Добірка наукової літератури з теми "Variational functionals, Gamma-convergence"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Variational functionals, Gamma-convergence".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Variational functionals, Gamma-convergence"

1

Bocea, Marian, and Vincenzo Nesi. "$\Gamma$-Convergence of Power-Law Functionals, Variational Principles in $L^{\infty},$ and Applications." SIAM Journal on Mathematical Analysis 39, no. 5 (January 2008): 1550–76. http://dx.doi.org/10.1137/060672388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

COLOMBO, MARIA, and MASSIMO GOBBINO. "PASSING TO THE LIMIT IN MAXIMAL SLOPE CURVES: FROM A REGULARIZED PERONA–MALIK EQUATION TO THE TOTAL VARIATION FLOW." Mathematical Models and Methods in Applied Sciences 22, no. 08 (May 28, 2012): 1250017. http://dx.doi.org/10.1142/s0218202512500170.

Повний текст джерела
Анотація:
We prove that solutions of a mildly regularized Perona–Malik equation converge, in a slow time scale, to solutions of the total variation flow. The convergence result is global-in-time, and holds true in any space dimension. The proof is based on the general principle that "the limit of gradient-flows is the gradient-flow of the limit". To this end, we exploit a general result relating the Gamma-limit of a sequence of functionals to the limit of the corresponding maximal slope curves.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Braides, Andrea, Andrea Causin, and Margherita Solci. "A homogenization result for interacting elastic and brittle media." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2218 (October 2018): 20180118. http://dx.doi.org/10.1098/rspa.2018.0118.

Повний текст джерела
Анотація:
We consider energies modelling the interaction of two media parameterized by the same reference set, such as those used to study interactions of a thin film with a stiff substrate, hybrid laminates or skeletal muscles. Analytically, these energies consist of a (possibly non-convex) functional of hyperelastic type and a second functional of the same type such as those used in variational theories of brittle fracture, paired by an interaction term governing the strength of the interaction depending on a small parameter. The overall behaviour is described by letting this parameter tend to zero and exhibiting a limit effective energy using the terminology of Gamma-convergence. Such energy depends on a single state variable and is of hyperelastic type. The form of its energy function highlights an optimization between microfracture and microscopic oscillations of the strain, mixing homogenization and high-contrast effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Peletier, Mark A., and Mikola C. Schlottke. "Gamma-convergence of a gradient-flow structure to a non-gradient-flow structure." Calculus of Variations and Partial Differential Equations 61, no. 3 (April 7, 2022). http://dx.doi.org/10.1007/s00526-022-02190-y.

Повний текст джерела
Анотація:
AbstractWe study the asymptotic behaviour of a gradient system in a regime in which the driving energy becomes singular. For this system gradient-system convergence concepts are ineffective. We characterize the limiting behaviour in a different way, by proving $$\Gamma $$ Γ -convergence of the so-called energy-dissipation functional, which combines the gradient-system components of energy and dissipation in a single functional. The $$\Gamma $$ Γ -limit of these functionals again characterizes a variational evolution, but this limit functional is not the energy-dissipation functional of any gradient system. The system in question describes the diffusion of a particle in a one-dimensional double-well energy landscape, in the limit of small noise. The wells have different depth, and in the small-noise limit the process converges to a Markov process on a two-state system, in which jumps only happen from the higher to the lower well. This transmutation of a gradient system into a variational evolution of non-gradient type is a model for how many one-directional chemical reactions emerge as limit of reversible ones. The $$\Gamma $$ Γ -convergence proved in this paper both identifies the ‘fate’ of the gradient system for these reactions and the variational structure of the limiting irreversible reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cinti, Eleonora, Bruno Franchi та María del Mar González. "$$\Gamma $$ Γ -Convergence of variational functionals with boundary terms in Stein manifolds". Calculus of Variations and Partial Differential Equations 56, № 6 (6 жовтня 2017). http://dx.doi.org/10.1007/s00526-017-1244-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cicalese, Marco, Marwin Forster, and Gianluca Orlando. "Variational Analysis of the $$J_1$$–$$J_2$$–$$J_3$$ Model: A Non-linear Lattice Version of the Aviles–Giga Functional." Archive for Rational Mechanics and Analysis, June 24, 2022. http://dx.doi.org/10.1007/s00205-022-01800-5.

Повний текст джерела
Анотація:
AbstractWe study the variational limit of the frustrated $$J_1$$ J 1 –$$J_2$$ J 2 –$$J_3$$ J 3 spin model on the square lattice in the vicinity of the ferromagnet/helimagnet transition point as the lattice spacing vanishes. We carry out the $$\Gamma $$ Γ -convergence analysis of proper scalings of the energy and we characterize the optimal cost of a chirality transition in BV proving that the system is asymptotically driven by a discrete version of a non-linear perturbation of the Aviles–Giga energy functional.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cesana, Pierluigi, and Andrés A. León Baldelli. "Gamma-convergence results for nematic elastomer bilayers: relaxation and actuation." ESAIM: Control, Optimisation and Calculus of Variations, April 11, 2022. http://dx.doi.org/10.1051/cocv/2022029.

Повний текст джерела
Анотація:
We compute effective energies of thin bilayer structures composed of soft nematic elastic liquid crystals in various geometrical regimes and functional configurations. Our focus is on elastic foundations composed of an isotropic layer attached to a nematic substrate where order-strain interaction results in complex opto-mechanical instabilities activated via coupling through the common interface. Allowing out-of-plane displacements, we compute Gamma-limits for vanishing thickness which exhibit spontaneous stress relaxation and shape-morphing behaviour. This extends the plane strain modelling of [*], and shows the asymptotic emergence of fully coupled active macroscopic nematic foundations. Subsequently, we focus on actuation and compute asymptotic configurations of an active plate on nematic foundation interacting with an applied electric field. From the analytical standpoint, the presence of an electric field and its associated electrostatic work turns the total energy non-convex and non-coercive. We show that equilibrium solutions are min-max points of the system, that min-maximising sequences pass to the limit and, that the limit system can exert mechanical work under applied electric fields. [*]: P. Cesana and A. A. León Baldelli. "Variational modelling of nematic elastomer foundations". In: Mathematical Models and Methods in Applied Sciences 14 (2018)
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dell’Antonio, G. F. "Gamma convergence and renormalization group: Two sides of a coin?" European Physical Journal Plus 137, no. 6 (June 2022). http://dx.doi.org/10.1140/epjp/s13360-022-02939-6.

Повний текст джерела
Анотація:
AbstractWe discuss, both from the point of view of Gamma convergence and from the point of view of the renormalization Group, the zero range strong contact interaction of three non-relativistic massive particles. Formally, the potential term is $$ g (\delta (x_3-x_1) + \delta (x_3 -x_2)), \;\, g < 0 $$ g ( δ ( x 3 - x 1 ) + δ ( x 3 - x 2 ) ) , g < 0 and is the limit $$ \epsilon \rightarrow 0$$ ϵ → 0 of approximating potentials $$ V_\epsilon (|x_i -x_3|) = \epsilon ^{-3} V ( \frac{|x_i - x_3|}{\epsilon }) $$ V ϵ ( | x i - x 3 | ) = ϵ - 3 V ( | x i - x 3 | ϵ ) , $$ V( x) \in L^1(R^3) \cap L^2 (R^3) $$ V ( x ) ∈ L 1 ( R 3 ) ∩ L 2 ( R 3 ) . The presence of a delta function in the limit does not allow the use of standard tools of functional analysis. In the first approach (European Phys. J. Plus 136-363, 2021), (European Phys. J. Plus 1136-1161, 2021), we introduced a map $$\mathcal{K}$$ K , called Krein Map , from $$L^2 (R^9) $$ L 2 ( R 9 ) to a space (Minlos space) $$\mathcal{M}$$ M ) of more singular functions. In $$ { \mathcal M}$$ M , the system is represented by a one parameter family of self-adjoint operators. In the topology of $$L^2 (R^9)$$ L 2 ( R 9 ) , the system is an ordered family of weakly closed quadratic forms. By Gamma convergence, the infimum is a self-adjoint operator, the Hamiltonian H of the system. Gamma convergence implies resolvent convergence (An Introduction to Gamma Convergence Springer 1993) but not operator convergence!. This approach is variational and non-perturbative. In the second approach, perturbation theory is used. At each order of perturbation theory, divergences occur when $$ \epsilon \rightarrow 0$$ ϵ → 0 . A finite renormalized Hamiltonian $$H_R$$ H R is obtained by redefining mass and coupling constant at each order of perturbation theory. In this approach, no distinction is made between self-adjoint operators and quadratic forms. One expects that $$ H = H_R $$ H = H R , i.e., that “renormalization” amounts to the difference between the Hamiltonian obtained by quadratic form convergence and the one obtained by Gamma convergence. We give some hints, but a formal proof is missing. For completeness, we discuss briefly other types of zero-range interactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yu, Shengbin, and Jianqing Chen. "Uniqueness and concentration for a fractional Kirchhoff problem with strong singularity." Boundary Value Problems 2021, no. 1 (March 19, 2021). http://dx.doi.org/10.1186/s13661-021-01507-8.

Повний текст джерела
Анотація:
AbstractIn this paper, we consider the following fractional Kirchhoff problem with strong singularity: $$ \textstyle\begin{cases} (1+ b\int _{\mathbb{R}^{3}}\int _{\mathbb{R}^{3}} \frac{ \vert u(x)-u(y) \vert ^{2}}{ \vert x-y \vert ^{3+2s}}\,\mathrm{d}x \,\mathrm{d}y )(-\Delta )^{s} u+V(x)u = f(x)u^{-\gamma }, & x \in \mathbb{R}^{3}, \\ u>0,& x\in \mathbb{R}^{3}, \end{cases} $$ { ( 1 + b ∫ R 3 ∫ R 3 | u ( x ) − u ( y ) | 2 | x − y | 3 + 2 s d x d y ) ( − Δ ) s u + V ( x ) u = f ( x ) u − γ , x ∈ R 3 , u > 0 , x ∈ R 3 , where $(-\Delta )^{s}$ ( − Δ ) s is the fractional Laplacian with $0< s<1$ 0 < s < 1 , $b>0$ b > 0 is a constant, and $\gamma >1$ γ > 1 . Since $\gamma >1$ γ > 1 , the energy functional is not well defined on the work space, which is quite different with the situation of $0<\gamma <1$ 0 < γ < 1 and can lead to some new difficulties. Under certain assumptions on V and f, we show the existence and uniqueness of a positive solution $u_{b}$ u b by using variational methods and the Nehari manifold method. We also give a convergence property of $u_{b}$ u b as $b\rightarrow 0$ b → 0 , where b is regarded as a positive parameter.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Variational functionals, Gamma-convergence"

1

Maione, Alberto. "Variational convergences for functionals and differential operators depending on vector fields." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/283145.

Повний текст джерела
Анотація:
In this Ph.D. thesis we discuss results concerning variational convergences for functionals and differential operators on Lipschitz continuous vector fields. The convergences taken into account are gamma-convergence (for functionals) and H-convergence (for differential operators).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maione, Alberto. "Variational convergences for functionals and differential operators depending on vector fields." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/283145.

Повний текст джерела
Анотація:
In this Ph.D. thesis we discuss results concerning variational convergences for functionals and differential operators on Lipschitz continuous vector fields. The convergences taken into account are gamma-convergence (for functionals) and H-convergence (for differential operators).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Essebei, Fares. "Variational problems for sub–Finsler metrics in Carnot groups and Integral Functionals depending on vector fields." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/345679.

Повний текст джерела
Анотація:
The first aim of this PhD Thesis is devoted to the study of geodesic distances defined on a subdomain of a Carnot group, which are bounded both from above and from below by fixed multiples of the Carnot–Carathéodory distance. Then one shows that the uniform convergence, on compact sets, of these distances can be equivalently characterized in terms of Gamma-convergence of several kinds of variational problems. Moreover, it investigates the relation between the class of intrinsic distances, their metric derivatives and the sub-Finsler convex metrics defined on the horizontal bundle. The second purpose is to obtain the integral representation of some classes of local functionals, depending on a family of vector fields, that satisfy a weak structure assumption. These functionals are defined on degenerate Sobolev spaces and they are assumed to be not translations-invariant. Then one proves some Gamma-compactness results with respect to both the strong topology of L^p and the strong topology of degenerate Sobolev spaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liero, Matthias. "Variational methods for evolution." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16685.

Повний текст джерела
Анотація:
Das Thema dieser Dissertation ist die Anwendung von Variationsmethoden auf Evolutionsgleichungen parabolischen und hyperbolischen Typs. Im ersten Teil der Arbeit beschäftigen wir uns mit Reaktions-Diffusions-Systemen, die sich als Gradientensysteme schreiben lassen. Hierbei verstehen wir unter einem Gradientensystem ein Tripel bestehend aus einem Zustandsraum, einem Entropiefunktional und einer Dissipationsmetrik. Wir geben Bedingungen an, die die geodätische Konvexität des Entropiefunktionals sichern. Geodätische Konvexität ist eine wertvolle aber auch starke strukturelle Eigenschaft und schwer zu zeigen. Wir zeigen anhand zahlreicher Beispiele, darunter ein Drift-Diffusions-System, dass dennoch interessante Systeme existieren, die diese Eigenschaft besitzen. Einen weiteren Punkt dieser Arbeit stellt die Anwendung von Gamma-Konvergenz auf Gradientensysteme dar. Wir betrachten hierbei zwei Modellsysteme aus dem Bereich der Mehrskalenprobleme: Erstens, die rigorose Herleitung einer Allen-Cahn-Gleichung mit dynamischen Randbedingungen und zweitens, einer Interface-Bedingung für eine eindimensionale Diffusionsgleichung jeweils aus einem reinen Bulk-System. Im zweiten Teil der Arbeit beschäftigen wir uns mit dem sog. Weighted-Inertia-Dissipation-Energy-Prinzip für Evolutionsgleichungen. Hierbei werden Trajektorien eines Systems als (Grenzwerte von) Minimierer(n) einer parametrisierten Familie von Funktionalen charakterisiert. Dies erlaubt es, Werkzeuge aus der Theorie der Variationsrechung auf Evolutionsprobleme anzuwenden. Wir zeigen, dass Minimierer der WIDE-Funktionale gegen Lösungen des Ausgangsproblems konvergieren. Hierbei betrachten wir getrennt voneinander den Fall des beschränkten und des unbeschränkten Zeitintervalls, die jeweils mit verschiedenen Methoden behandelt werden.
This thesis deals with the application of variational methods to evolution problems governed by partial differential equations. The first part of this work is devoted to systems of reaction-diffusion equations that can be formulated as gradient systems with respect to an entropy functional and a dissipation metric. We provide methods for establishing geodesic convexity of the entropy functional by purely differential methods. Geodesic convexity is beneficial, however, it is a strong structural property of a gradient system that is rather difficult to achieve. Several examples, including a drift-diffusion system, provide a survey on the applicability of the theory. Next, we demonstrate the application of Gamma-convergence, to derive effective limit models for multiscale problems. The crucial point in this investigation is that we rely only on the gradient structure of the systems. We consider two model problems: The rigorous derivation of an Allen-Cahn system with bulk/surface coupling and of an interface condition for a one-dimensional diffusion equation. The second part of this thesis is devoted to the so-called Weighted-Inertia-Dissipation-Energy principle. The WIDE principle is a global-in-time variational principle for evolution equations either of conservative or dissipative type. It relies on the minimization of a specific parameter-dependent family of functionals (WIDE functionals) with minimizers characterizing entire trajectories of the system. We prove that minimizers of the WIDE functional converge, up to subsequences, to weak solutions of the limiting PDE when the parameter tends to zero. The interest for this perspective is that of moving the successful machinery of the Calculus of Variations.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goldman, Michael. "Quelques applications des fonctions a variation bornée en dimension finie et infinie." Phd thesis, Ecole Polytechnique X, 2011. http://tel.archives-ouvertes.fr/tel-00650401.

Повний текст джерела
Анотація:
Cette thèse a pour but d'étudier quelques applications des fonctions à variation bornée et des ensembles de périmètre fini. Nous nous intéressons en particulier à des applications en traitement d'images et en géométrie de dimension finie et infinie. Nous étudions tout d'abord une méthode dite Primale-Duale proposée par Appleton et Talbot pour la résolution de nombreux problèmes en traitement d'images. Nous réinterprétons cette méthode sous un oeil nouveau, ce qui aide à mieux la comprendre mathématiquement. Ceci permet par exemple de démontrer sa convergence et d'établir de nouvelles estimations a posteriori qui sont d'une grande importance pratique. Nous considérons ensuite le problème de courbure moyenne prescrite en milieu périodique. A l'aide de la théorie des ensembles de périmètre fini, nous démontrons l'existence de solutions approchées compactes de ce problème. Nous étudions également le comportement asymptotique de ces solutions lorsque leur volume tend vers l'infini. Les deux dernières parties de la thèse sont consacrées à l'étude de problèmes géométriques dans les espaces de Wiener. Nous étudions d'une part les liens entre symétrisations, semi-continuité et inégalités isopérimétriques ce qui permet d'obtenir un résultat d'approximation et de relaxation pour le périmètre dans ces espaces de dimension infinie. Nous démontrons d'autre part la convexité des solutions de certains problèmes variationnels dans ces espaces, en développant au passage l'étude de la semi-continuité et de la relaxation dans ce contexte.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Debroux, Noémie. "Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR02/document.

Повний текст джерела
Анотація:
Dans cette thèse, nous nous proposons d'étudier et de traiter conjointement plusieurs problèmes phares en traitement d'images incluant le recalage d'images qui vise à apparier deux images via une transformation, la segmentation d'images dont le but est de délimiter les contours des objets présents au sein d'une image, et la décomposition d'images intimement liée au débruitage, partitionnant une image en une version plus régulière de celle-ci et sa partie complémentaire oscillante appelée texture, par des approches variationnelles locales et non locales. Les relations étroites existant entre ces différents problèmes motivent l'introduction de modèles conjoints dans lesquels chaque tâche aide les autres, surmontant ainsi certaines difficultés inhérentes au problème isolé. Le premier modèle proposé aborde la problématique de recalage d'images guidé par des résultats intermédiaires de segmentation préservant la topologie, dans un cadre variationnel. Un second modèle de segmentation et de recalage conjoint est introduit, étudié théoriquement et numériquement puis mis à l'épreuve à travers plusieurs simulations numériques. Le dernier modèle présenté tente de répondre à un besoin précis du CEREMA (Centre d'Études et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement) à savoir la détection automatique de fissures sur des images d'enrobés bitumineux. De part la complexité des images à traiter, une méthode conjointe de décomposition et de segmentation de structures fines est mise en place, puis justifiée théoriquement et numériquement, et enfin validée sur les images fournies
In this thesis, we study and jointly address several important image processing problems including registration that aims at aligning images through a deformation, image segmentation whose goal consists in finding the edges delineating the objects inside an image, and image decomposition closely related to image denoising, and attempting to partition an image into a smoother version of it named cartoon and its complementary oscillatory part called texture, with both local and nonlocal variational approaches. The first proposed model addresses the topology-preserving segmentation-guided registration problem in a variational framework. A second joint segmentation and registration model is introduced, theoretically and numerically studied, then tested on various numerical simulations. The last model presented in this work tries to answer a more specific need expressed by the CEREMA (Centre of analysis and expertise on risks, environment, mobility and planning), namely automatic crack recovery detection on bituminous surface images. Due to the image complexity, a joint fine structure decomposition and segmentation model is proposed to deal with this problem. It is then theoretically and numerically justified and validated on the provided images
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії