Добірка наукової літератури з теми "Valuation equation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Valuation equation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Valuation equation"
Callen, Jeffrey L., and Mindy Morel. "A Lintnerian Linear Accounting Valuation Model." Journal of Accounting, Auditing & Finance 15, no. 3 (July 2000): 301–14. http://dx.doi.org/10.1177/0148558x0001500307.
Повний текст джерелаMatsutani, Shigeki. "p-adic difference-difference Lotka-Volterra equation and ultra-discrete limit." International Journal of Mathematics and Mathematical Sciences 27, no. 4 (2001): 251–60. http://dx.doi.org/10.1155/s0161171201010808.
Повний текст джерелаMatenda, Frank Ranganai, Justin Chirima, and Mabutho Sibanda. "Valuation of Corporate Debt and Equity in Uncertain Markets." International Journal of Economics and Financial Issues 13, no. 1 (January 14, 2023): 7–12. http://dx.doi.org/10.32479/ijefi.13706.
Повний текст джерелаSchwaiger, Jens. "Connections Between the Completion of Normed Spaces Over Non-Archimedean Fields and the Stability of the Cauchy Equation." Annales Mathematicae Silesianae 34, no. 1 (July 1, 2020): 151–63. http://dx.doi.org/10.2478/amsil-2020-0002.
Повний текст джерелаShokrollahi, Foad. "Equity Warrants Pricing Formula for Uncertain Financial Market." Mathematical and Computational Applications 27, no. 2 (February 22, 2022): 18. http://dx.doi.org/10.3390/mca27020018.
Повний текст джерелаSchall, Lawrence D. "Valuation of an Equity Interest." Review of Pacific Basin Financial Markets and Policies 18, no. 04 (December 2015): 1550021. http://dx.doi.org/10.1142/s0219091515500216.
Повний текст джерелаLindgren, Jussi. "Efficient Markets and Contingent Claims Valuation: An Information Theoretic Approach." Entropy 22, no. 11 (November 12, 2020): 1283. http://dx.doi.org/10.3390/e22111283.
Повний текст джерелаAdamowicz, Krzysztof. "The unresolved problem of determining the forest interest rate." Folia Forestalia Polonica 60, no. 2 (June 1, 2018): 122–30. http://dx.doi.org/10.2478/ffp-2018-0012.
Повний текст джерелаSawal, A. S., S. N. I. Ibrahim, and T. R. N. Roslan. "Pricing equity warrants with jumps, stochastic volatility, and stochastic interest rates." Mathematical Modeling and Computing 9, no. 4 (2022): 882–91. http://dx.doi.org/10.23939/mmc2022.04.882.
Повний текст джерелаEKSTRÖM, ERIK, and JOHAN TYSK. "DUPIRE'S EQUATION FOR BUBBLES." International Journal of Theoretical and Applied Finance 15, no. 06 (September 2012): 1250041. http://dx.doi.org/10.1142/s0219024912500410.
Повний текст джерелаДисертації з теми "Valuation equation"
Raybould, Michael, and n/a. "Attitudes and Information Effects in Contingent Valuation of Natural Resources." Griffith University. Australian School of Environmental Studies, 2006. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20061009.150949.
Повний текст джерелаRaybould, Michael. "Attitudes and Information Effects in Contingent Valuation of Natural Resources." Thesis, Griffith University, 2006. http://hdl.handle.net/10072/367928.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Australian School of Environmental Studies
Full Text
Schwarz, Daniel Christopher. "Price modelling and asset valuation in carbon emission and electricity markets." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7de118d2-a61b-4125-a615-29ff82ac7316.
Повний текст джерелаDyrssen, Hannah. "Valuation and Optimal Strategies in Markets Experiencing Shocks." Doctoral thesis, Uppsala universitet, Tillämpad matematik och statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316578.
Повний текст джерелаOuyang, Yuhui. "Numerical Approximation of Valuation Equations Incorporating Stochastic Volatility Models." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/317.
Повний текст джерелаKuhn, Zuzana. "Ranges of vector measures and valuations." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/30875.
Повний текст джерелаKolesnichenko, Anna, and Galina Shopina. "Valuation of portfolios under uncertain volatility : Black-Scholes-Barenblatt equations and the static hedging." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1634.
Повний текст джерелаThe famous Black-Scholes (BS) model used in the option pricing theory
contains two parameters - a volatility and an interest rate. Both
parameters should be determined before the price evaluation procedure
starts. Usually one use the historical data to guess the value of these
parameters. For short lifetime options the interest rate can be estimated
in proper way, but the volatility estimation is, as well in this case,
more demanding. It turns out that the volatility should be considered
as a function of the asset prices and time to make the valuation self
consistent. One of the approaches to this problem is the method of
uncertain volatility and the static hedging. In this case the envelopes
for the maximal and minimal estimated option price will be introduced.
The envelopes will be described by the Black - Scholes - Barenblatt
(BSB) equations. The existence of the upper and lower bounds for the
option price makes it possible to develop the worse and the best cases
scenario for the given portfolio. These estimations will be financially
relevant if the upper and lower envelopes lie relatively narrow to each
other. One of the ideas to converge envelopes to an unknown solution
is the possibility to introduce an optimal static hedged portfolio.
Iben, Taarit Marouan. "Valorisation des ajustements Xva : de l’exposition espérée aux risques adverses de corrélation." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1059/document.
Повний текст джерелаThe point of departure of this thesis is the valuation of the expected exposure which represents one of the major components of XVA adjustments. Under independence assumptions with credit and funding costs, we derive in Chapter 3 a new representation of the expected exposure as the solution of an ordinary differential equation w.r.t the default time variable. We rely on PDE arguments in the spirit of Dupire’s local volatility equation for the one dimensional problem. The multidimensional extension is addressed using the co-area formula. This forward representation gives an explicit expression of the exposure’s time value, involving the local volatility of the underlying diffusion process and the first order Greek delta, both evaluated only on finite set of points. From a numerical perspective, dimensionality is the main limitation of this approach. Though, we highlight high accuracy and time efficiency for standalone calculations in dimensions 1 and 2.The remaining chapters are dedicated to aspects of the correlation risk between the exposure and XVA costs. We start with the general correlation risk which is classically modeled in a joint diffusion process for market variables and the credit/funding spreads. We present a novel approach based on asymptotic expansions in a way that the price of an XVA adjustment with correlation risk is given by the classical correlation-free adjustment to which is added a sum of explicit correction terms depending on the exposure Greeks. Chapter 4 is consecrated to the technical derivation and error analysis of the expansion formulas in the context of pricing credit contingent derivatives. The accuracy of the valuation approach is independent of the smoothness of the payoff function, but it is related to the regularity of the credit intensity model. This finding is of special interest for pricing in a real financial context. Pricing formulas for CVA and FVA adjustments are derived in Chapter 5, along with numerical experiments. A generalization of the asymptotic expansions to a bilateral default risk setting is addressed in Chapter 6.Our thesis ends by tackling the problem of modeling the specific Right-Way Risk induced by rating trigger events within the collateral agreements. Our major contribution is the calibration of a rating transition model to market implied default probabilities
Skogtrø, Bjørn Waage. "Valuating Forward Contracts in the Electricity Market using Partial Integro-differential Equations." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9662.
Повний текст джерелаe will evaluate forward contracts in the electricity market. A thorough presentation of stochastic analysis for processes with discontinuous paths are provided, and some results concerning these from mathematical finance are stated. Using a Feynman-Kac-type theorem by Pham we derive a partial integro-differential equation giving the forward price from the spot dynamics taken from Geman and Roncoroni. This spot model is regime switching, so we get two equations. These equations are then attempted solved numerically. We suggest the following approach: When implementing boundary-conditions numerically we use values obtained from a Monte Carlo simulation of the spot dynamics to calibrate the boundary.
Malloch, Hamish Jr. "The valuation of options on traded accounts: continuous and discrete time models." Thesis, The University of Sydney, 2010. http://hdl.handle.net/2123/7239.
Повний текст джерелаКниги з теми "Valuation equation"
Valuations and differential Galois groups. Providence, R.I: American Mathematical Society, 2011.
Знайти повний текст джерелаBeyna, Ingo. Interest Rate Derivatives: Valuation, Calibration and Sensitivity Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Знайти повний текст джерелаBeyna, Ingo. Interest Rate Derivatives: Valuation, Calibration and Sensitivity Analysis. Springer, 2013.
Знайти повний текст джерелаSobczyk, Eugeniusz Jacek. Uciążliwość eksploatacji złóż węgla kamiennego wynikająca z warunków geologicznych i górniczych. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, 2022. http://dx.doi.org/10.33223/onermin/0222.
Повний текст джерелаЧастини книг з теми "Valuation equation"
Poncet, Patrice, and Roland Portait. "The State Variables Model and the Valuation Partial Differential Equation." In Springer Texts in Business and Economics, 847–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84600-8_20.
Повний текст джерелаin ’t Hout, Karel. "Financial Option Valuation." In Numerical Partial Differential Equations in Finance Explained, 1–8. London: Palgrave Macmillan UK, 2017. http://dx.doi.org/10.1057/978-1-137-43569-9_1.
Повний текст джерелаBrigo, Damiano, Marco Francischello, and Andrea Pallavicini. "Analysis of Nonlinear Valuation Equations Under Credit and Funding Effects." In Innovations in Derivatives Markets, 37–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33446-2_2.
Повний текст джерела"Solving a nonlinear equation." In An Introduction to Financial Option Valuation, 123–30. Cambridge University Press, 2004. http://dx.doi.org/10.1017/cbo9780511800948.014.
Повний текст джерела"Simultaneous Equation Models for Security Valuation." In Financial Analysis, Planning & Forecasting, 1163–215. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814723855_0024.
Повний текст джерела"Simultaneous Equation Models for Security Valuation." In Security Analysis, Portfolio Management, and Financial Derivatives, 1027–80. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814343589_0026.
Повний текст джерела"MODERN RECURSIVE EQUILIBRIUM AND THE BASIC PRICING EQUATION." In The Economics of Business Valuation, 113–24. Stanford University Press, 2013. http://dx.doi.org/10.2307/j.ctvqsf1q5.12.
Повний текст джерелаAnderson, Patrick L. "MODERN RECURSIVE EQUILIBRIUM AND THE BASIC PRICING EQUATION." In The Economics of Business Valuation, 113–24. Stanford University Press, 2013. http://dx.doi.org/10.11126/stanford/9780804758307.003.0009.
Повний текст джерела"9. Modern Recursive Equilibrium and the Basic Pricing Equation." In The Economics of Business Valuation, 113–24. Stanford University Press, 2020. http://dx.doi.org/10.1515/9780804783224-010.
Повний текст джерелаNarwal, Karam Pal, and Sushila Soriya. "Relationship between Company's Intellectual Capital and Performance." In Asian Business and Management Practices, 190–209. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-6441-8.ch015.
Повний текст джерелаТези доповідей конференцій з теми "Valuation equation"
Senadheera, S., and E. Warusavitharana. "A Property valuation model to identify thriving real estate opportunities, based on spatial factors." In Independence and interdependence of sustainable spaces. Faculty of Architecture Research Unit, 2022. http://dx.doi.org/10.31705/faru.2022.21.
Повний текст джерелаSuhendra, Euphrasia Susy. "The Influence of Intellectual Capital on Firm Value towards Manufacturing Performance in Indonesia." In International Conference on Eurasian Economies. Eurasian Economists Association, 2015. http://dx.doi.org/10.36880/c06.01192.
Повний текст джерелаSaradva, Harshil, Christna Golaco, Matthew Robert, Siddharth Jain, Thurley Callum, Abdulhafid Bentaher, and Masoud Al Hamadi. "Generation of a Regional Fluid Database for Gas Condensate Assets in a Thrusted Carbonate Environment of the Northern Emirates." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211363-ms.
Повний текст джерела