Добірка наукової літератури з теми "Uniform irradiation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Uniform irradiation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Uniform irradiation"

1

Ebner, Pirmin Philipp, and Wojciech Lipiński. "Heterogeneous thermochemical decomposition of a semi-transparent particle under high-flux irradiation: uniform versus non-uniform irradiation." Heat and Mass Transfer 50, no. 7 (March 6, 2014): 1031–36. http://dx.doi.org/10.1007/s00231-014-1311-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Batygin, Y. K., V. V. Kushin, and S. V. Plotnikov. "Uniform target irradiation by circular beam sweeping." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 363, no. 1-2 (September 1995): 128–30. http://dx.doi.org/10.1016/0168-9002(95)00258-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jian Lin, Jian Lin, Lixin Xu Lixin Xu, Shengbo Wang Shengbo Wang, and Haixiao Han Haixiao Han. "Theoretical analysis of lens array for uniform irradiation on target in multimode fiber lasers." Chinese Optics Letters 12, no. 10 (2014): 101402–7. http://dx.doi.org/10.3788/col201412.101402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Klepper, L. Ya. "Mathematical Modeling of Uniform and Nonuniform Malignian and Normal Tissues Irradiation. Mathematical Analysis of the Tumour Grid Irradiation." Meditsinskaya Fizika 91, no. 3 (October 29, 2021): 27–32. http://dx.doi.org/10.52775/1810-200x-2021-91-3-27-32.

Повний текст джерела
Анотація:
Purpose: On base created mathematical model (MM) modified Veybull distribution, intended for NTCP calculation, depending on irradiated volume V and uniform irradiation dose D, to develop the MM, which allows to realize transition from nonuniform dose in tissue to the equivalent, uniform identical dose. To research the hypothesis, under what condition lumpy sharing dose in system tumors+normal tissues will be more efficient, than uniform dose. Material and Methods: Lumpy sharing dose are described as a differential histogram dose-volume (DDVH). The MM for calculation transition lumpy distribution of the absence of the beam complication probability (ACPr) in tissue is designed. It was used for MM conclusion, which allows to calculate transition values of the Adequate Dose (AD) of the uniform irradiation tissues, which use brings about ACPr in tissues. Results: On base of the suggestions and proved affirmation MMs are received, which allow for lumpy distribution of local NTCP values, presented as a DHDV, to calculate transition values ACPr, as well as select from it MM for reduction of the lumpy sharing dose. On base created MM question was explored, in what case tumors and normal tissue through a grid irradiation will be more effective than uniform irradiation. Conclusion: The transition from lumpy sharing doses in tissues to equivalent uniform dose present the significant interest for the RT planning efficiency. Their study is necessary, where the radiation of biosubjects is influenced.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Niraula, Prashanta Mani, Eiman Bokari, Shahid Iqbal, Lisa Paulius, Matthew Smylie, Ulrich Welp, Wai-Kwong Kwok, and Asghar Kayani. "Particle Irradiation Induced Defects in High Temperature Superconductors." MRS Advances 4, no. 2 (2019): 119–24. http://dx.doi.org/10.1557/adv.2019.143.

Повний текст джерела
Анотація:
AbstractWe use irradiation with 50-MeV Cu-ions to create vortex pinning defects in high-temperature superconducting Y1Ba2Cu3O7-x coated conductors using a beam-rastering approach that allows for the uniform irradiation of large ample areas. Our samples contain barium zirconate nanorods as pre-existing vortex pinning defects. By irradiating the samples at angles of 0o, 15oand 30o from the crystallographic c-axis we explore the interplay between pre-existing and irradiation-induced pinning and find that irradiation at 30o leads to a moderate enhancement of Jc at 5 K at high fields (greater than 2 Tesla). In contrast, Jc was suppressed for all temperatures and fields for other angles of irradiation. Optimized particle irradiation procedures offer a way for improving the performance of high-temperature superconducting wires for use in high magnetic fields without the need for changing wire synthesis protocols.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vardanyan, A. V., and L. A. Gagiyan. "Concentrating systems for uniform irradiation of flat receiver." Applied Solar Energy 45, no. 1 (March 2009): 51–54. http://dx.doi.org/10.3103/s0003701x09010149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Charles, M. W., J. P. Williams, and J. E. Coggle. "Skin Carcinogenesis Following Uniform and Nonuniform Beta Irradiation." Health Physics 55, no. 2 (August 1988): 399–406. http://dx.doi.org/10.1097/00004032-198808000-00039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baverstock, K. F. "‘The LD50for uniform low LET irradiation of man’." British Journal of Radiology 58, no. 685 (January 1985): 97–98. http://dx.doi.org/10.1259/0007-1285-58-685-97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cheliapin, A. E., P. S. Begunov, Y. V. Trofimov, and G. K. Zhavnerko. "LED ULTRAVIOLET EXPOSURE UNIT WITH ADJUSTABLE EXPOSURE TIME." Doklady BGUIR, no. 7 (125) (December 7, 2019): 46–50. http://dx.doi.org/10.35596/1729-7648-2019-125-7-46-50.

Повний текст джерела
Анотація:
The possibilities of improving the quality of the topological pattern in the exposure of thick-film photoresists due to uniform irradiation with ultraviolet light-emitting diodes are investigated. The results of an experimental study of the developed LED ultraviolet photolithographic irradiator with a controlled exposure time are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Su, Jiangbin, and Xianfang Zhu. "Intriguing uniform elongation and accelerated radial shrinkage in an amorphous SiOxnanowire as purely induced by uniform electron beam irradiation." RSC Adv. 7, no. 72 (2017): 45691–96. http://dx.doi.org/10.1039/c7ra08504d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Uniform irradiation"

1

Gagné, Isabelle Marie. "Development of equivalent uniform dose models for normal tissue irradiation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40051.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kim, Hak Sung. "STUDY ON UNIFORM NEUTRON IRRADIATION FOR SILICON-INGOT IN NEUTRON TRANSMUTATION DOPING." Kyoto University, 2011. http://hdl.handle.net/2433/151902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Сидорук, Юрій Кіндратович. "Пристрої опромінення діелектричних сипучих матеріалів електричним ВЧ та електромагнітним НВЧ полями". Doctoral thesis, Київ, 2016. https://ela.kpi.ua/handle/123456789/17770.

Повний текст джерела
Анотація:
В дисертаційній роботі розглянуто принципи побудови пристроїв опромінення діелектричних сипучих матеріалів, в тому числі зерна, електромагнітним полем НВЧ та електричним полем ВЧ, що забезпечують рівномірне опромінення сировини та високу енергетичну ефективність камери, в якій відбувається опромінення (активній камері). Детально проаналізовано активну камеру ВЧ пристрою. В НВЧ діапазоні запропоновано три варіанти побудови пристроїв, в яких вказані вище вимоги забезпечуються багаторазовим проходженням електромагнітної хвилі через шар сировини. Для забезпечення рівномірного опромінення в ВЧ діапазоні запропонована багатоелектродна камера, на циліндричній поверхні якої розташовано n електродів, що живляться гармонійною напругою. Проведено детальний аналіз напруженості і потенціалу електричного поля в відкритій комплексній області з кільцевою багатозв’язною границею з використанням теорії функцій комплексної змінної і теорії сингулярних інтегральних рівнянь. Проведено аналіз електричного поля шляхом представлення його як суми просторових гармонік. Показано, що даний підхід спрощує аналіз при оцінці зони однорідності поля. Розглянуто принцип побудови багатофазного генератора, що живить багатоелектродну структуру, принцип побудови багатоканального фазозсувача і запропоновано апарат його розрахунку.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lan, S. Y., and 藍心怡. "Preparation of uniform SnO2 and Fe2O3 nanoparticles by microwave irradiation." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/30176475510423100568.

Повний текст джерела
Анотація:
碩士
國立清華大學
材料科學工程學系
93
Stannic oxide (SnO2) is widely applied for the detection of various types of gases with high sensitivity and fast response. It has also been widely used in the LCD industry as the transparent electric conductor coating. Iron oxide (Fe2O3) is conventionally adopted in the manufacturing of opto-electronic devices, pigments and electric transformers. Synthesis of nano-SnO2 and some other oxides were reported elsewhere with serious aggregation problems. If agglomeration of the synthesized nano-particles could not been avoided, it is meaningless for any nano-oxide forming process no matter how small the particle size could be reached initially. Objective of the studies has been focused on the synthesis of uniform nano-oxides via a microwave irradiation process. Stannic chloride and iron chloride were selected as the starting materials for the synthesis of nano-SnO2 and Fe2O3, respectively. Urea was used as the in-situ pH adjustor in the process. The main procedures for forming nano-oxides include: i) dissolution of metal chlorides in water, ii) formation of micelle by introducing polymeric surfactants such as polyvinyl alcohol (PVA) and Polyvinyl pyrrolidone (PVP), and iii) microwave irradiation of the reactants stabilized in the micelles and formation of nano-oxides without agglomeration. Experimental results show that uniform nano-SnO2 can be prepared by the microwave-micelle process with particle size down to 10 nm. The experimental results were characterized by high resolution transmission electron microscopy (HRTEM), scanning electronic microscopy (SEM), X-Ray diffractometer (XRD), Fourier transformed infred spectroscopy (FTIR), nuclear magnetic resonance analyzer (NMR), thermal gravimetric analyzer (TGA) and differential thermal analyzer (DTA).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lin, Yu Fang, and 林鈺芳. "Monte Carlo Simulation of Non-uniform Small Photon Fields using mMLC for Small Animal Irradiation." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/49641154321987904316.

Повний текст джерела
Анотація:
碩士
長庚大學
醫學影像暨放射科學系
101
Small irradiation fields with non-uniform intensity are sometimes desired for radiation biology research. The purpose of this study is to establish a small animal irradiation system capable of delivering non-uniform dose distribution based on the Monte Carlo technique. This study used BEAMnrc09 code to simulate the Novalis system equipped with mMLC which can be designed to deliver dual peak and complex non-uniform fields. Following the shape and character of mouse tumors, we utilized VC6 program to generate a spherical, a cylindrical and a CT mouse phantom. Dose simulation for the non-uniform fields within these phantoms are performed by DOSXYZnrc09 code. We verified simulation result of the dual peak fields with film dosimetry. Simulation result showed good agreement with film dosimetry, an indication of reliability of this simulation system. The dual peak fields was then incident into different water phantoms. Maximum doses along the profiles for the spherical and cylindrical phantom are 9% and 5% lower than that from the cubic phantom. This may be the result of reduced side scatter contribution from the curved surfaces. Because the readout position of the dose profile for the CT mouse phantom dose not include any bone tissue and the curvature of the mouse phantom is not so obvious, the maximum doses for the CT mouse phantom is only ±2% different form the cubic water phantom. For the complex non-uniform field, the simulation system can generate dose distribution of four different intensities within the same small field. The system has demonstrated its ability to create simple IMRT fields for small animal irradiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Glanc, Natália. "Ultrastruktura chloroplastů smrku ztepilého - heterogenita v rámci jehlice." Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-351488.

Повний текст джерела
Анотація:
6 Abstract Temperate forests serve as long term carbon storage and are affected by increasing carbon dioxide (CO2) concentration in the atmosphere. Norway spruce (Picea abies (L.) Karst.) is the most abundant conifer in the forests of the Czech Republic, therefore I studied the response of its photosynthetic aparatus to elevated CO2 concentration. The aim of my thesis was to analyze the impact of CO2 concentration on chloroplast ultrastructure in both shaded and exposed needles, focusing on the volume density of starch in the median cross-sections of mesophyll cell chloroplasts. The next aim of the study was to test whether the chloroplasts of the first subepidermal layer of mesophyll are representative for the whole needle with respect to starch volume density. The study was performed on eleven years-old Norway spruce trees that had been exposed to ambient or elevated concentration of CO2 for six years; the experiment had been carried out at the Bílý Kříž experimental station in the Beskids Mountains in cultivation chambers with automatically adjustable windows. First year needles of trees grown under abient (382-395ppm) or elevated (700 ppm) CO2 concentration were collected in October 2011. The needles were used to prepare ultrathin sections and the images of median chloroplast cross-sections were...
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Uniform irradiation"

1

Smirnova, Olga A. "Effects of Non-uniform Acute Irradiation on the Blood-Forming System." In Environmental Radiation Effects on Mammals, 67–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45761-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rawat, Sandeep, Reetu Naudiyal, and Rupendra Kumar Pachauri. "Experimental Study on Solar PV Array Configurations Under Non-uniform Irradiation Conditions." In Advances in Sustainable Development, 171–83. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4400-9_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sangeetha, K., T. Sudhakar Babu, and N. Rajasekar. "Fireworks Algorithm-Based Maximum Power Point Tracking for Uniform Irradiation as Well as Under Partial Shading Condition." In Advances in Intelligent Systems and Computing, 79–88. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2656-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Karunananda, Dayani, Ramya Ranathunga, and Wathsala Abeysinghe. "60Co gamma irradiation-induced mutation in vegetatively propagated Philodendron erubescens 'Gold'." In Mutation breeding, genetic diversity and crop adaptation to climate change, 386–98. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0040.

Повний текст джерела
Анотація:
Abstract Philodendron erubescens 'Gold', an ornamental plant and a popular climber with brilliant greenish yellow leaves, is used in indoor gardening and landscaping. It is commonly propagated through vegetative cuttings, thus incorporation of new traits through conventional breeding is impracticable. As commercial floriculture always demands novel varieties, this study was carried out to induce mutation in P. erubescens 'Gold' leaves using gamma- ray irradiation. Rooted cuttings (n = 200) of P. erubescens 'Gold' were subjected to 70 Gy, 100 Gy and 150 Gy gamma-rays and recovered on a propagator. Surviving shoots were transferred to pots. Regenerated shoots were multiplied vegetatively and ten M1 lines were maintained as M1-1 to M1-10 for 12 generations (M1V12) to evaluate growth and morphological variations along with their genetic stability. Of all 70 Gy and 100 Gy treated cuttings, 24 and two, respectively, survived after 6 months. Most of the irradiated plants had lost regeneration ability except for two M1 plants, which also showed comparatively reduced growth (one leaf in 45 days). Only one regenerated M1 plant showed morphological variation in its leaves and it was multiplied and maintained as lines. Several variations, including characteristics of leaves (shape, size, colour), stems (internodal length and branching) and plant stature, were observed among M1 lines and in subsequent vegetative generations. Leaves had three different colour patches, but neither the colour nor its distribution pattern was uniform or stable. The M1-4 line showed the highest stability of colour distribution in leaves; the colour composition of its leaves ranged as 0-10% dark bluish green, 60-90% strong yellow green and 10-30% brilliant greenish yellow throughout the 12 generations. This study demonstrates that gamma irradiated P. erubescens 'Gold' line M1-4 can be a promising mutant to develop as a new Philodendron cultivar.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

K. M., Sandhya, Litty Thomas Manamel, and Bikas C. Das. "Doping of Semiconductors at Nanoscale with Microwave Heating (Overview)." In Microwave Heating - Electromagnetic Fields Causing Thermal and Non-Thermal Effects. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95558.

Повний текст джерела
Анотація:
Incorporation of dopants efficiently in semiconductors at the nanoscale is an open challenge and is also essential to tune the conductivity. Typically, heating is a necessary step during nanomaterials’ solution growth either as pristine or doped products. Usually, conventional heating induces the diffusion of dopant atoms into host nanocrystals towards the surface at the time of doped sample growth. However, the dielectric heating by microwave irradiation minimizes this dopant diffusion problem and accelerates precursors’ reaction, which certainly improves the doping yield and reduces processing costs. The microwave radiation provides rapid and homogeneous volumetric heating due to its high penetration depth, which is crucial for the uniform distribution of dopants inside nanometer-scale semiconducting materials. This chapter discusses the effective uses of microwave heating for high-quality nanomaterials synthesis in a solution where doping is necessary to tune the electronic and optoelectronic properties for various applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"food was presented by McLaughlin and collaborators (29). Glover’s review (30) is less detailed but more recent. Dosimetry for food irradiation processing has reached a high level of perfec­ tion. Many standards for this purpose have been issued by the American Society for Testing and Materials (31,32). The role of dosimetry in good radiation processing practice is described in the Recommended International Code of Practice for the Operation of Irradiation Facilities Used for the Treatment of Foods (see Appendix II) and in a series of Codes of Good Irradiation Practice issued by ICGFI (International Consultative Group on Food Irradiation) (see Appendix III). With some food items, such as whole eggs (33) and ground com (34), it may be possible to use the food itself as a dose meter. This will be discussed in more detail in Chapter 5. As mentioned earlier, electron beams, on the one hand, and gamma rays and x-rays, on the other hand, differ greatly in their ability to penetrate matter. This has important consequences for the dose distribution in the irradiated medium. Since many foods consist mostly of water, the penetration of radiation in water is shown in Figure 14. When an electron beam penetrates an aqueous medium the dose somewhat below the surface is higher than at the surface. This is due to the formation of secondary electrons which, because of their lower energy, are more effectively absorbed than the primary electrons. Also, scattering causes some secondary electrons to escape from the surface in the direction opposite to that of the beam of primary electrons. Thus a 10-MeV electron beam giving a dose of 10 kGy at the surface will deposit about 12.5 kGy at 2 cm below the surface. As more and more primary electrons lose their energy by interacting with water molecules, the absorbed dose decreases with increasing depth and at about 5 cm the limit of penetration is reached. In contrast, the dose delivered by gamma rays decreases continuously. The rate of decrease is faster with 137Cs gamma radiation than with 60Co gamma radiation. With x-rays it depends on the energy of the x-ray-producing electrons. For practical purposes the penetration of 5-MeV x-rays is comparable to that of 60Co gamma rays. Two-sided irradiation permits processing of thicker packages with more uni­ form dose distribution, as indicated in Figure 15. If the density of the irradiated medium is less than that of water, e.g., in fatty foods or in dehydrated or porous foods, the depth of penetration is correspondingly greater. The 10-MeV electron beam, which barely reaches a depth of 5 cm in water, will reach approximately 10 cm at a density of 0.5g/cm3. From Figures 14 and 15 it is clear that an absolutely uniform dose distribution cannot be obtained, even if a material of uniform density is irradiated. If dose." In Safety of Irradiated Foods, 52. CRC Press, 1995. http://dx.doi.org/10.1201/9781482273168-41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Uniform irradiation"

1

Iwasaki, Masaru, Takahisa Jitsuno, Noriaki Nishi, Shinji Motokoshi, and Masahiro Nakatsuka. "Multiwedge array for uniform target irradiation." In Advanced High-Power Lasers and Applications, edited by Kunioki Mima, Gerald L. Kulcinski, and William J. Hogan. SPIE, 2000. http://dx.doi.org/10.1117/12.375134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nishi, Noriaki, Takahisa Jitsuno, Kouji Tsubakimoto, Masakatsu Murakami, Masahiro Nakatsuka, Katsunobu Nishihara, and Sadao Nakai. "Aspherical multilens array for uniform target irradiation." In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, edited by Howard T. Powell and Terrance J. Kessler. SPIE, 1993. http://dx.doi.org/10.1117/12.154475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Simmons, William W. "Simple analytic solutions for uniform irradiation of spherical targets." In Solid State Lasers for Application to Inertial Confinement Fusion (ICF), edited by Michel Andre and Howard T. Powell. SPIE, 1995. http://dx.doi.org/10.1117/12.228322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bychkov, Yurii I., Yurii N. Panchenko, Sofiya A. Yampolskaya, and Arcadii G. Yastremskii. "Formation of laser irradiation by non-uniform pumping discharge of KrF laser." In XII International Conference on Atomic and Molecular Pulsed Lasers, edited by Victor F. Tarasenko and Andrey M. Kabanov. SPIE, 2015. http://dx.doi.org/10.1117/12.2225417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Havrylenko, Dmytro, Oleksandr Dumin, and Vadym Plakhtii. "Irradiation of Medium by Plane Disk with Uniform Distribution of Transient Current." In 2021 IEEE 26th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2021. http://dx.doi.org/10.1109/diped53165.2021.9552298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chiang, W. Y., M. H. Wu, K. L. Wu, M. H. Lin, H. H. Teng, C. C. Ko, E. C. Yang, J. A. Jiang, L. R. Barnett, and K. R. Chu. "A microwave applicator for uniform irradiation by circularly polarized traveling waves in an anechoic chamber." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zheng, Jianzhou, Qingxu Yu, Bin Dong, Xiaojun Cao, Shouhua Guan, and Qi Yang. "Improved two-dimensional orthogonal cylindrical lens arrays optical system with controllable focus profile for uniform irradiation." In 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, edited by Li Yang, John M. Schoen, Yoshiharu Namba, and Shengyi Li. SPIE, 2009. http://dx.doi.org/10.1117/12.830816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shvetsov-Shilovskiy, I. I., A. I. Chumakov, A. A. Pechenkin, and D. V. Bobrovskiy. "The Effects of the External Conditions of CMOS IC Functioning on Latchup Occurrence under Uniform Laser Irradiation." In 2021 IEEE 32nd International Conference on Microelectronics (MIEL). IEEE, 2021. http://dx.doi.org/10.1109/miel52794.2021.9569126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yan, Feng, Yunmei Zhao, and Shurong Ding. "Effect of Fuel Meat Thickness on the Non-Uniform Irradiation-Induced Thermo-Mechanical Behavior in Monolithic UMo/Al Fuel Plates." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67531.

Повний текст джерела
Анотація:
Monolithic UMo/Al fuel plates have a promising prospect in the advanced research and test reactors because of their high equivalent uranium density and stable irradiation performance. They will undergo complicated in-pile thermo-mechanical behavior, which may affect their lifetime and the safety of nuclear reactors. It is necessary to capture the effect of fuel meat thickness on in-pile thermo-mechanical behavior evolution in the fuel plates in order to realize their optimized design and control their service safety. In this study, considering a non-uniform irradiation condition, several 3D finite element models are built to simulate the in-pile behavior in different-thickness UMo/Al plates. The user subroutines are programmed based on the thermo-mechanical constitutive relations and stress update algorithms of the constituent materials. The influences of fuel meat thickness on the temperature field, the main deformations and the interfacial normal stresses are numerically investigated based on the obtained results.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ambrosek, Richard G., Robert C. Pedersen, and Amanda Maple. "Modeling of MOX Fuel Pellet-Clad Interaction Using ABAQUS." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22142.

Повний текст джерела
Анотація:
Post-irradiation examination (PIE) has indicated an increase in the outer diameter of fuel pins being irradiated in the Advanced Test Reactor (ATR) for the MOX irradiation program. The diameter increase is the largest in the region between fuel pellets. The fuel pellet was modeled using PATRAN and the model was evaluated using ABAQUS, version 6.2. The results from the analysis indicate the non-uniform clad diameter is caused by interaction between the fuel pellet and the clad. The results also demonstrate that the interaction is not uniform over the pellet axial length, with the largest interaction occurring in the region of the pellet-pellet interface. Results were obtained for an axi-symmetric model and for a 1/8 pie shaped segment, using the coupled temperature-displacement solution technique.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Uniform irradiation"

1

Roach, Joseph F., Gerald J. Caldarella, and Barry S. DeCristofano. Evaluation of Thermal Protection of Fabrics and Uniform Systems from Simulated Nuclear Pulse Irradiation. Fort Belvoir, VA: Defense Technical Information Center, June 1996. http://dx.doi.org/10.21236/ada354038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії