Добірка наукової літератури з теми "Valorisation des microalgues"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Valorisation des microalgues".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Valorisation des microalgues"
Bauzá, J., B. Ruiz, A. Pascual, and L. Thomas. "Biomaqua project: Energetic valorisation of microalgae." Journal of Biotechnology 150 (November 2010): 183. http://dx.doi.org/10.1016/j.jbiotec.2010.08.476.
Повний текст джерелаGonzález, Inmaculada, Natalia Herrero, José Ángel Siles, Arturo F. Chica, M. Ángeles Martín, Carlos García Izquierdo, and José María Gómez. "Wastewater nutrient recovery using twin-layer microalgae technology for biofertilizer production." Water Science and Technology 82, no. 6 (August 10, 2020): 1044–61. http://dx.doi.org/10.2166/wst.2020.372.
Повний текст джерелаJuárez, Judit Martín, Jelena Vladic, Silvia Bolado Rodríguez, and Senka Vidovic. "Sequential valorisation of microalgae biomass grown in pig manure treatment photobioreactors." Algal Research 50 (September 2020): 101972. http://dx.doi.org/10.1016/j.algal.2020.101972.
Повний текст джерелаSahni, Prashant, Poonam Aggarwal, Savita Sharma, and Baljit Singh. "Nuances of microalgal technology in food and nutraceuticals: a review." Nutrition & Food Science 49, no. 5 (September 9, 2019): 866–85. http://dx.doi.org/10.1108/nfs-01-2019-0008.
Повний текст джерелаEsteves, Ana F., Sara M. Soares, Eva M. Salgado, Rui A. R. Boaventura, and José C. M. Pires. "Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal." Applied Sciences 12, no. 24 (December 8, 2022): 12608. http://dx.doi.org/10.3390/app122412608.
Повний текст джерелаSepúlveda-Muñoz, Cristian A., Ignacio de Godos, and Raúl Muñoz. "Wastewater Treatment Using Photosynthetic Microorganisms." Symmetry 15, no. 2 (February 16, 2023): 525. http://dx.doi.org/10.3390/sym15020525.
Повний текст джерелаHuang, Zhigang, Jiang Zhang, Minmin Pan, Yuhang Hao, Ruichen Hu, Wenbo Xiao, Gang Li, and Tao Lyu. "Valorisation of microalgae residues after lipid extraction: Pyrolysis characteristics for biofuel production." Biochemical Engineering Journal 179 (February 2022): 108330. http://dx.doi.org/10.1016/j.bej.2021.108330.
Повний текст джерелаMilhazes-Cunha, Hugo, and Ana Otero. "Valorisation of aquaculture effluents with microalgae: The Integrated Multi-Trophic Aquaculture concept." Algal Research 24 (June 2017): 416–24. http://dx.doi.org/10.1016/j.algal.2016.12.011.
Повний текст джерелаAmaro, Helena M., Eva M. Salgado, Olga C. Nunes, José C. M. Pires, and Ana F. Esteves. "Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation." Journal of Environmental Management 337 (July 2023): 117678. http://dx.doi.org/10.1016/j.jenvman.2023.117678.
Повний текст джерелаSpennati, Elena, Alessandro Alberto Casazza, Attilio Converti, Matthew P. Padula, Fariba Dehghani, Patrizia Perego, and Peter Valtchev. "Winery waste valorisation as microalgae culture medium: A step forward for food circular economy." Separation and Purification Technology 293 (July 2022): 121088. http://dx.doi.org/10.1016/j.seppur.2022.121088.
Повний текст джерелаДисертації з теми "Valorisation des microalgues"
Zea, OBANDO Claudia Yamilet. "Caractérisation et valorisation de microalgues tropicales." Thesis, Lorient, 2015. http://www.theses.fr/2015LORIS385/document.
Повний текст джерелаBiomass of tropical microalgae have natural virtues that can be used in a wide range of bioproducts. Their valuation can enable sustainable and commercially viable production. Indeed, tropical microalgae represent a large biodiversity and benefit from favourable environmental conditions for large scale production. In this context, this thesis aims to explore new tropical strains to determine their potential development in the field of biotechnology, particularly in three areas: energy, nutraceutical and antifouling. This field is studied in the project ANR-CD2I "BIOPAINTROP" whose objective is the eco-responsible fight against biofouling. These works target biotechnological applications, but also development of new methods to characterize antifouling activity.Of the 50 strains studied, some have shown interest in the production of metabolites such as glycosyl glycerol, quality nutraceutical and lipids for biodiesel production. The Amphidinium sp. (P-43) stain led to a methanol extract having biological activity of interest. Its efficiency against biofilm was demonstrated. Moreover, the ecotoxicology study has suggested a low environmental impact
Audoin, Coralie. "Valorisation de métabolites secondaires issus de micro-algues : approches métabolomiques, isolement et caractérisation structurale." Thesis, Nice, 2013. http://www.theses.fr/2013NICE4068.
Повний текст джерелаMicroalgae are present both in Oceans and freshwaters and could include more than 200 000 species. This diversity is a source of original specialized metabolites that can find a large array of applications. Pigments, lipids, proteins, polysaccharides and carotenoids are usual compounds produced by microalgae that have found commercial applications. A global vision of the metabolome of each species has showed promises to highlight the commercial value of this “microdiversity”. We then decided to assess the metabolome of several microalgae species grown at the Greensea company by using HPTLC, NMR and UHPLC-QTOF techniques for a rapid and global overview. A classification of the species according to their metabolomics similarities was obtained after statistics treatment of the data. A second part was dedicated to a phytochemical study of the extracts of selected strains and led to the isolation and characterization of several metabolites. Thus, in addition to known molecules, an original peptide substituted by an isoprenyl moiety and named cumbriamide has been characterized in Lyngbya sp and a first assessment of its therapeutical potential has been undertaken. Glycolipids have been identified as the major metabolites in the extracts of numerous strains and a UHPLC-QTOF method was developed for their identification. Finally, several applications of the metabolomics approaches were considered. Chemotaxonomic studies were first carried out and the influence of growth conditions on the metabolome of Nannochloropsis oculata was observed
Calabro, Kevin. "Valorisation dans le domaine de la cosmétique de métabolites produits par microalgues et cyanobactéries." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4100.
Повний текст джерелаThe sectors of fragrances and cosmetics play a prominent role in the modern society. During the last decades, several companies have been focusing on nature to provide innovative products. Plants have historically been considered the main raw material in the cosmetic field but, recently, microalgae have been identified as a worthy competitor due to the facility to obtain biomass. Thus, the company Cosmo International Ingredients supported this PhD. thesis to broaden their range of raw materials that can be used for the cosmetic industry. First, the phytochemical study of Peruvian microalgae allowed the isolation of a major family of metabolites: glycolipids. An environmentally-friendly, selective and low-cost method for their extraction from the biomass has been developed. Cyanobacteria known for their production of structurally diverse metabolites have been selected for culture following specific criteria; as a result 5 compounds have been isolated and fully characterized, 4 of which were peptides and one was an indole alkaloid. Finally, to optimize the production of the targeted bioactive peptides, a kinetic study was performed for 3 different temperatures and 3 different light intensities. These parameters were found to play a critical role for the peptide production
Avila, Cintia Romina. "Microalgae-based systems for micropollutants removal, resource recovery and bioenergy production towards a circular bioeconomy approach." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673680.
Повний текст джерелаLas tecnologías basadas en microalgas ofrecen una solución prometedora para cambiar el foco desde el tratamiento de residuos y aguas hacia la recuperación de energía y recursos. Las microalgas eliminan nutrientes de las aguas residuales y producen oxígeno para que las bacterias biodegraden la materia orgánica. Estos procesos se implementaron con éxito en el tratamiento de aguas residuales urbanas, pero en las ciudades cada vez más industrializadas y en los entornos agrícolas, el reto es determinar si estos sistemas pueden degradar contaminantes orgánicos como los pesticidas. La biomasa algal puede valorizarse para producir biocombustibles y otros bio-productos. La digestión anaeróbica es una tecnología consolidada para convertir residuos orgánicos en energía renovable (biogás). La co-digestión anaerobia de dos o más residuos contribuye a superar los inconvenientes de la mono-digestión e impulsa la producción de energía. Esta tesis evalúa diferentes procesos incluidos en el concepto de biorrefinería de microalgas: utilización de las algas para degradar micro-contaminantes, producción de energía mediante la digestión anaerobia de algas, la co-digestión con otros residuos cercanos, y la utilización de flujos de residuos como fertilizantes. Primero, se estudió la degradación individual de tres pesticidas polares y tres pesticidas hidrofóbicos mediante un cultivo de microalgas y otros microorganismos. Se estudiaron diferentes condiciones para determinar los mecanismos de degradación. La biodegradación y la foto-degradación contribuyeron a la eliminación del propanil (100%), acetamiprid (100%), oxadiazon (55%), clorpirifós (35%) y la cipermetrina (14%). Más del 60% del clorpirifós y la cipermetrina se eliminaron por bio-sorción. Se identificaron los productos de transformación generados por las microalgas para el clorpirifós, el acetamiprid y el propanil. Se evaluó el rendimiento de un fotobiorreactor piloto de exterior operado a un TRH de 8 días en el tratamiento de aguas residuales sintéticas conteniendo una mezcla de pesticidas. Se evaluó la capacidad de degradación cuantificando la eliminación de nutrientes y pesticidas, y se detectaron los productos de transformación. Las eficiencias de eliminación de nitratos and ortofosfato fueron del 24 y 94%, respectivamente. El propanil y el acetamiprid se eliminaron eficazmente (99 y 71%, respectivamente), principalmente por biodegradación. La digestión anaeróbica de las algas no fue inhibida por los pesticidas retenidos. Para mejorar la solubilidad y la digestibilidad anaeróbica de la biomasa algal, se evaluaron diferentes pretratamientos energéticamente eficientes. Previamente, se estudió la cosecha de las microalgas mediante técnicas de bajo coste: sedimentación natural, coagulación-floculación y floculación inducida por pH. Los pretratamientos se aplicaron antes de la co-digestión anaeróbica de las microalgas con lodos activados. Se evaluó el efecto de los pretratamientos térmicos a baja temperatura para las mezclas de microalgas y lodos, y se investigó el efecto de los pretratamientos enzimáticos en la solubilización de la pared celular de las microalgas. En ambos casos, se comprobó el efecto del pretratamiento en el rendimiento de biogás. La solubilidad de las algas aumentó, incrementando el rendimiento de metano. Sin embargo, en la co-digestión de lodos y algas, incluso cuando la solubilidad aumentó tras el pretratamiento, la producción de biogás no incrementó. Además, esta tesis evalúa un caso de estudio para la integración de un sistema basado en microalgas en la planta de tratamiento de aguas residuales de una empresa vinícola para aplicar un enfoque circular en la recuperación de nutrientes y energía de sus aguas residuales y lodos. El tratamiento terciario de las aguas residuales mediante microalgas eliminó eficazmente el amonio (97%) y el ortofosfato (93%). La biomasa algal fue co-digerida en un digestor anaerobio piloto de 50 L con lodos produciendo 225.8 NL CH4 kg VS-1. Los digestatos de mono-digestión y co-digestión y la biomasa seca de algas mejoraron la acumulación de biomasa vegetal al usarlos como fertilizantes.
Microalgae-based technologies offer a promising solution to shift the focus from wastes and wastewater treatment, toward energy and resource recovery. In these systems, microalgae remove nutrients from wastewater and produce oxygen useful for bacteria to biodegrade organic matter. This has been fully demonstrated in urban wastewater treatment, but in increasingly industrialised cities and agricultural environments, the challenge is to determine if microalgae-based systems can degrade organic micropollutants such as pesticides. Microalgae biomass can be further valorised for the production of biofuels and valuable bioproducts. Anaerobic digestion is one of the most established technologies to convert organic wastes into renewable energy in the form of biogas. Another opportunity is the simultaneous anaerobic co-digestion of two or more bio-wastes, contributing to overcome the drawbacks of mono-digestion and boosting energy production in anaerobic digestion plants. Nonetheless, microalgae anaerobic digestion is generally hindered by the recalcitrancy of their cell walls, which lead to low methane potential. The present thesis assesses different processes included in the microalgal biorefinery concept: utilisation of algae for micropollutant degradation, energy production by algal anaerobic digestion, co-digestion with other nearby wastes, and utilisation of waste streams as fertilizers. First, it was studied the individual degradation of three polar and three hydrophobic pesticides frequently found in surface waters by a mixed-microalgae culture. Different conditions were studied to determine the main degradation mechanisms. Biodegradation plus photodegradation contributed to the removal of propanil (100%), acetamiprid (100%), oxadiazon (55%), chlorpyrifos (35%), and cypermethrin (14%) while more than 60% of chlorpyrifos and cypermethrin were removed by bio-sorption. Transformation products generated by the active microalgae were identified for chlorpyrifos, acetamiprid, and propanil. The performance of an outdoor pilot-photobioreactor operated at a HRT of 8 days in the treatment of synthetic wastewater containing a mixture of selected pesticides was assessed. During the steady-state, degradation capacity was evaluated by quantifying nutrients and pesticides removal, and transformation products were detected. Nitrate and ortophosphate removal efficiencies were 24 and 94%, respectively. Propanil and acetamiprid were effectively removed (99 and 71%, respectively) mainly by algal-mediated biodegradation as confirmed by the transformation products detected. The anaerobic digestion of the algal biomass was not inhibited by the retained pesticides. To enhance the solubility and the anaerobic digestibility of algal biomass, different mild pretreatments were assessed. Formerly, microalgal harvesting was tested by different cost-effective techniques: sedimentation, coagulation-flocculation, and pH-induced flocculation. The pretreatments were applied before the anaerobic co-digestion of microalgae with sludge. The effect of thermal pretreatments at low temperature were evaluated for microalgae and sludge mixtures. Additionally, the effect of enzymatic pretreatments on microalgae cell wall solubilisation was investigated. In both cases, the effect of the pretreatment in the biogas yield was tested. Results indicate that algal biomass solubility increased and led to a higher methane yield. Nonetheless, in the co-digestion of sludge and algal biomass, even when biomass solubility was enhanced after the pretreatment, biogas production did not increase. Furthermore, this thesis assesses a case study for the integration of a microalgae-based system into the industrial wastewater treatment plant of a winery company looking for a circular approach for nutrients and bioenergy recovery from wastewater and sludge. Tertiary wastewater treatment by microalgae efficiently removed ammonium (97%) and phosphate (93%). Algal biomass was co-digested in a 50 L pilot anaerobic digester with sludge obtaining a yield of 225.8 NL CH4 kg VS-1. The digester was operated in SBR mode showing adaptations to substrate variability over time. The valorisation of the generated bio-wastes for fertilization indicate that mono- and co-digestion digestates and dry algal biomass improved plant biomass accumulation (growth indexes of 163, 155 and 121% relative to those of the control -commercial amendment-).
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència i Tecnologia Ambientals
Filali, Rayen. "Estimation et commande robustes de culture de microalgues pour la valorisation biologique de CO2." Phd thesis, Supélec, 2012. http://tel.archives-ouvertes.fr/tel-00765421.
Повний текст джерелаDAURINCHE, ISABELLE. "Valorisation des microalgues : culture en bassin; teneurs en lipides; influence des facteurs de l'environnement." Caen, 1991. http://www.theses.fr/1991CAEN2032.
Повний текст джерелаJubeau, Sébastien. "Application du concept de bioraffinerie à la valorisation de la microalgue Porphyridium cruentum." Nantes, 2012. http://www.theses.fr/2012NANT2105.
Повний текст джерелаBiorefinery is the same methodology used in oil industry to separate each component of a biomass and to transform them into high value products. The microalga Porphyridium curentum is well referenced in the literature as a producer of many metabolites of interest like pigments (B-Phycoerythrin, zeaxanthin), ω3 and ω6 fatty acids and exopolysaccharides (EPS). We propose to apply the concept of biorefinery to P. Cruentum in order to produce different extracts of interest and so to make the biomass production profitable. We experimentally developed a process to produce and to separate the different fractions of P. Cruentum made of 4 main steps: cultivation and harvesting of the algae, cell disruption, separation of each biochemical family and purification of the latter. The optimization of culture conditions leads to a production of microalgae at the concentration of 2. 7g. L-1. Different cell destruction techniques have been tested such as high pressure cell disruption and freezing/thawing. Their impact on the molecules extracted has also been studied. A selective two-steps process has been developed to obtain pre-purified B-phycoerythrin extract. The purification of the latter has been tested by two different methods: the selective precipitation using ammonium sulfate and the tangential filtration on membrane. High purity levels (IP=3) have been reached using a filtration on polyethersulfone membrane (30kDa). 3 protocols have been developed and tested to promote the whole biomass
Marcilhac, Cyril. "Étude des conditions de culture d'un écosystème complexe microalgues / bactéries : application au développement d'un procédé d'extraction-valorisation des nutriments issus des digestats." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S078/document.
Повний текст джерелаThe culture conditions of autotrophic microalgae in open system associating microalgae/bacteria were studied in this thesis. The objective was to develop a process to valorize nutrients (N, P) contained in the liquid phase of digestate coming from agricultural methanization. First, a synthesis of anaerobic digestion process followed by a state of art on microalgae and their culture conditions allowed to highlight the main parameters specific to the studied influent, such as coloration, and the interactions with nitrification-denitrification processes. To better understand the mechanisms and study the impact of the main parameters, a laboratory-scale pilot composed of six 2.5L-reactors was designed and specific analyses were developed at the laboratory. With the help of those tools, effects of color and light on light penetration and on microalgae growth were quantified. Then, the study of the N:P ratio of the medium allowed to highlight the phosphorus storage by microalgae, allowing them to continue their growth while the phosphorus of the medium was depleted. Thereafter, the carbon dioxide transfer and its impact on microalgae growth were studied. The algal productivity is a function of the quantity of provided CO2 into the culture and fall to zero without injection. Finally, the study of solid retention time and extraction rate revealed that nitrification-denitrification is an important mechanism for nitrogen removal in a continuous algae culture in open system. This mechanism may even be predominant compared to nitrogen assimilation by microalgae under certain conditions. The proportion of each of these processes may still be controlled by these parameters. These experiments have also provided insight into the interactions between microalgae and nitrifying bacteria and the predominance of algae genera depending on culture conditions. Microalgae are better competitors on phosphorus than nitrifying bacteria. Furthermore, in non-limiting phosphorus conditions, nitrification is reduced in proportion to algal productivity. Scenedesmus and Chlorella proved to be dominant respectively when phosphorus and light are limiting. The experimental trials were completed by the development or the adaptation of biokinetic models able to represent quite accurately microalgae growth and nitrogen removal. From this model, different configurations were simulated to design high rate algal pond and assess the feasibility of the algal culture to extract nutrients from digestate
Bélair, Viviane. "Développement de nouvelles techniques d’extraction des lipides à partir des microalgues en vue de leur valorisation en biocarburant." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28924/28924.pdf.
Повний текст джерелаSialve, Bruno. "Couplage des cultures de microalgues avec la méthanisation : Traitement et valorisation de la matière et de l’énergie dans le cadre de la bioraffinerie environnementale." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0062.
Повний текст джерелаIn recent years, there has been an explosion of interest in the use of microalgae as a source of bioenergy. Mass cultivation of microalgae for bioenergy production promises several advantages compared to first and second generation biofuels. However, similar difficulties in terms of nutrient requirements and an unfavourable energy balance are faced. As a consequence, achieving the sustainable levels of microalgal culture required to implement this strategy in the longer term appears problematic. The work presented in this thesis focuses on anaerobic digestion; a solution which allows both recycling of nutrients and supply of energy to the production and downstream processes. In particular, the studies presented here have been directed towards the integration of microalgal culture and methanisation, at both the laboratory and pilot scale. The guiding principle used is conversion of biomass and provision of nutrients to the culture. We first identified the constraints and potential strategies associated with the aerobic biodegradability of microalgae. Next, we demonstrated that the energetic potential of cells is limited by their quality as well as their level of resistance to biological degradation. We have shown that it is possible to optimise the conversion step, increasing energy yields and nutrient mineralisation via a strategy of thermal pretreatment The use of a natural microalgae-bacteria ecosystem which uses a synthetic digestate as culture media, revealed a key role for bacterial flora interacting with microalgae. These results were further tested in a pilot-level production system specifically designed to address these questions. The evidence suggests that the characteristics of the culture pond determine both the hydrodynamic behaviour of the culture and the physical and ecological behaviour of the phytoplanktonic population. A study of the dynamics of the microbial, eukaryotic and prokaryotic communities suggests the presence of a resilient and complex ecosystem, which is influenced by variations in its environment. The results of this work provide opportunities for management and optimisation of processes integrating microalgae cultivation and methanisation beyond bioenergy production, for example liquid wastes treatment and production of high-value byproducts
Частини книг з теми "Valorisation des microalgues"
Hussain, Julfequar, Kaveri Dang, Shruti Chatterjee, and Ekramul Haque. "Microalgae Mediated Sludge Treatment." In Waste Management, Processing and Valorisation, 159–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7653-6_9.
Повний текст джерелаEncarnação, Telma, Pedro Ramos, Danouche Mohammed, Joe McDonald, Marco Lizzul, Nadia Nicolau, Maria da Graça Campos, and Abílio J. F. N. Sobral. "Bioremediation Using Microalgae and Cyanobacteria and Biomass Valorisation." In Environmental Challenges and Solutions, 5–28. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17226-7_2.
Повний текст джерелаKumar, Dipesh, Bhaskar Singh, and Ankit. "Phycoremediation of Nutrients and Valorisation of Microalgal Biomass: An Economic Perspective." In Application of Microalgae in Wastewater Treatment, 1–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13909-4_1.
Повний текст джерелаReno, Ulises, Luciana Regaldo, and Ana María Gagneten. "Circular Economy and Agro-Industrial Wastewater: Potential of Microalgae in Bioremediation Processes." In Valorisation of Agro-industrial Residues – Volume I: Biological Approaches, 111–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39137-9_5.
Повний текст джерелаChuck, Christopher J., Jonathan L. Wagner, and Rhodri W. Jenkins. "Biofuels from Microalgae." In Chemical Processes for a Sustainable Future, 423–42. The Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/bk9781849739757-00423.
Повний текст джерела