Зміст
Добірка наукової літератури з теми "Variétés quotient"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Variétés quotient".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Variétés quotient"
Pillons, Ludovic. "Description des variétés quotients par SL(2, k)." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, no. 9 (May 1997): 1023–26. http://dx.doi.org/10.1016/s0764-4442(97)87879-2.
Повний текст джерелаColliot-Thélène, Jean-Louis, and Alexei N. Skorobogatov. "Descente galoisienne sur le groupe de Brauer." crll 2013, no. 682 (September 6, 2012): 141–65. http://dx.doi.org/10.1515/crelle-2012-0039.
Повний текст джерелаDRÉZET, JEAN-MARC. "QUOTIENTS ALGÉBRIQUES PAR DES GROUPES NON RÉDUCTIFS ET VARIÉTÉS DE MODULES DE COMPLEXES." International Journal of Mathematics 09, no. 07 (November 1998): 769–819. http://dx.doi.org/10.1142/s0129167x98000336.
Повний текст джерелаGille, Philippe. "Rationalité du quotient d'une variété de Severi-Brauer par un automorphisme de Kummer." Bulletin of the Belgian Mathematical Society - Simon Stevin 13, no. 1 (March 2006): 39–42. http://dx.doi.org/10.36045/bbms/1148059330.
Повний текст джерелаEl Mazouni, Abdelghani. "Quotient de la variété des points infiniment voisins d'ordre 9 sous l'action de $\text{PGL}_3$." Bulletin de la Société mathématique de France 124, no. 3 (1996): 425–55. http://dx.doi.org/10.24033/bsmf.2287.
Повний текст джерелаAubaile-Sallenave, Françoise. "Le becfigue, petit passereau de Méditerranée." Anthropology of the Middle East 18, no. 1 (June 1, 2023): 74–97. http://dx.doi.org/10.3167/ame.2023.180106.
Повний текст джерелаBilley, Sara, and Andrew Crites. "Rational smoothness and affine Schubert varieties of type A." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AO,..., Proceedings (January 1, 2011). http://dx.doi.org/10.46298/dmtcs.2900.
Повний текст джерелаNair, Arvind N., and Ankit Rai. "AUTOMORPHIC LEFSCHETZ PROPERTIES FOR NONCOMPACT ARITHMETIC MANIFOLDS." Journal of the Institute of Mathematics of Jussieu, October 18, 2021, 1–48. http://dx.doi.org/10.1017/s1474748021000499.
Повний текст джерелаMonavari, Sergej, and Andrea T. Ricolfi. "Sur la lissité du schéma Quot ponctuel emboîté." Canadian Mathematical Bulletin, March 14, 2022, 1–7. http://dx.doi.org/10.4153/s0008439522000224.
Повний текст джерелаДисертації з теми "Variétés quotient"
Pillons, Ludovic. "Variétés quotients par SL(2)." Grenoble 1, 1996. http://www.theses.fr/1996GRE10202.
Повний текст джерелаBaudry, Julie. "Structures de Poisson de certaines variétés quotient : propriétés homologiques, d’engendrement fini et de rationalité." Reims, 2009. http://theses.univ-reims.fr/exl-doc/GED00001087.pdf.
Повний текст джерелаIn this thesis, we study some properties of classical examples of Poisson algebras, and of their deformations : finiteness property for the Lie structure associated to the Poisson bracket, study of the zeroth homology group linked to the Poisson structure or to the non-commutative structure of the deformation, raionality property. Let A be a Poisson algebra, and G a finite group of Poisson automorphisms of A, we prove in the following examples that the finiteness property as a Lie algebra still holds in the invariant algebra : when G is a finite subgroup of SL(2,C) and A the symplectic Poisson algebra C[x, y] ; when G is the Weyl group A2 or B2, and A the symplectic Poisson algebra C[h ⊕ h_] ; when G is a finite subgroup of SL(2, Z), and A the multiplicative Poisson algebra C[x±1, y±1] provided with the Poisson bracket defined by {x, y} = xy. The finiteness property still holds in the deformation A1(C)G of C[x, y]G via the associated graded, and in the multiplicative case, the deformation by the invariants of the quantum torus Cq[x±1, y±1]G is also of finite type. In another part, we look for the Poisson center, and the zeroth Poisson homology group for Jacobian Poisson structures, which appear naturally in many situations. Finally, we take an interest in a Poisson version of the Gelfand-Kirillov conjecture : the existence of a Poisson isomorphism between the fields Frac(A) et Frac(AG). We check this property for the Kleinian surfaces, for the invariants of the 4-dimensional symplectic algebra under the action of the Weyl group B2, and for the invariants of the multiplicative Poisson algebra under the action of h−idi
Maignant, Elodie. "Plongements barycentriques pour l'apprentissage géométrique de variétés : application aux formes et graphes." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4096.
Повний текст джерелаAn MRI image has over 60,000 pixels. The largest known human protein consists of around 30,000 amino acids. We call such data high-dimensional. In practice, most high-dimensional data is high-dimensional only artificially. For example, of all the images that could be randomly generated by coloring 256 x 256 pixels, only a very small subset would resemble an MRI image of a human brain. This is known as the intrinsic dimension of such data. Therefore, learning high-dimensional data is often synonymous with dimensionality reduction. There are numerous methods for reducing the dimension of a dataset, the most recent of which can be classified according to two approaches.A first approach known as manifold learning or non-linear dimensionality reduction is based on the observation that some of the physical laws behind the data we observe are non-linear. In this case, trying to explain the intrinsic dimension of a dataset with a linear model is sometimes unrealistic. Instead, manifold learning methods assume a locally linear model.Moreover, with the emergence of statistical shape analysis, there has been a growing awareness that many types of data are naturally invariant to certain symmetries (rotations, reparametrizations, permutations...). Such properties are directly mirrored in the intrinsic dimension of such data. These invariances cannot be faithfully transcribed by Euclidean geometry. There is therefore a growing interest in modeling such data using finer structures such as Riemannian manifolds. A second recent approach to dimension reduction consists then in generalizing existing methods to non-Euclidean data. This is known as geometric learning.In order to combine both geometric learning and manifold learning, we investigated the method called locally linear embedding, which has the specificity of being based on the notion of barycenter, a notion a priori defined in Euclidean spaces but which generalizes to Riemannian manifolds. In fact, the method called barycentric subspace analysis, which is one of those generalizing principal component analysis to Riemannian manifolds, is based on this notion as well. Here we rephrase both methods under the new notion of barycentric embeddings. Essentially, barycentric embeddings inherit the structure of most linear and non-linear dimension reduction methods, but rely on a (locally) barycentric -- affine -- model rather than a linear one.The core of our work lies in the analysis of these methods, both on a theoretical and practical level. In particular, we address the application of barycentric embeddings to two important examples in geometric learning: shapes and graphs. In addition to practical implementation issues, each of these examples raises its own theoretical questions, mostly related to the geometry of quotient spaces. In particular, we highlight that compared to standard dimension reduction methods in graph analysis, barycentric embeddings stand out for their better interpretability. In parallel with these examples, we characterize the geometry of locally barycentric embeddings, which generalize the projection computed by locally linear embedding. Finally, algorithms for geometric manifold learning, novel in their approach, complete this work
Pouyanne, Nicolas. "Quelques contributions au carrefour de la géométrie, de la combinatoire et des probabilités." Habilitation à diriger des recherches, Université de Versailles-Saint Quentin en Yvelines, 2006. http://tel.archives-ouvertes.fr/tel-00403659.
Повний текст джерелаBattisti, Laurent. "Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4714/document.
Повний текст джерелаIn this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen
Restrepo, Velásquez Juliana. "Sur la géométrie des quotients de produits de courbes." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0659.
Повний текст джерелаIn this thesis, we are interested in the geometry of algebraic varieties that appear as minimal resolutions of quotients of the product of curves by the action of a finite group. We then study the positivity of their cotangent bundle because of its many geometric implications and the valuable and useful information that can be obtained in order to approach some difficult problems such as the famous conjectures of Lang, Lang-Vojta and Green-Griffiths-Lang which in particular give strong constraints on the distribution of the rational curves in varieties of general type.In the case of dimension two, we give a criterion for the positivity of the cotangent bundle and we study the algebraic hyperbolicity of product-quotient surfaces. These results apply to the case of product-quotient surfaces of general type with geometric genus, irregularity and second Segre number equal to zero, for which we prove effective versions of the conjectures mentioned above. More generally in higher dimension, we obtain a criterion for the positivity of the cotangent bundle in the case of smooth quotients and we study in detail the case of the symmetric products of curves
El, Mazouni Abdelghani. "Quotient de la variété des points infiniment voisins sous l'action de PGL(3)." Lille 1, 1993. http://www.theses.fr/1993LIL10189.
Повний текст джерелаDejoncheere, Benoît. "Étude des opérateurs différentiels globaux sur certaines variétés algébriques projectives." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1310/document.
Повний текст джерелаStarted independently by Beilinson and Bernstein, and by Brylinski and Kashiwara, the study of global differential operators on complete flag varieties has been very useful to answer a conjecture of Kazhdan and Lusztig. In their subsequent work, Borho and Brylinski have discovered many interesting properties on differential operators on flag varieties. But apart from the case of flag varieties, and the case of projective toric varieties, which has been investigated with combinatorial methods, differential operators on projective varieties are rather badly known.In this thesis, we will investigate the case of some wonderful compactifications Y of symmetric spaces G/H of small rank, and we will compare our results with what is known in the case of flag varieties. We will first construct a differential operator on Y which does not come from the infinitesimal action of G, which is different from the case of flag varieties.We will then look at three particular cases, which will be expressed as GIT quotients of some Grassmannian X. With this description, we will find some similarities with the case of flag varieties : we will show that the algebra of global differential operators is of finite type, and that for each invertible sheaf L on Y, the module of its global sections is simple as a module over the algebra of global differential operators of Y twisted by L. Finally, using arguments of local cohomology, we will show that it is still the case for higher cohomology groups
Gillibert, Florence. "Surfaces abéliennes à multiplication quaternionique et points rationnels de quotients d'Atkin-Lehner de courbes de Shimura." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14374/document.
Повний текст джерелаIn this thesis we study two problems. The first one is the non-existence of rational non-special points on Atkin-Lehner quotients of Shimura curves. The second one is the absence of rational abelian surfaces with potential quaternionique multiplication endowed with a level structure. These two problems are linked because a simple rational abelian surface with potential quaternionique multiplication is associated to a rational non-special point on an Atkin-Lehner quotients of Shimura curve. In a first part of our work we explain how to verify in wide generality a criterium of Parent and Yafaev in order to prove that in the conditions of Ogg's non ramified case, and if $p$ is big enough compared two $q$, then the quotient $X^{pq}/w_q$ has no non-special rational point. In a second part we determine an effective born for possible level structures on rational abelian surfaces having, over a fixed quadratic field, multiplication by a fixed order in a quaternion algebra
Caroli, Manuel. "Triangulating Point Sets in Orbit Spaces." Phd thesis, Université de Nice Sophia-Antipolis, 2010. http://tel.archives-ouvertes.fr/tel-00552215.
Повний текст джерела