Добірка наукової літератури з теми "Vehicles, Military Hydraulic drive Computer simulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Vehicles, Military Hydraulic drive Computer simulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Vehicles, Military Hydraulic drive Computer simulation"

1

Zhu, Chenhui, Hongmei Zhang, Wanzhang Wang, Kang Li, and Wanru Liu. "Robust control of hydraulic tracked vehicle drive system based on quantitative feedback theory." International Journal of Distributed Sensor Networks 16, no. 2 (February 2020): 155014772090783. http://dx.doi.org/10.1177/1550147720907832.

Повний текст джерела
Анотація:
To improve the control precision of the drive system of hydraulic tracked vehicles, we established a mathematical model of the drive system based on the analysis of structural characteristics of the high-clearance hydraulic tracked vehicles and the dual-pump dual-motor drive system and developed a control strategy based on the quantitative feedback theory. First, the mutual independence of the two motor channels was achieved through channel decoupling. Then, the loop-shaping controller and the pre-filter were designed for the two channels. The result of a simulation experiment indicates that the proposed control method is very effective in suppressing external uncertainties and smoothening the speed-switching process of the hydraulic motor. Finally, an hydraulic tracked vehicle steering experimental test was carried out. The results show that under two different steering modes, the maximum standard deviation of the output speeds of the inner and outer motors of the hydraulic tracked vehicle is only 0.42, which meets the performance requirement on the hydraulic motor speed. The average steering track radii of the geometric centers of the inner and outer tracks are 1.828 and 0.033 m, respectively, and the relative errors are 1.56% and 3.19%, respectively. This demonstrates that the proposed control method achieves satisfactory results in the robust control of the hydraulic tracked vehicle drive system. It provides some references for the future control research of the hydraulic servo drive system of the high-clearance hydraulic tracked vehicles.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sun, Yue, Hongxin Zhang, and Jian Yang. "The Structure Principle and Dynamic Characteristics of Mechanical-Electric-Hydraulic Dynamic Coupling Drive System and Its Application in Electric Vehicle." Electronics 11, no. 10 (May 18, 2022): 1601. http://dx.doi.org/10.3390/electronics11101601.

Повний текст джерела
Анотація:
To solve the problem of the low recovery rate of braking energy and the short driving range of electric vehicles, a novel mechanical-electric-hydraulic dynamic coupling drive system (MEH-DCDS) is proposed in this article. MEH-DCDS is a new power integration device that allows electric, mechanical, and hydraulic energy to be converted mutually. It comprises a swash plate plunger pump/motor and a permanent magnet synchronous motor. This article explains the structure and working principles of MEH-DCDS. We describe the dynamic characteristics of MEH-DCDS and analyze the pump and hydraulic motor in the MEH-DCDS hydraulic module. The simulation results show that the flow variation of the MEH-DCDS hydraulic module accords with the design concept of MEH-DCDS, and the pressure variation of high and low pressure accumulators also accords with the theoretical situation. The energy flow of Mechanical-Electric-Hydraulic Power Coupling Electric Vehicle (MEHPC-EV) under different working modes is expounded, and the mathematical model of its key components is established. Based on AMESim and Simulink, the article establishes a vehicle simulation dynamic model. The dynamic performance of MEHPC-EV in UDDS is analyzed by co-simulation. The simulation results show that the application of MEH-DCDS in electric vehicles is feasible. MEHPC-EV reduced battery energy consumption by 26.18% compared to EV. The research in this paper verifies the accuracy and superiority of the system, which has a significant reference value for the development and study of electric vehicles in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Han, Jiangyi, Fan Wang, and Yuhang Wang. "A Control Method for the Differential Steering of Tracked Vehicles Driven Independently by a Dual Hydraulic Motor." Applied Sciences 12, no. 13 (June 22, 2022): 6355. http://dx.doi.org/10.3390/app12136355.

Повний текст джерела
Анотація:
It is well known that tracked vehicles can adapt well to all kinds of terrain. However, the safety of tracked vehicles should be considered during steering on sloped terrain. This paper focuses on the differential steering control of tracked vehicles independently driven by a hydraulic motor. Firstly, the dynamic model of hydrostatic drive system was built and the kinematics and dynamics of differential steering driving were analyzed theoretically. Secondly, in order to prevent rollover of the tracked vehicle, the method of vehicle speed constraint was proposed. The constraint conditions of vehicle speed and steering angular velocity were analyzed under different slope conditions. Thirdly, based on the analysis results, differential steering control rules for tracked vehicles were formulated. To verify the effectiveness of the control rules, the models of vehicle driving dynamics and Fuzzy PID control simulation were established in MATLAB/Simulink. Longitudinal steering simulation was carried out on a slope (0°, 30°), and an analysis of the simulation of lateral steering along the contour line was carried out. The simulation results showed that this steering control strategy was able to automatically adjust the target vehicle speed to avoid rollover while the driver was inputting steering signals.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Yihui, Tiezhu Zhang, Hongxin Zhang, Zhen Zhang, Qingxiao Jia, Hao Chen, Haigang Xu, and Yanjun Zhang. "Study on the Effect of Hydraulic Energy Storage on the Performance of Electro-Mechanical-Hydraulic Power-Coupled Electric Vehicles." Electronics 11, no. 20 (October 17, 2022): 3344. http://dx.doi.org/10.3390/electronics11203344.

Повний текст джерела
Анотація:
In order to address the problems of low energy storage capacity and short battery life in electric vehicles, in this paper, a new electromechanical-hydraulic power coupling drive system is proposed, and an electromechanical-hydraulic power coupling electric vehicle is proposed based on this system. The system realizes the mutual conversion between mechanical energy, hydraulic energy, and electric energy through the electromechanical–hydraulic coupler. This paper describes the structural characteristics and working principles of the system and analyzes the different working modes during the driving of the vehicle. We established a mathematical model of the hydraulic accumulator and the hydraulic pump and motor. Based on the vehicle dynamics model, an AME Sim vehicle model was built and the vehicle, and the relevant hydraulic parameters were set in combination with the actual situation. The braking energy recovery and release process was jointly simulated by AME Sim and Simulink. The simulation results show that the hydraulic accumulator size of the accumulator volume can influence the maximum working pressure of the accumulator and the SOC of the vehicle battery, and it is verified that 35 L is the best capacity. This study has an important reference value for matching electromechanical–hydraulic coupling parameters of electric vehicles.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Azzam, Israa, Keith Pate, Jose Garcia-Bravo, and Farid Breidi. "Energy Savings in Hydraulic Hybrid Transmissions through Digital Hydraulics Technology." Energies 15, no. 4 (February 13, 2022): 1348. http://dx.doi.org/10.3390/en15041348.

Повний текст джерела
Анотація:
Hydraulic hybrid drivetrains, which are fluid power technologies implemented in automobiles, present a popular alternative to conventional drivetrain architectures due to their high energy savings, flexibility in power transmission, and ease of operation. Hydraulic hybrid drivetrains offer multiple environmental benefits compared to other power transmission technologies. They provide heavy-duty vehicles, e.g., commercial transportation, construction equipment, wagon handling, drilling machines, and military trucks, with the potential to achieve better fuel economy and lower carbon emissions. Despite the preponderance of hydraulic hybrid transmissions, state-of-the-art hydraulic hybrid drivetrains have relatively low efficiencies, around 64% to 81%. This low efficiency is due to the utilization of conventional variable displacement pumps and motors that experience high power losses throughout the drive cycle and thus fail to maintain high operating efficiency at lower volumetric displacements. This work proposes and validates a new methodology to improve the overall efficiency of hydraulic hybrid drivetrains by replacing conventional pump/motor units with their digital counterparts. Compared to conventional pump/motors, the digital pump/motor can achieve higher overall efficiencies at a wide range of operating conditions. A proof-of-concept digital pump/motor prototype was built and tested. The experimental data were integrated into a multi-domain physics-based simulation model of a series hydraulic hybrid transmission. The proposed methodology permits enhancing the overall efficiency of a series hydraulic hybrid transmission and thus allows for energy savings. Simulating the system at moderate load-speed conditions allowed achieving a total efficiency of around 89%. Compared to the average efficiency of the series hydraulic hybrid drivetrains, our simulation results reveal that the utilization of the state-of-the-art digital pump enables improving the total efficiency of the series hydraulic hybrid drivetrain by up to 25%.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hall, L. C., and P. J. Moss. "The Use of Viscous Couplings to Alleviate Transmission Wind-Up in Military Vehicles When Driven On-Road." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 203, no. 2 (April 1989): 117–24. http://dx.doi.org/10.1243/pime_proc_1989_203_157_02.

Повний текст джерела
Анотація:
Many of the high-mobility wheeled vehicles used by the British Army employ permanent all-wheel drive transmission systems with just one transverse differential. Since all the wheels on each side of the vehicle rotate at the same angular velocity severe transmission wind-up can be developed on roads. The possibility of using viscous couplings to alleviate this problem has been investigated by computer simulation backed up by practical trials on a 4 × 4 armoured reconnaissance vehicle. The results suggest that with a suitable choice of coupling characteristic this solution can dramatically reduce the wind-up torque during low-speed manoeuvres with no significant effect on off-road mobility or handling on roads. It can reduce the wind-up caused by non-uniform tyre wear but not to the extent anticipated. To safeguard handling stability under heavy braking there may be a need to bias the brake effort distribution to the front.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Junyi, Tiezhu Zhang, Hongxin Zhang, Jian Yang, Zhen Zhang, and Zewen Meng. "Research on Braking Efficiency of Master-Slave Electro-Hydraulic Hybrid Electric Vehicle." Electronics 11, no. 12 (June 20, 2022): 1918. http://dx.doi.org/10.3390/electronics11121918.

Повний текст джерела
Анотація:
To address the problems of short-rangee and poor braking safety of electric vehicles, this paper proposes a master-slave electro-hydraulic hybrid passenger car drive system based on planetary gear. The system couples the electrical energy output from the electric motor with the hydraulic energy output from the electro-hydraulic pump/motor through the planetary gear. The hydraulic system is used as the auxiliary power source of the power system giving full play to the advantages of the hydraulic system and the electric system. After theoretical analysis, this paper establishes a master-slave electro-hydraulic hybrid electric vehicle (MSEHH-EV) model based on planetary gear in AMESim software. A braking energy recovery control strategy is designed with the maximum braking energy recovery efficiency as the target. Braking strength determines the switching of braking modes. Finally, comparing the certified pure electric vehicle (EV) model in AMESim, we are able to substantiate the superiority of the strategy proposed in this paper. The simulation results revealed that the battery consumption rate of the new power vehicle is reduced by 17.766%, 11.358%, and 9.427% under UDDS, NEDC, and WLTC conditions, respectively, which supports the range. At the same time, the braking distance is significantly shortened, and the maximum braking distance is shortened by 15.65 m, 21.97 m, and 21.45 m, respectively, under the three operating conditions, which improves the braking safety.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Umnitsyn, A. A., and S. V. Bakhmutov. "Evaluation of compliance with the current standards requirements regarding the anti-lock braking system effectiveness of an electric vehicle with mixed braking support." Trudy NAMI, no. 2 (July 4, 2022): 51–59. http://dx.doi.org/10.51187/0135-3152-2022-2-51-59.

Повний текст джерела
Анотація:
Introduction (statement of the problem and relevance). In accordance to the current standards the requirements were assessed: for the braking process efficiency of M1vehicles category using an antilock braking system (ABS) and the combined possibility control of two actuators - electric machines installed in the vehicle driving wheels as well as the electro-hydraulic modulation pressure unit in the hydraulic circuit of the working brake cylinders.The purpose of the study was to evaluate the effectiveness of the newly developed ABS algorithm in accordance with current standards and additional requirements.Methodology and research methods. The braking process computer simulation of a M1 vehicle category equipped with four electric motors and an electro-hydraulic braking system was carried out. As a result of calculations, the obtained braking parameters were to be compared and evaluate according to the requirements of UN Regulation No. 13H, as well as evaluate the braking efficiency parameters.Scientific novelty and results. The effectiveness of the developed control algorithm for the ABS actuators (electro-hydraulic unit and electric machines in the drive wheels) has been proven in terms of meeting the requirements of UN Regulation No. 13H. Studies showed an efficiency improvement of the ABS operating due to the proposed algorithm, when compared to foreign-produced analogues.The practical significance of the work is the proof of the developed algorithm efficiency for M1 electric vehicles category.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Šušnjar, Marijan, Zdravko Pandur, Marin Bačić, Kruno Lepoglavec, Hrvoje Nevečerel, and Hrvoje Kopseak. "Possibilities for the Development of an Electric Hybrid Skidder Based on Energy Consumption Measurement in Real Terrain Conditions." Forests 14, no. 1 (December 28, 2022): 58. http://dx.doi.org/10.3390/f14010058.

Повний текст джерела
Анотація:
Growing demand for forest machines that cost less to operate than current compared to traditional hydraulic and mechanical ones, along with regulatory pressures for lower emissions, is increasing manufacturers’ interest in developing electric and hybrid drives. While purely electric drives of forest machines meet a lot of bottlenecks (costs of the electric components, battery durability, duration of charging, access to the electrical grid, size of batteries that can ensure enough energy for 8 h working time), electric hybrid drives offer a favorable solution for the propulsion of forestry machinery in terms of lower fuel consumption and improved efficiency. Among all forest vehicles, specialized forest tractors (skidders), so far, have not been considered for forest vehicles with hybrid drive capabilities. A skidder is a forest-articulated self-propelled vehicle for pulling trees or parts of trees. In most countries in southern Europe, the use of skidders equipped with forest winches is the most common technique for timber extraction. The first goal of the research is to develop methods for measuring the energy consumption of skidders at different operating tasks and under different field conditions. Research was performed on the skidder Ecotrac 140V (from Croatian producer Hittner Ltd.) during timber extraction in mountainous terrains in Lika–Senj County. The skidder was equipped with a measuring device WIGO-E (Telematic Data collector) gateway with an integrated GPS system, which ensured data were collected from sensors and motor and stored in a computer via CANBUS and data transfer with GSM to Web platforms. Additionally, a fuel-flow meter was installed on the skidder. Data on fuel consumption (mL), position (traveling route), detection of winch work, engine rpm (min−1), engine torque (% of max), throttle position (%), and engine temperature were measured with a sampling frequency of 5 s. Furthermore, skidder load volumes per cycles and slopes of tractor paths were constantly measured. The paper shows the skidder’s energy consumption per day, work cycle, and individual work procedure with regard to the size of the load, the slope of the tractor path, and the direction of movement based on overlapping and merging all measurement data. Using mathematical and simulation models of the drive with defined operating cycles obtained by measurement, the possibilities of the hybrid drive and the dimensions of the elements of the hybrid drive (internal combustion engine, electric motor, batteries, control unit) were determined and are presented in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kamiński, Zbigniew. "Mathematical Modeling of Pneumatic Pipes in a Simulation of Heterogeneous Engineering Systems." Journal of Fluids Engineering 133, no. 12 (December 1, 2011). http://dx.doi.org/10.1115/1.4005261.

Повний текст джерела
Анотація:
Pipes are widely used in hydraulic and pneumatic subsystems for transferring energy or signals. Accurate prediction of pressure transients is very important in the drive and control circuits of complex fluid-line systems. Based on the approximation of Navier-Stokes equations for one-dimensional flow, a mathematical model of the pneumatic pipe with lumped parameters was developed using ordinary differential equations, which can be easily implemented in most computer programs for the simulation of complex heterogeneous engineering systems. Implemented in Matlab-Simulink software, the computer model of the pipe makes it possible to determine the influence of capacitance, inertance, resistance and heat exchange on the dynamic characteristics of the control and power circuits of pneumatic systems. An advantage of the model is that various functions can be selected to describe linear resistances and local resistances are taken into account, particularly at the inlet and outlet. Such resistances largely affect flow resistances in short tubes (up to 10 m) that can be found, e.g., in pneumatic brake systems of road vehicles. Confirmed by Kolmogorov-Smirnov test results, the consistency of the pressure curves obtained in experimental and simulation tests proves the implemented tube model to be useful for the calculations of pneumatic system dynamics.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії