Добірка наукової літератури з теми "Urea oxidation reaction"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Urea oxidation reaction".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Urea oxidation reaction"
Sun, Wenbin, Jiechen Li, Wen Gao, Luyao Kang, Fengcai Lei, and Junfeng Xie. "Recent advances in the pre-oxidation process in electrocatalytic urea oxidation reactions." Chemical Communications 58, no. 15 (2022): 2430–42. http://dx.doi.org/10.1039/d1cc06290e.
Повний текст джерелаGan, Lina, Yang Liu, Peng Ye, Hejingying Niu, and Kezhi Li. "Reaction Mechanism for the Removal of NOx by Wet Scrubbing Using Urea Solution: Determination of Main and Side Reaction Paths." Molecules 28, no. 1 (December 25, 2022): 162. http://dx.doi.org/10.3390/molecules28010162.
Повний текст джерелаWu, Tzu-Ho, Yan-Cheng Lin, Bo-Wei Hou та Wei-Yuan Liang. "Nanostructured β−NiS Catalyst for Enhanced and Stable Electro−oxidation of Urea". Catalysts 10, № 11 (4 листопада 2020): 1280. http://dx.doi.org/10.3390/catal10111280.
Повний текст джерелаMartincigh, Bice S., Morgen Mhike, Kayode Morakinyo, Risikat Ajibola Adigun, and Reuben H. Simoyi. "Oxyhalogen–Sulfur Chemistry: Oxidation of a Thiourea Dimer, Formamidine Disulfide, by Chlorine Dioxide." Australian Journal of Chemistry 66, no. 3 (2013): 362. http://dx.doi.org/10.1071/ch12181.
Повний текст джерелаLin, Chong, Zhengfei Gao, Feng Zhang, Jianhui Yang, Bin Liu та Jian Jin. "In situ growth of single-layered α-Ni(OH)2 nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea". Journal of Materials Chemistry A 6, № 28 (2018): 13867–73. http://dx.doi.org/10.1039/c8ta05064c.
Повний текст джерелаYu, Hua, Wei Xu, Hongchao Chang, Guangyao Xu, Lecong Li, Jiarong Zang, Rong Huang, Luxia Zhu, and Binbin Yu. "Electrocatalytic Ni-Co Metal Organic Framework for Efficient Urea Oxidation Reaction." Processes 11, no. 10 (October 22, 2023): 3035. http://dx.doi.org/10.3390/pr11103035.
Повний текст джерелаZhu, Dongdong, Chunxian Guo, Jinlong Liu, Liang Wang, Yi Du, and Shi-Zhang Qiao. "Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation." Chemical Communications 53, no. 79 (2017): 10906–9. http://dx.doi.org/10.1039/c7cc06378d.
Повний текст джерелаLi, Jiaxin, Hongyi Cui, Xiaoqiang Du, and Xiaoshuang Zhang. "The controlled synthesis of nitrogen and iron co-doped Ni3S2@NiP2 heterostructures for the oxygen evolution reaction and urea oxidation reaction." Dalton Transactions 51, no. 6 (2022): 2444–51. http://dx.doi.org/10.1039/d1dt03933d.
Повний текст джерелаSreekanth, T. V. M., G. R. Dillip, X. Wei, K. Yoo, and J. Kim. "Binder free Ni/NiO electrocatalysts for urea oxidation reaction." Materials Letters 327 (November 2022): 133038. http://dx.doi.org/10.1016/j.matlet.2022.133038.
Повний текст джерелаPatzer, John F., S. K. Wolfson, and S. J. Yao. "Reactor control and reaction kinetics for electrochemical urea oxidation." Chemical Engineering Science 45, no. 8 (1990): 2777–84. http://dx.doi.org/10.1016/0009-2509(90)80170-j.
Повний текст джерелаДисертації з теми "Urea oxidation reaction"
RAMADAN, DOAA REDA MOHAMED. "PALLADIUM CATALYZED REACTIONS: REDUCTIVE CYCLIZATION OF NITROARENES, AND OXIDATIVE CARBONYLATION OF ANILINE." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/819652.
Повний текст джерелаZemtsova, Viktoriia. "Réaction d'oxydation de l'urée sur des électrodes à base de Ni étudiée par spectroscopie électrochimique et in situ." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAF075.
Повний текст джерелаThe objectives of the work were to unveil the dependence of the activity and the products of the UOR on the structure and composition of Ni-based catalysts. We used operando XAS to investigate both the structure of the catalysts and the mean oxidation state of Ni in Ni, NiCo and NiFe catalysts during their operation, and FTIRS to detect products and intermediates formed during the UOR. The operando FTIR spectroscopy allowed us to detect several urea oxidation products on Ni, NiFe and NiCo electrodes, suggesting that the UOR follows two parallel pathways. The pathway resulting in the carbonate formation (and hence also N2 which cannot be detected with FTIRS) predominates at lower potentials, whereas the formation of nitrite and cyanate increases at higher potentials. The operando XAS measurements at Ni K-edge allowed us to detect formation of NiOOH, and decrease of its fraction in the presence of urea. The results support the EC’ (electrochemical – followed by a chemical step) UOR mechanism operating both for monometallic and for bimetallic catalysts, the role of the second component (Fe, Co) mainly related to its influence on the potential of the Ni(OH)2/NiOOH transition and hence the UOR overpotential
Enquist, Per-Anders. "Novel Metal-Mediated Organic Transformations : Focusing on Microwave Acceleration and the Oxidative Heck Reaction." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7117.
Повний текст джерелаHövelmann, Claas. "Oxidative intramolecular diamination of alkenes with ureas as nitrogen sources : Mechanistic investigations of Pd catalysed and halogen mediated reactions." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. http://www.theses.fr/2008STR13107.
Повний текст джерелаFigueiredo, Sofia Martins. "Espécies reativas de oxigénio, stress oxidativo e antioxidantes naturais." Master's thesis, 2020. http://hdl.handle.net/10316/90137.
Повний текст джерелаA capacidade dos organismos vivos manterem um equilíbrio harmonioso com a natureza permitiu a sobrevivência e a evolução até aos dias de hoje. Mas este equilíbrio é influenciado por muitos comportamentos que fazem parte da vida quotidiana. A agitação e o ritmo acelerado da atualidade podem ser a origem de doenças, muitas delas irreversíveis. Nos últimos tempos considera-se que as causas de doenças neurodegenerativas como as de Alzheimer, Parkinson e depressão e de muitas outras doenças estão associadas ao estilo de vida atual. As pessoas lidam diariamente com stress no trabalho e no ambiente escolar e familiar. Estas situações são tão habituais que a população em geral já as considera “normais”. Por outro lado, o estilo de vida cada vez mais industrializado, mantém as pessoas em contacto com uma infinidade de fármacos e produtos de cuidado pessoal (PPCPs) que se podem acumular no organismo humano. A exposição contínua a este tipo de situações pode levar a um desequilíbrio da atividade cerebral e causar danos permanentes. Mecanismos fisiológicos diversos, incluindo os de defesa, atuam constantemente tentando restabelecer o equilíbrio. Estes processos podem beneficiar muito da ação de nutrientes específicos. Tendo em conta as considerações anteriores, o objetivo principal deste trabalho consistiu em estudar respostas a stress fisiológico, envolvendo uma hormona de stress ou um conservante de um produto de cuidado pessoal. Para tal utilizaram-se fatias cerebrais (400 µm) de ratos Wistar e efetuaram-se registos de autofluorescência e de fluorescência relacionados com a produção de espécies reativas de oxigénio (ROS) e com o potencial de membrana mitocondrial (Δψm), nas sinapses das fibras musgosas da área CA3 do hipocampo. No primeiro conjunto de experiências utilizou-se a corticosterona, a principal hormona libertada nos ratos em situações de stress, em concentrações de 1 µM, 4 µM e 10 µM. Inicialmente mediram-se sinais de autofluorescência das proteínas mitocondriais NADH e FAD, tendo-se verificado que a oxidação de NADH é mais sensível às variações de corticosterona e que este sinal se aproxima lentamente do valor basal quando a hormona deixa de estar presente. Por outro lado, nestas experiências a corticosterona tem uma ação irreversível na oxidação da proteína FADH2, uma vez que o sinal não recupera quando a hormona de stress é retirada. Fatias incubadas com o indicador fluorescente H2DCFDA, permitiram analisar variações de ROS, que aumentaram entre 1% e 6% para as concentrações estudadas. A ação de 10 µM de corticosterona foi persistente pois o excesso de ROS manteve-se na ausência da hormonaNo estudo feito com o conservante imidazolidinil ureia (IU), libertador de formaldeído, utilizaram-se as seguintes concentrações de IU: 1 µM, 50 µM e 100 µM. Nestas experiências observaram-se aumentos na autofluorescência de FAD, que eram irreversíveis para as concentrações mais elevadas de IU. Em fatias incubadas com o indicador H2DCFDA verificou-se que na presença de 50 µM e 100 µM de IU houve um aumento do sinal de ROS entre 2% a 4%. Foram também detetadas variações no potencial de membrana mitocondrial, em fatias contendo o indicador fluorescente rodamina 123. Os resultados indicam que para todas as concentrações de IU houve um aumento reversível do sinal sendo, para 100 µM, a recuperação lenta.O organismo contém defesas antioxidantes que ajudam a reduzir os efeitos oxidativos provocados por situações como as consideradas anteriormente. Por vezes a sua ação é insuficiente verificando-se um aumento de ROS irreversível, como se observou para as maiores concentrações da hormona de stress corticosterona e do conservante IU. Por isso, a ingestão alimentar pode ser uma fonte muito importante de antioxidantes com uma ação positiva no equilíbrio oxidativo. A importância dada a alimentos com propriedades antioxidantes, como os cogumelos tem sido crescente. Este alimento é rico em compostos bioativos que lhe conferem atividade antioxidante, incluindo compostos fenólicos, fitoquímicos, polissacarídeos, vitaminas, carotenóides e minerais, que proporcionam efeitos benéficos na saúde, para além das propriedades nutricionais. Por estes motivos, realizou-se um terceiro conjunto de estudos focado na caracterização da composição química de três espécies de cogumelos: Lentinula edodes koshin (shiitake), Pleurotus ostreatus e Pleurotus citrinopileatus. Analisaram-se também extratos de fitoquímicos destas espécies, que podem ter um papel importante na redução do stress oxidativo.
The ability of living organisms to maintain a harmonious balance with nature has allowed survival and evolution to this day. But this balance is influenced by many behaviors that are part of everyday life. The unrest and the accelerated rhythm of the present day can be the source of diseases, many of them irreversible. In recent times the causes of neurodegenerative diseases such as Alzheimer's, Parkinson's and depression and of many other diseases are considered to be associated with the current lifestyle.People deal with stress at work and in the school and family environment on a daily basis. These situations are so common that the general population already considers them “normal”. On the other hand, the increasingly industrialized lifestyle keeps people in contact with an enormous variety of pharmaceuticals and personal care products (PPCPs) that can accumulate in the human body. Continued exposure to these types of situations can lead to an imbalance in brain activity and cause permanent damage. Various physiological mechanisms, including the defense ones, constantly work to try to restore the balance. These processes can benefit much from the action of specific nutrients. Taking into account the previous considerations, the main objective of this work was to study responses to physiological stress, involving a stress hormone or a preservative of a personal care product. For that, brain slices (400 µm) from Wistar rats were used and autofluorescence and fluorescence records related with the production of reactive oxygen species (ROS) and with the mitochondrial membrane potential (Δψm), were made at the mossy fiber synapses of CA3 hippocampal area.In the first set of experiments, corticosterone, the main hormone released in rats in stressful situations, was used in 1 µM, 4 µM and 10 µM concentrations. Initially, autofluorescence signals from the mitochondrial proteins NADH and FAD were measured and it was found that NADH oxidation is more sensitive to changes in corticosterone and that this signal slowly approaches the baseline when the hormone is not present. On the other hand, in these experiments corticosterone has an irreversible action in the oxidation of the FADH2 protein, since the signal does not recover when the stress hormone is removed. Slices incubated with the fluorescent indicator H2DCFDA allowed the analysis of ROS changes, which increased between 1% and 6% for the studied concentrations. The action of 10 µM of corticosterone was persistent because the excess of ROS remained in the absence of the hormone.In the study carried out with the preservative imidazolidinyl urea (IU), which releases formaldehyde, the following IU concentrations were used: 1 µM, 50 µM and 100 µM. In these experiments, increases in FAD autofluorescence were observed, which were irreversible for the higher concentrations of IU. In slices incubated with the indicator, H2DCFDA, it was found that in the presence of 50 µM and 100 µM IU there was an increase in ROS fluorescence between 2% and 4%. Changes in the mitochondrial membrane potential were also detected in slices containing the fluorescent indicator rhodamine 123. The results indicate that for all IU concentrations there was a reversible signal increase occurring, for 100 µM, a slow recovery.The body contains antioxidant defenses that help reducing the oxidative effects caused by situations like those previously considered. Sometimes their action is insufficient and there is an irreversible increase in ROS, as was observed for the higher concentrations of the stress hormone corticosterone and of the IU preservative. Therefore, food can be a very important source of antioxidants with a positive action in the oxidative balance.The importance given to nourishment with antioxidant properties, such as mushrooms has been growing. This food is rich in bioactive compounds that give it antioxidant activity, including phenolic compounds, phytochemicals, polysaccharides, vitamins, carotenoids and minerals, which provide beneficial effects on health, in addition to the nutritional properties.For these reasons, a third set of studies was carried out focusing on the characterization of the chemical composition of three mushroom species: Lentinula edodes koshin (shiitake), Pleurotus ostreatus and Pleurotus citrinopileatus. Phytochemical extracts from these species, which can play an important role in reducing oxidative stress, were also analyzed.
Outro - Enquadrado no projeto 0340_SYMBIOSIS_3_E, co-financiado pelo FEDER através do Programa INTERREG V A Espanha – Portugal (POCTEP).
Частини книг з теми "Urea oxidation reaction"
Srivastava, Manish, Anjali Banger, Ravina Yadav, Anamika Srivastava, Jaya Dwivedi, and Varun Rawat. "Advanced Microwave Assisted Organic Synthesis Method in Organic Chemistry." In Advances in Organic Synthesis, 101–50. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815040524122170005.
Повний текст джерелаMouro, Margaret Gori, Ana Beatriz Galhardi Di Tommaso, Giovana Rita Punaro, Deyse Yorgos de Lima, Marcos Antonio do Nascimento, Fernanda Aparecida Ronchi, Adelson Marçal Rodrigues, Dulce Elena Casarini, Sergio Atala Dib, and Elisa Mieko Suemitsu Higa. "Profile of angiotensin-converting enzyme activity on nitric oxide levels in type 2 diabetes mellitus patients." In UNITING KNOWLEDGE INTEGRATED SCIENTIFIC RESEARCH FOR GLOBAL DEVELOPMENT. Seven Editora, 2024. http://dx.doi.org/10.56238/uniknowindevolp-151.
Повний текст джерелаBruneau, Christian, and Pierre H. Dixneuf. "Catalytic Additions of Carbon Dioxide Adducts to Alkynes: Selective Synthesis of Carbamates, Ureas, and Carbonates." In Carbon Dioxide Fixation and Reduction in Biological and Model Systems, 131–43. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198547822.003.0009.
Повний текст джерелаNoyori, Ryoji, and Takao Ikariya. "Carbon Dioxide as a Reactant and Solvent in Catalysis." In Green Chemistry Using Liquid and Supercritical Carbon Dioxide. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195154832.003.0007.
Повний текст джерела"Cellular metabolism." In Oxford Assess and Progress: Medical Sciences, edited by Jade Chow, John Patterson, Kathy Boursicot, and David Sales. Oxford University Press, 2012. http://dx.doi.org/10.1093/oso/9780199605071.003.0014.
Повний текст джерелаТези доповідей конференцій з теми "Urea oxidation reaction"
Devarakonda, Maruthi, Russell Tonkyn, Diana Tran, Jong Lee, and Darrell Herling. "Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control." In ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/icef2010-35054.
Повний текст джерелаUpadhyay, Devesh, and Michiel Van Nieuwstadt. "Control Design of an Automotive Urea SCR Catalyst." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32103.
Повний текст джерелаKannan, Rajesh, Thiyagarajan Paramadhayalan, Rahul Mital, Erik Gustafson, and David Edwards. "Kinetic Model Development for Selective Catalytic Converter Integrated Particulate Filters." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2631.
Повний текст джерелаChou, C. C., T. F. Kuo, T. H. Tsai, Y. H. Su, J. H. Lu, and Y. Y. Ku. "Model-based Analysis of the Oscillatory NO <sub>x</sub> in Urea Selective Catalytic Reduction Systems." In JSAE/SAE Small Engine Technologies Conference & Exhibition. 10-2 Gobancho, Chiyoda-ku, Tokyo, Japan: Society of Automotive Engineers of Japan, 2017. http://dx.doi.org/10.4271/2017-32-0107.
Повний текст джерелаAguilar, Jonathan, Leslie Bromberg, Alexander Sappok, Paul Ragaller, Jean Atehortua, and Xiaojin Liu. "Catalyst Ammonia Storage Measurements Using Radio Frequency Sensing." In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3572.
Повний текст джерелаRamis, Gianguido, Guido Busca, Tania Montanari, Michele Sisani, and Umberto Costantino. "Ni-Co-Zn-Al Catalysts From Hydrotalcite-Like Precursors for Hydrogen Production by Ethanol Steam Reforming." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33034.
Повний текст джерелаLuo, Zhaoyu, Parvez Sukheswalla, Scott A. Drennan, Mingjie Wang, and P. K. Senecal. "3D Numerical Simulations of Selective Catalytic Reduction of NOx With Detailed Surface Chemistry." In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3658.
Повний текст джерелаTanaka, Kotaro, Ibuki Dobashi, Satoshi Sakaida, and Mitsuru Konno. "Experimental and Modeling Study of NH <sub>3</sub> -SCR on a Hydrocarbon-Poisoned Cu-CHA Catalyst." In Energy & Propulsion Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-1659.
Повний текст джерела