a wide range of trotting speeds on a treadmill, breathing rate increases to a fixed value, irrespective of running speeds. Importantly, breaths are never temporally synchronized to strides, highlighting that exercise hyperpnea can operate without phasic signals from limb sensory feedbacks. We next sought to identify candidate trigger neurons in the locomotor central network, and their partners in respiratory centers. Combining EMG recordings, viral tracing, and activity interference tools, we first show that the prime supraspinal center for locomotor initiation (the mesencephalic locomotor region, MLR) can upregulate breathing during, and even before, running. Indeed, the MLR contacts directly and modulates the main inspiratory generator, the preBötzinger complex. We show that the lumbar locomotor circuits also have an excitatory action onto respiratory activity, but that this ascending drive targets another essential respiratory group, the retrotrapezoid nucleus. This work highlights the multifunctional nature of locomotor command and executive centers, and points to multiple neuronal pathways capable of upregulating breathing during, or possibly even prior to, running
Rasteiro, Ana Beatriz de Almeida. "Alveolar Macrophages in Pulmonary Neuro-immune Communication." Master's thesis, 2019. http://hdl.handle.net/10362/89614.
Повний текст джерелаCarvalho, Daniela Brum de. "Organization of the precise connectivity between mouse basomedial amygdala and insular cortex." Master's thesis, 2018. http://hdl.handle.net/10316/86148.
Повний текст джерелаEstudos recentes têm indicado que o córtex da insula (IC) é uma região cerebral com um papel preponderante no processamento de emoções, incluindo medo e ansiedade. Acredita-se que esta e outras funções, tais como aprendizagem de sinais que transmitem segurança, previsão de risco e antecipação, são executadas juntamente com a amígdala, uma área que, tal como o IC, se encontra também desregulada em distúrbios de ansiedade. Esta hipótese é também suportada por evidências de estudos convencionais de identificação neuronal, efetuados maioritariamente em primatas não humanos e ratos, que mostram uma vasta conexão anatómica entre o IC e a amígdala. No entanto, uma vez que estes são desprovidos de especificidade quanto ao tipo celular e capacidade de determinar quais os neurónios que comunicam diretamente entre si, a conectividade pormenorizada a um nível celular entre o IC e a amígdala é ainda desconhecida.Considerando o papel do núcleo basomedial da amígdala (BM) na regulação da ansiedade, este estudo teve como objetivo elucidar a arquitetura anatómica detalhada entre o IC e o BM em murganhos, usando a técnica de identificação neuronal mono-trans-sináptica baseada no transporte viral retrógrado. Devido à especificidade do método quanto ao tipo celular e à restrição da dispersão do vírus da raiva, esta estratégia permitiu-nos identificar vias aferentes provenientes de diferentes sub-regiões do IC que comunicam com nerónios excitatórios pós-sinápticos nas porções anterior e posterior do BM (BMA e BMP, respetivamente). Observou-se que a maioria das vias que comunicam com o BM são provenientes da sub-região agranular do IC, particularmente da parte ventral (AIV), e que o BMA e o BMP também recebem fortes sinais provenientes das porções anterior e posterior da sub-região agranular do IC, respetivamente.No decorrer da nossa investigação usando uma técnica de identificação neuronal baseada num transporte viral anterógrado também observámos que neurónios excitatórios das porções anterior e média do IC comunicam especialmente com as partes anterior e média de diversos núcleos da amígdala, incluindo o BM. Em particular, verificámos que a porção anterior da insula projeta especificamente para os núcleos basolateral (BLA) e lateral (La) da amígdala enquanto que a parte média da insula envia fibras para uma variedade de núcleos, incluindo o BLA, LA e o BMA, o qual não constituí o principal alvo dessa porção do IC. Tendo em consideração estes resultados nós propomos que: neurónios excitatórios da parte média da insula provavelmente estabelecem conexões anatómicas com neurónios excitatórios pós-sinápticos no BMA; a porção média da insula poderá apresentar traços de conectividade semelhantes à porção anterior e que a conectividade entre o IC e a amígdala poderá seguir um arranjo antero-posterior. Contudo, estudos futuros, como por exemplo efetuar a identificação dos neurónios a partir da porção posterior do IC, são ainda necessários para providenciar uma visão completa da arquitetura anatómica entre o IC e amígdala, e assim, confirmar as nossas hipóteses.
The insular cortex (IC) has been recently considered to have an important role in processing emotional feelings, including fear and anxiety. This and other functions, such as safety learning, risk prediction and anticipation, are believed to be played in concert with amygdala, a brain region that, along with IC, is also dysregulated in anxiety disorders. This hypothesis is also supported by evidence from conventional tracing studies, performed mostly in non-human primates and rats, showing wide reciprocal anatomical connections between IC and amygdala. However, as they lack cell-type specificity and the ability to trace direct synaptic connections, the precise connectivity at cellular level between the IC and amygdala is currently unknown.Since the basomedial amygdala (BM) has also been implicated in anxiety regulation, in this work, we aim to unveil the detailed architecture of connections between the IC and the BM in mice by using the mono trans-synaptic retrograde viral tracing technique. By taking advantage of the cell-type specificity and limited spread of modern rabies viral tracing strategies we identified inputs from different subregions of IC to excitatory post-synaptic neurons in the anterior and posterior part of the basomedial amygdala (BMA and BMP, respectively). We observed that most contributions to BM are from the agranular insular cortex, particularly from the ventral portion (AIV) and that BMA and BMP also receive strong inputs from the most anterior and posterior parts of the agranular insula, respectively.In the course of our investigation, by using an anterograde viral tracing methodology, we also found that excitatory neurons from the anterior and middle parts of IC establish connections particularly with the anterior and middle portions of diverse amygdaloid nuclei, including the BM. More precisely, we found that the anterior insula specifically projects to the basolateral (BLA) and lateral nuclei (La) of amygdala whereas the middle part sent fibers to a variety of nuclei, including BLA, La and BMA which turned not to be the main target of this region. Based on these findings we postulated that: excitatory neurons from the middle insula may establish connections with excitatory post-synaptic neurons in the BMA; the middle insula might present some anterior insular connectivity features and that IC-amygdala connectivity may follow an anterior-posterior arrangement. Nevertheless, further experiments, such as tracing from the posterior part of IC, are still required to provide a complete view on the precise architecture between IC and amygdala and, thus, confirm our latter hypothesis.