Зміст
Добірка наукової літератури з теми "Variational functionals, Gamma-convergence"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Variational functionals, Gamma-convergence".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Variational functionals, Gamma-convergence"
Bocea, Marian, and Vincenzo Nesi. "$\Gamma$-Convergence of Power-Law Functionals, Variational Principles in $L^{\infty},$ and Applications." SIAM Journal on Mathematical Analysis 39, no. 5 (January 2008): 1550–76. http://dx.doi.org/10.1137/060672388.
Повний текст джерелаCOLOMBO, MARIA, and MASSIMO GOBBINO. "PASSING TO THE LIMIT IN MAXIMAL SLOPE CURVES: FROM A REGULARIZED PERONA–MALIK EQUATION TO THE TOTAL VARIATION FLOW." Mathematical Models and Methods in Applied Sciences 22, no. 08 (May 28, 2012): 1250017. http://dx.doi.org/10.1142/s0218202512500170.
Повний текст джерелаBraides, Andrea, Andrea Causin, and Margherita Solci. "A homogenization result for interacting elastic and brittle media." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2218 (October 2018): 20180118. http://dx.doi.org/10.1098/rspa.2018.0118.
Повний текст джерелаPeletier, Mark A., and Mikola C. Schlottke. "Gamma-convergence of a gradient-flow structure to a non-gradient-flow structure." Calculus of Variations and Partial Differential Equations 61, no. 3 (April 7, 2022). http://dx.doi.org/10.1007/s00526-022-02190-y.
Повний текст джерелаCinti, Eleonora, Bruno Franchi та María del Mar González. "$$\Gamma $$ Γ -Convergence of variational functionals with boundary terms in Stein manifolds". Calculus of Variations and Partial Differential Equations 56, № 6 (6 жовтня 2017). http://dx.doi.org/10.1007/s00526-017-1244-3.
Повний текст джерелаCicalese, Marco, Marwin Forster, and Gianluca Orlando. "Variational Analysis of the $$J_1$$–$$J_2$$–$$J_3$$ Model: A Non-linear Lattice Version of the Aviles–Giga Functional." Archive for Rational Mechanics and Analysis, June 24, 2022. http://dx.doi.org/10.1007/s00205-022-01800-5.
Повний текст джерелаCesana, Pierluigi, and Andrés A. León Baldelli. "Gamma-convergence results for nematic elastomer bilayers: relaxation and actuation." ESAIM: Control, Optimisation and Calculus of Variations, April 11, 2022. http://dx.doi.org/10.1051/cocv/2022029.
Повний текст джерелаDell’Antonio, G. F. "Gamma convergence and renormalization group: Two sides of a coin?" European Physical Journal Plus 137, no. 6 (June 2022). http://dx.doi.org/10.1140/epjp/s13360-022-02939-6.
Повний текст джерелаYu, Shengbin, and Jianqing Chen. "Uniqueness and concentration for a fractional Kirchhoff problem with strong singularity." Boundary Value Problems 2021, no. 1 (March 19, 2021). http://dx.doi.org/10.1186/s13661-021-01507-8.
Повний текст джерелаДисертації з теми "Variational functionals, Gamma-convergence"
Maione, Alberto. "Variational convergences for functionals and differential operators depending on vector fields." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/283145.
Повний текст джерелаMaione, Alberto. "Variational convergences for functionals and differential operators depending on vector fields." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/283145.
Повний текст джерелаEssebei, Fares. "Variational problems for sub–Finsler metrics in Carnot groups and Integral Functionals depending on vector fields." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/345679.
Повний текст джерелаLiero, Matthias. "Variational methods for evolution." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16685.
Повний текст джерелаThis thesis deals with the application of variational methods to evolution problems governed by partial differential equations. The first part of this work is devoted to systems of reaction-diffusion equations that can be formulated as gradient systems with respect to an entropy functional and a dissipation metric. We provide methods for establishing geodesic convexity of the entropy functional by purely differential methods. Geodesic convexity is beneficial, however, it is a strong structural property of a gradient system that is rather difficult to achieve. Several examples, including a drift-diffusion system, provide a survey on the applicability of the theory. Next, we demonstrate the application of Gamma-convergence, to derive effective limit models for multiscale problems. The crucial point in this investigation is that we rely only on the gradient structure of the systems. We consider two model problems: The rigorous derivation of an Allen-Cahn system with bulk/surface coupling and of an interface condition for a one-dimensional diffusion equation. The second part of this thesis is devoted to the so-called Weighted-Inertia-Dissipation-Energy principle. The WIDE principle is a global-in-time variational principle for evolution equations either of conservative or dissipative type. It relies on the minimization of a specific parameter-dependent family of functionals (WIDE functionals) with minimizers characterizing entire trajectories of the system. We prove that minimizers of the WIDE functional converge, up to subsequences, to weak solutions of the limiting PDE when the parameter tends to zero. The interest for this perspective is that of moving the successful machinery of the Calculus of Variations.
Goldman, Michael. "Quelques applications des fonctions a variation bornée en dimension finie et infinie." Phd thesis, Ecole Polytechnique X, 2011. http://tel.archives-ouvertes.fr/tel-00650401.
Повний текст джерелаDebroux, Noémie. "Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR02/document.
Повний текст джерелаIn this thesis, we study and jointly address several important image processing problems including registration that aims at aligning images through a deformation, image segmentation whose goal consists in finding the edges delineating the objects inside an image, and image decomposition closely related to image denoising, and attempting to partition an image into a smoother version of it named cartoon and its complementary oscillatory part called texture, with both local and nonlocal variational approaches. The first proposed model addresses the topology-preserving segmentation-guided registration problem in a variational framework. A second joint segmentation and registration model is introduced, theoretically and numerically studied, then tested on various numerical simulations. The last model presented in this work tries to answer a more specific need expressed by the CEREMA (Centre of analysis and expertise on risks, environment, mobility and planning), namely automatic crack recovery detection on bituminous surface images. Due to the image complexity, a joint fine structure decomposition and segmentation model is proposed to deal with this problem. It is then theoretically and numerically justified and validated on the provided images