Добірка наукової літератури з теми "Vacuum optical thin-film coating"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Vacuum optical thin-film coating".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Vacuum optical thin-film coating"
SHI, X., Y. H. HU, and L. HU. "TETRAHEDRAL AMORPHOUS CARBON (Ta-C) ULTRA THIN FILMS FOR SLIDER OVERCOAT APPLICATION." International Journal of Modern Physics B 16, no. 06n07 (March 20, 2002): 963–67. http://dx.doi.org/10.1142/s0217979202010683.
Повний текст джерелаD'Alessandro, Carmine, Davide de Maio, Daniela de Luca, Emiliano di Gennaro, Mariano Gioffrè, Mario Iodice, Marilena Musto, Giuseppe Rotondo, Davide Dalena, and Roberto Russo. "Solar Selective Coating for Thermal Applications." Key Engineering Materials 813 (July 2019): 316–21. http://dx.doi.org/10.4028/www.scientific.net/kem.813.316.
Повний текст джерелаSHARMA, SUDHIR KUMAR, V. K. SHARMA, and K. N. TRIPATHI. "FABRICATION AND CHARACTERIZATION OF MULTILAYER WAVEGUIDE FOR INTEGRATED OPTICS." Journal of Nonlinear Optical Physics & Materials 11, no. 02 (June 2002): 173–78. http://dx.doi.org/10.1142/s0218863502000936.
Повний текст джерелаŞenay, Volkan, Soner Özen, Suat Pat, Birol Geçici, and Şadan Korkmaz. "A new method for titania thin film production." Journal of Thermoplastic Composite Materials 30, no. 6 (November 5, 2015): 808–15. http://dx.doi.org/10.1177/0892705715614060.
Повний текст джерелаDang, Jun-Po, Xiu-Juan Jiang, and Zhen-Hua Tang. "Technique of TiNi-based shape memory alloy thin film coating on optical fibers." Acta Physica Sinica 71, no. 3 (2022): 030701. http://dx.doi.org/10.7498/aps.71.20211437.
Повний текст джерелаZhang, Yu, Jiancang Su, Xudong Qiu, Rui Li, Liang Zhao, Binxiong Yu, Jie Cheng, Bo Zeng, and Xiudong Xu. "The effects of cathode electrodeposited polymer film on the long vacuum gap breakdown." European Physical Journal Applied Physics 81, no. 2 (February 2018): 21301. http://dx.doi.org/10.1051/epjap/2018170306.
Повний текст джерелаVenugopal, N., and Anirban Mitra. "Plasmonics Properties of ZnO/Ag/ZnO Multilayer Thin Films." Advanced Materials Research 585 (November 2012): 214–18. http://dx.doi.org/10.4028/www.scientific.net/amr.585.214.
Повний текст джерелаDurisch, W., F. von Roth, and W. J. Tobler. "Advances in Gas-Fired Thermophotovoltaic Systems." Journal of Solar Energy Engineering 129, no. 4 (May 16, 2007): 416–22. http://dx.doi.org/10.1115/1.2770749.
Повний текст джерелаLv, Qinghua, Jiachen Cui, Hasila Jarimi, Hui Lv, Zhongsheng Zhai, Yuehong Su, Saffa Riffat, and Shijie Dong. "Theoretic analysis and experimental evaluation of the spectrum transmission coefficient of a multilayer photovoltaic vacuum glazing." International Journal of Low-Carbon Technologies 15, no. 4 (September 15, 2020): 574–82. http://dx.doi.org/10.1093/ijlct/ctaa026.
Повний текст джерелаDahan, Nathaniel, Nick Donaldson, Stephen Taylor, and Nuno Sereno. "Prolonging the Lifetime of PEEK Packages for Implantable Electronic Devices Using Commercially Available Vacuum Thin Film Coatings." Journal of Microelectronics and Electronic Packaging 11, no. 3 (July 1, 2014): 128–36. http://dx.doi.org/10.4071/imaps.417.
Повний текст джерелаДисертації з теми "Vacuum optical thin-film coating"
Петров, Дмитро Вікторович. "Технологія оптичних кольорових стекол інфрачервоного діапазону спеціального призначення". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41528.
Повний текст джерелаDissertation for the Ph.D. degree in specialty 05.17.11 – "Technology of refractory nonmetallic materials". – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The dissertation is devoted to the development of infrared optical glasses with next spectral characteristics, as well as the creation of technologies for their production. The spectral characteristics are transmittance at a wavelength of 1060 nm 1060 τ (λ₁₀₆₀)>65% and absorption in the spectral range up to 950 nm. The solution to this problem was achieved due to the addition of the Cr₂O₃-Mn₂O₃ colorant system to the glass matrix of the R₂O-PbO-SiO₂ system, as well as the additional optical thin-film coatings. For production implementation optical color glass a pot regenerator furnace was used. The ceramic vessel with a volume of 500 liters was chosen. The temperature of the production was 1420 ± 20 °С. To improve the quality of optical glass practical studies were carried out. These studies devote to the modes of batch filling, mixing and temperature parameters. Fundamental researches were conducted on the mode of cooling of colored optical glass. For the first time for such glasses the stage of cooling made by inertia cooling of the furnace construction without gas. Due to introduction of the results and improving of the spectral parameters the volume of quality glass yield has increased. The software was developed to control the technological processes of the furnace in automatic mode.
Петров, Дмитро Вікторович. "Технологія оптичних кольорових стекол інфрачервоного діапазону спеціального призначення". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41488.
Повний текст джерелаDissertation for the Ph.D. degree in specialty 05.17.11 – "Technology of refractory nonmetallic materials". – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The dissertation is devoted to the development of infrared optical glasses with next spectral characteristics, as well as the creation of technologies for their production. The spectral characteristics are transmittance at a wavelength of 1060 nm 1060 τ (λ₁₀₆₀)>65% and absorption in the spectral range up to 950 nm. The solution to this problem was achieved due to the addition of the Cr₂O₃-Mn₂O₃ colorant system to the glass matrix of the R₂O-PbO-SiO₂ system, as well as the additional optical thin-film coatings. For production implementation optical color glass a pot regenerator furnace was used. The ceramic vessel with a volume of 500 liters was chosen. The temperature of the production was 1420 ± 20 °С. To improve the quality of optical glass practical studies were carried out. These studies devote to the modes of batch filling, mixing and temperature parameters. Fundamental researches were conducted on the mode of cooling of colored optical glass. For the first time for such glasses the stage of cooling made by inertia cooling of the furnace construction without gas. Due to introduction of the results and improving of the spectral parameters the volume of quality glass yield has increased. The software was developed to control the technological processes of the furnace in automatic mode.
Edström, Curt. "Wet etching of optical thin films." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Kemiteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-13988.
Повний текст джерелаUtvärdering av våtkemiska egenskaper för flera olika oxidtunnfilmer utfördes idetta arbete på tunnfilmer av MgO, Al2O3, SiO2, TiO2, HfO2 ZrO2 and Y2O3 vakuumdeponerade på både kiselwafers och borosilikatglas. Etstester gjordes med ett flertal etslösningar. Även MgF2-tunnfilmer utvärderades. Både optiska och kemiska egenskaper togs i beaktande vid utvärderingen av tunnfilmerna. De optiska lagar som gäller för tunnfilmer redovisas, bl a hur kombinationer av olika oxider kan skapa interferrensfilter. En beskrivning av tillverkningsprocessen varvid PVD användes presenteras. Termiskt skift av det optiska transmissionsspektrat orsakat av porositet undersöktes. Analyser av tunnfilmerna med ellipsometri, profilometri och transmissions spektroskopi utfördes. Våtetsningsegenskaperna utvärderades genom att mäta in-situ vid etsprocessen på transparenta borosilikatglassubstrat. Metoden för att mäta etshastigheten för olika oxider är beskriven. Datorberäkningar av pourbaixdiagram användes för att skapa en förståelse av de kemiska egenskaperna för etslösningarna. Etsegenskaperna påverkas till stordel av lösningens pH. TiO2 kan etsas i basisk lösning av peroxid. Denna process utvärderades, likaså utvärderades etshasigheten för Y2O3 och SiO2 för att erhålla matchande par avoxider som en fallstudie. Grupp IVB oxiderna är mycket svåra att etsa. Katalytisk etsning av TiO2 med peroxid är detekterbar men långsam. Al2O3, Y2O3 och MgO är förhållandevis enkla att etsa men har för låga brytningsindex för att var praktiskt använbara i optiska multilagerfilter. In-situ etsinstrumentet befanns vara ett utmärkt verktyg för att mäta etshastigheten för tunnfilmer.
Antelius, Mikael. "Wafer-scale Vacuum and Liquid Packaging Concepts for an Optical Thin-film Gas Sensor." Doctoral thesis, KTH, Mikro- och nanosystemteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119839.
Повний текст джерелаQC 20130325
Simon, Darren, and s3027589@student rmit edu au. "Chemistry and Morphology of Polymer Thin Films for Electro-Optical Application." RMIT University. Applied Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070123.122707.
Повний текст джерелаSingh, Harpal. "An Investigation of Material Properties and Tribological Performance of Magnetron Sputtered Thin Film Coatings." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1449850005.
Повний текст джерелаAzunre, Paul. "A parallel branch-and-bound algorithm for thin-film optical systems, with application to realizing a broadband omnidirectional antireflection coating for silicon solar cells." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/96436.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 124-129).
For the class of nondispersive, nonabsorbing, multilayer thin-film optical systems, this thesis work develops a parallel branch-and-bound computational system on Amazon's EC2 platform, using the Taylor model mathematical/computational system due to Berz and Makino to construct tight rigorous bounds on the merit function on subsets of the search space (as required by a branch-and-bound algorithm). This represents the first, to the best of our knowledge, deterministic global optimization algorithm for this important class of problems, i.e., the first algorithm that can guarantee that a global solution to an optimization problem in this class has been found. For the particular problem of reducing reflection using multilayer systems, it is shown that a gradient index constraint on the solution can be exploited to significantly reduce the search space and thereby make the algorithm more practical. This optimization system is then used to design a broadband omnidirectional antireflection coating for silicon solar energy. The design is experimentally validated using RF sputtering, and shows performance that is competitive with existing solutions based on impractical sophisticated nano-deposition techniques, as well as the more practical but also more narrowly applicable solutions based on texturing. This makes it arguably the best practical solution to this important problem to date. In addition, this thesis develops a mathematical theory for cheaply (in the computational sense) and tightly bounding solutions to parametric weakly-coupled semilinear parabolic (reaction-diffusion) partial differential equation systems, as motivated by the design of tandem organic solar cell structures (which are governed by the drift-diffusion-Poisson system of equations). This represents the first theoretical foundation, to the best of our knowledge, to enable guaranteed global optimization of this important class of problems, which includes, but is broader, than many semiconductor design problems. A serial branch-and-bound algorithm implementation illustrates the applicability of the bounds on a pair of simple examples.
by Paul Azunre.
Ph. D.
Shah, Dhruv. "Thin Film Deposition on Powder Substrates using ALD and its Characterization using XPS, TEM, and SE." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8990.
Повний текст джерелаLaine, Guy C. "CHARACTERIZATION OF AND CONTROLLING MORPHOLOGY OF ULTRA-THIN NANOCOMPOSITES." UKnowledge, 2013. http://uknowledge.uky.edu/cme_etds/23.
Повний текст джерелаBarutcu, Burcu. "The Design And Production Of Interference Edge Filters With Plasma Ion Assisted Deposition Technique For A Space Camera." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614574/index.pdf.
Повний текст джерелаКниги з теми "Vacuum optical thin-film coating"
Development of multilayer optical thin film coatings and devices with vacuum coating unit "VERA-902". Mumbai: Bhabha Atomic Research Centre, 1999.
Знайти повний текст джерелаK, Sahoo N., and Bhabha Atomic Research Centre, eds. ION assisted deposition of refractory oxide thin film coatings for improved optical and structural properties. Mumbai: Bhabha Atomic Research Centre, 1999.
Знайти повний текст джерела1941-, Boulos Edward N., Platts Dennis R, and International Conference on Processing Materials for Properties (1st : 1993 : Honolulu, Hawaii), eds. Glass and optical materials II: Optoelectronics, thin film coating, sol-gel processing. Westerville, Ohio: American Ceramic Society, 1994.
Знайти повний текст джерелаInternational Conference on Processing Materials for Properties 1993 (Corporate Author), Edward N. Boulos (Editor), and Dennis R. Platts (Editor), eds. Glass and Optical Materials II: Optoelectronics, Thin Film Coating Sol-Gel Processing. American Ceramic Society, 1997.
Знайти повний текст джерела1930-, Bach Hans, and Krause Dieter 1933-, eds. Thin films on glass. 2nd ed. Berlin: Springer, 2003.
Знайти повний текст джерела1930-, Bach Hans, and Krause Dieter 1933-, eds. Thin films on glass. Berlin: Springer, 1997.
Знайти повний текст джерелаBach, Hans, and Dieter Krause. Thin Films on Glass. Springer, 2012.
Знайти повний текст джерелаThin Films on Glass (Schott Series on Glass and Glass Ceramics). Springer, 2003.
Знайти повний текст джерелаЧастини книг з теми "Vacuum optical thin-film coating"
Grunwald, R., S. Woggon, and R. Ehlert. "Fabrication of Thin-Film Microlens Arrays by Mask-Shaded Vacuum Deposition." In Diffractive Optics and Optical Microsystems, 169–77. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1474-3_16.
Повний текст джерелаBera, Amalendu, and Sourav Chattopadhyay. "Optical Properties of Fe-Doped ZnO Thin Film on p-Si by Spin Coating." In Computational Advancement in Communication Circuits and Systems, 387–95. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8687-9_35.
Повний текст джерелаRana, Paramjit, S. K. Mishra, Jaya Mukherjee, and V. S. Rawat. "Multilayer Dielectric Thin Film Optical Coating Design for Single Wavelength Operation of Inherently Dual Wavelength Copper Vapor Laser." In Springer Proceedings in Physics, 849–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_196.
Повний текст джерелаSaurdi, I., M. H. Mamat, A. Ishak, and M. Rusop. "Structural, Optical and Electrical Properties of Nano-structured Sn-doped ZnO Thin Film via Sol Gel Spin Coating Technique." In InCIEC 2014, 937–47. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-290-6_82.
Повний текст джерелаSymmons, Alan, and Mark Lifshotz. "Thin Film Coating." In Field Guide to Infrared Optical Materials. SPIE, 2021. http://dx.doi.org/10.1117/3.2589608.ch87.
Повний текст джерела"Factors affecting layer and coating properties." In Thin-Film Optical Filters, 488–513. CRC Press, 2001. http://dx.doi.org/10.1201/9781420033236-15.
Повний текст джерела"Factors affecting layer and coating properties." In Thin-Film Optical Filters, Third Edition, 462–87. Taylor & Francis, 2001. http://dx.doi.org/10.1201/9781420033236.ch10.
Повний текст джерела"Factors Affecting Layer and Coating Properties." In Thin-Film Optical Filters, Fourth Edition, 569–94. CRC Press, 2010. http://dx.doi.org/10.1201/9781420073034-c12.
Повний текст джерелаAcosta, Edwin. "Thin Films/Properties and Applications." In Thin Films. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95527.
Повний текст джерелаTufail Chaudhary, Kashif. "Thin Film Deposition: Solution Based Approach." In Thin Films [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94455.
Повний текст джерелаТези доповідей конференцій з теми "Vacuum optical thin-film coating"
Tajima, Naoya, Hiroshi Murotani, Shigeharu Matumoto, and Hiromitu Honda. "Stress Control of an Optical Thin Film by Sputtering and Vacuum Deposition." In Optical Interference Coatings. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/oic.2016.wb.9.
Повний текст джерелаkaite, takashi. "The mechanical properties of the SiO2 optical thin film produced by compound film formation of sputtering and vacuum deposition." In Optical Interference Coatings. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/oic.2013.wa.6.
Повний текст джерелаDavis, John. "Particle Monitoring and Control Prior to Coating Optical Thin Films." In 61st Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2018. http://dx.doi.org/10.14332/svc18.proc.0008.
Повний текст джерелаDrobotun, Valery, and Andrei Rozov. "Bias-Corrected Optical Measurement of Film Thickness for Vacuum Evaporation Coating." In 2020 International Russian Automation Conference (RusAutoCon). IEEE, 2020. http://dx.doi.org/10.1109/rusautocon49822.2020.9208188.
Повний текст джерелаProsovskiy, Yuriy, Dmitriy Denisov, Oleg Prosovskiy, and Aleksandr Budnev. "Direct monochromatic optic control system of the thickness of thin-film interference coatings applied in vacuum." In Optical Measurement Systems for Industrial Inspection XI, edited by Peter Lehmann, Wolfgang Osten, and Armando Albertazzi Gonçalves. SPIE, 2019. http://dx.doi.org/10.1117/12.2525853.
Повний текст джерелаOh, Sang Hyun, Sung Il Kim, Ki Ho Park, and Byeong Hyeok Yu. "A Numerical Study on Improvement of Coating Uniformity by Controlling the Pressure at the Exit of the Slot Die Nozzle." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5139.
Повний текст джерелаWilley, Ronald R. "Generating Index versus Thickness Data for Modern Coating Chambers and Designing Optical Thin Films with the Data Thus Generated." In 62nd Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2019. http://dx.doi.org/10.14332/svc19.proc.0056.
Повний текст джерелаSmilgys, Russell V., Steven P. Wallace, and Cheryl E. Kennedy. "Progress Toward Roll Processing of Solar Reflective Material." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-101.
Повний текст джерелаWada, Tatsuo, Masahiro Hosoda, Anthony F. Garito, Hiroyuki Sasabe, A. Terasaki, Takayoshi Kobayashi, Hiroaki Tada, and Atsushi Koma. "Third-order optical nonlinearities and femtosecond responses in metallophthalocyanine thin films made by vacuum deposition, molecular beam epitaxy, and spin coating." In San Diego, '91, San Diego, CA, edited by Kenneth D. Singer. SPIE, 1991. http://dx.doi.org/10.1117/12.50715.
Повний текст джерелаMacleod, H. Angus. "Optical thin film coating design." In Optical Instrumentation & Systems Design. SPIE, 1996. http://dx.doi.org/10.1117/12.246804.
Повний текст джерела