Добірка наукової літератури з теми "Underground navigation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Underground navigation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Underground navigation"

1

Li, Ningbo, Yanbin Gao, Ye Wang, Zhejun Liu, Lianwu Guan, and Xin Liu. "A Low-Cost Underground Garage Navigation Switching Algorithm Based on Kalman Filtering." Sensors 19, no. 8 (April 18, 2019): 1861. http://dx.doi.org/10.3390/s19081861.

Повний текст джерела
Анотація:
Modern parking lots have gradually developed into underground garages to improve the efficient use of space. However, the complex design of parking lots also increases the demands on vehicle navigation. The traditional method of navigation switching only uses satellite signals. After the Position Dilution Of Precision (PDOP) of satellite signals is over the limit, vehicle navigation will enter indoor mode. It is not suitable for vehicles in underground garages to switch modes with a fast-response system. Therefore, this paper chooses satellite navigation, inertial navigation, and the car system to combine navigation. With the condition that the vehicle can freely travel through indoor and outdoor environments, high-precision outdoor environment navigation is used to provide the initial state of underground navigation. The position of the vehicle underground is calculated by the Dead Reckoning (DR) navigation system. This paper takes advantage of the Extended Kalman Filter (EKF) algorithm to provide two freely switchable navigation modes for vehicles in ground and underground garages. The continuity, robustness, fast response, and low cost of the indoor and outdoor switching navigation methods are verified in real-time systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Ningbo, Lianwu Guan, Yanbin Gao, Zhejun Liu, Ye Wang, and Hanxiao Rong. "A Low Cost Civil Vehicular Seamless Navigation Technology Based on Enhanced RISS/GPS between the Outdoors and an Underground Garage." Electronics 9, no. 1 (January 8, 2020): 120. http://dx.doi.org/10.3390/electronics9010120.

Повний текст джерела
Анотація:
Vehicles have to rely on satellite navigation in an open environment. However, satellite navigation cannot obtain accurate positioning information for vehicles in the interior of underground parking lots, as they comprise a semi-enclosed navigation space. Therefore, vehicular navigation needs to take into consideration both outdoor and indoor environments. Actually, outdoor navigation and indoor navigation require different positioning methods, and it is of great importance to choose a reasonable navigation and positioning algorithm solution for vehicles. Fortunately, the integrated navigation of the Global Positioning System (GPS) and the Micro-Electro-Mechanical System (MEMS) inertial navigation system could solve the problem of switching navigation algorithms in the entrance and exit of underground parking lots. This paper proposes a low cost vehicular seamless navigation technology based on the reduced inertial sensor system (RISS)/GPS between the outdoors and an underground garage. Specifically, the enhanced RISS is a positioning algorithm based on three inertial sensors and one odometer, which could achieve a similar location effect as the full model integrated navigation, reduce the costs greatly, and improve the efficiency of each sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nasibullina, T. V., and O. Yu Lukashov. "UNDERGROUND MINE NAVIGATION SOLUTIONS FOR EMERGENCY." Ugol', no. 04 (April 8, 2020): 29–32. http://dx.doi.org/10.18796/0041-5790-2020-4-29-32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bissiri, Y., G. Baiden, S. Filion, and A. Saari. "Automated surveying device for underground navigation." Mining Technology 117, no. 2 (June 2008): 71–82. http://dx.doi.org/10.1179/174328608x362640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, L., Q. Huang, K. Xu, G. Guo, and R. Chen. "VEHICLE POSITIONING IN UNDERGROUND SPACE USING A SMART PHONE." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-3/W1-2022 (April 22, 2022): 81–87. http://dx.doi.org/10.5194/isprs-archives-xlvi-3-w1-2022-81-2022.

Повний текст джерела
Анотація:
Abstract. Smartphones is a good choice for vehicle navigation since many navigation sensors are built-in with low cost advantage. However, it cannot provide reliable positioning information in underground space since GNSS is not available and IMU drift quickly. In this manuscript, a mixed navigation scheme for smartphone consumer is presented. It combines GNSS, INS, Non-Holonomic Constraint (NHC) and Bluetooth Low Energy (BLE) to provide reliable seamless navigation in both outdoors and underground. Some important problems including smartphone boresight misalignment, HNC level arm, GNSS and BLE time lag are discussed in the manuscript. The testing results show 3.1% /D horizontal positioning error in tunnel in INS/NHC positioning mode, and approximately 1 meter accuracy in underground parking garage in INS/NHC/BLE mode.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moussa, Mohamed, Shady Zahran, Mostafa Mostafa, Adel Moussa, Naser El-Sheimy, and Mohamed Elhabiby. "Optical and Mass Flow Sensors for Aiding Vehicle Navigation in GNSS Denied Environment." Sensors 20, no. 22 (November 17, 2020): 6567. http://dx.doi.org/10.3390/s20226567.

Повний текст джерела
Анотація:
Nowadays, autonomous vehicles have achieved a lot of research interest regarding the navigation, the surrounding environmental perception, and control. Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) is one of the significant components of any vehicle navigation system. However, GNSS has limitations in some operating scenarios such as urban regions and indoor environments where the GNSS signal suffers from multipath or outage. On the other hand, INS standalone navigation solution degrades over time due to the INS errors. Therefore, a modern vehicle navigation system depends on integration between different sensors to aid INS for mitigating its drift during GNSS signal outage. However, there are some challenges for the aiding sensors related to their high price, high computational costs, and environmental and weather effects. This paper proposes an integrated aiding navigation system for vehicles in an indoor environment (e.g., underground parking). This proposed system is based on optical flow and multiple mass flow sensors integrations to aid the low-cost INS by providing the navigation extended Kalman filter (EKF) with forward velocity and change of heading updates to enhance the vehicle navigation. The optical flow is computed for frames taken using a consumer portable device (CPD) camera mounted in the upward-looking direction to avoid moving objects in front of the camera and to exploit the typical features of the underground parking or tunnels such as ducts and pipes. On the other hand, the multiple mass flow sensors measurements are modeled to provide forward velocity information. Moreover, a mass flow differential odometry is proposed where the vehicle change of heading is estimated from the multiple mass flow sensors measurements. This integrated aiding system can be used for unmanned aerial vehicles (UAV) and land vehicle navigations. However, the experimental results are implemented for land vehicles through the integration of CPD with mass flow sensors to aid the navigation system.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jiang, Yuanjian, Pingan Peng, Liguan Wang, Jiaheng Wang, Jiaxi Wu, and Yongchun Liu. "LiDAR-Based Local Path Planning Method for Reactive Navigation in Underground Mines." Remote Sensing 15, no. 2 (January 4, 2023): 309. http://dx.doi.org/10.3390/rs15020309.

Повний текст джерела
Анотація:
Reactive navigation is the most researched navigation technique for underground vehicles. Local path planning is one of the main research difficulties in reactive navigation. At present, no technique can perfectly solve the problem of local path planning for the reactive navigation of underground vehicles. Aiming to address this problem, this paper proposes a new method for local path planning based on 2D LiDAR. First, we convert the LiDAR data into a binary image, and we then extract the skeleton of the binary image through a thinning algorithm. Finally, we extract the centerline of the current laneway from these skeletons and smooth the obtained roadway centerline as the current planned local path. Experiments show that the proposed method has high robustness and good performance. Additionally, the method can also be used for the global path planning of underground maps.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

MADHAVAN, R., G. DISSANAYAKE, H. DURRANT-WHYTE, J. ROBERTS, P. CORKE, and J. CUNNINGHAM. "ISSUES IN AUTONOMOUS NAVIGATION OF UNDERGROUND VEHICLES." Mineral Resources Engineering 08, no. 03 (September 1999): 313–24. http://dx.doi.org/10.1142/s095060989900030x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Huiyun, Yongqiang Li, Baoshan Wang, and Zengzhang Guo. "Research on Mapping Error Control of Underground Space Mobile LiDAR Constrained by Cooperative Targets." Journal of Sensors 2022 (October 10, 2022): 1–12. http://dx.doi.org/10.1155/2022/8690532.

Повний текст джерела
Анотація:
In the underground environment, it is difficult to obtain spatial three-dimensional data because of occlusion and its complexity. Mobile light detection and ranging (LiDAR) measurement technology has the ability to obtain three-dimensional spatial information quickly and accurately, but in the underground environment, because of the lack of global navigation satellite system (GNSS) signal in the integrated navigation system, the measurement accuracy decreases with the increase of time. In this paper, an extended Kalman filter-based loose mode is constructed using the real coordinates of the center of gravity of the target and the measurement information of the laser foothold. It provides an additional space-time reference for the integrated navigation system of the mobile LiDAR system and restricts the errors. The simulation results show that the proposed method can effectively improve the measurement accuracy of mobile LiDAR system and enhance the 3D spatial perception ability of underground space.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xu, Man, Shuangfeng Wei, and Sisi Zlatanova. "AN INDOOR NAVIGATION APPROACH CONSIDERING OBSTACLES AND SPACE SUBDIVISION OF 2D PLAN." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B4 (June 13, 2016): 339–46. http://dx.doi.org/10.5194/isprs-archives-xli-b4-339-2016.

Повний текст джерела
Анотація:
The demand for indoor navigation is increasingly urgent in many applications such as safe management of underground spaces or location services in complex indoor environment, e.g. shopping centres, airports, museums, underground parking lot and hospitals. Indoor navigation is still a challenging research field, as currently applied indoor navigation algorithms commonly ignore important environmental and human factors and therefore do not provide precise navigation. Flexible and detailed networks representing the connectivity of spaces and considering indoor objects such as furniture are very important to a precise navigation. In this paper we concentrate on indoor navigation considering obstacles represented as polygons. We introduce a specific space subdivision based on a simplified floor plan to build the indoor navigation network. The experiments demonstrate that we are able to navigate around the obstacles using the proposed network. Considering to well-known path-finding approaches based on Medial Axis Transform (MAT) or Visibility Graph (VG), the approach in this paper provides a quick subdivision of space and routes, which are compatible with the results of VG.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Underground navigation"

1

Al-Naami, Nora. "Indoor navigation techniques for underground subway stations : Analyzing Suitable indoor navigation technologies for underground stations." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211673.

Повний текст джерела
Анотація:
Indoor navigation has always been an interesting topic to look at since there are many use of it for example in airports, huge malls and underground transport stations. One interesting application area is the underground transportation since the current navigation in the underground stations in Sweden is proven to be insufficient to guide the user from the underground station to the final destination. GPS is a prominent solution for the outdoor navigation but no prominent solution has been found for the indoor navigation. Techniques used for navigation indoors vary depending on the infrastructure of the building. Therefore, this paper looks at the different indoor navigation techniques categorized based on a smartphone's sensors and find the techniques most suitable in implementing for the existing SL underground stations. The underground station is divided into two parts, the platform and the second floor. A combination of kinematic and visual navigation techniques is efficient to implement in the platform due to the environment of the platform. Wireless navigation is suitable to implement in the second floor due to the availability of WiFi access points in the second floor of the underground station. Those findings help in setting up an efficient navigation for the SL underground stations, which help in navigating users from one point to another.
Inomhusnavigering har alltid varit ett intressant ämne att titta på, eftersom det finns stor användning av det till exempel i flygplatser, stora gallerior och tunnelbanestationer. Ett intressant tillämpningsomrade är den underjordiska transporten, eftersom den nuvarande navigeringen i tunnelbanestationerna i Sverige visar sig vara otillracklig for att navigera en resenär fran tunnelbanestationen till slutdestinationen. GPS ar en framträdande lösning för utomhusnavigeringen men ingen framstående losning har hittats för inomhusnavigeringen. Tekniker som används för navigering inomhus varierar beroende på byggnadens infrastruktur. Därfor studerar denna rapport på de olika inomhusnavigeringsteknikerna som kategoriseras baserat på en smartphones sensorer och hittar de tekniker som är mest passande för att genomföra för de befintliga SL-tunnelbanestationerna. Tunnelbanestationen är uppdelad i två delar, plattformen och andra våningen. En kombination av kinematisk och visuell navigeringsteknik är effektiv att implementera i plattformen på grund av plattformens miljö. Trådlös navigering är lamplig att genomföra i andra våningen på grund av tillgangen till WiFi-åtkomstpunkter i andra våningen av tunnelbanestationen. Det resultatet hjälper till att skapa en effektiv navigering för SL-tunnelbanestationerna, vilket hjälper till att navigera användare från en punkt till en annan.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tillema, Nico J. P. "An investigation into underground navigation using electromagnetic waves." Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/33823.

Повний текст джерела
Анотація:
This thesis explores the possibility of measuring the movement of an underground transmitter using electromagnetic waves. The displacement of the transmitter was estimated based on the magnitude and phase of the received electromagnetic wave, using receiver antennas at fixed locations. Electromagnetic wave propagation underground was dependent on the frequency used, soil type, soil moisture content and environmental conditions. An extensive investigation has been conducted in measuring the soil dielectric constant and conductivity. When the sample moisture was increased, its dielectric constant increased, being disperse for clays, but fairly linear for sands. Clays show a higher conductivity. The optimum antennas to use underground were dielectric loaded electric monopole and dipole antennas. A method was developed to predict the admittance of insulated monopole antennas in soil using measured data of the ambient medium.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Svensson, John. "Investigation of Inertial Navigation for Localization in Underground Mines." Thesis, Uppsala universitet, Signaler och System, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-268879.

Повний текст джерела
Анотація:
This thesis project considers the potential use of inertial navigation on a consumer grade tablet mounted in a vehicle in an underground mine. The goal is to identify which sensors and techniques are useful and to design a navigation algorithm based on those results. The navigation algorithm is intended to work alongside the current received signal strength indication (RSSI) positioning system. Testing of the gyroscope, accelerometer and magnetometer sensors suggest that, while dead reckoning is likely not precise enough, an orientation filter can be designed that can be used for navigation. A complementary orientation filter using the gyroscope and accelerometer is then designed that shows better results than the default sensor fusion solutions available in Android. The filter is expandable and can come to include magnetometer data in the future. Based on the outputs of this filter, a navigation algorithm based onangle matching with map information is proposed. Precise positioning in an underground mine can be crucial to employee safety, and may also bring production benefits.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Yin Ph D. Massachusetts Institute of Technology. "Indoor navigation for passengers in underground transit stations using smartphones." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103836.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 193-199).
People are increasingly relying on smartphones to solve a lot of their daily problems, among which navigation is one of the most fundamental tasks. Estimating the locations of pedestrians and tracking them in an indoor environment is a long sought after research goal. This thesis develops a smartphone-based indoor navigation system specifically designed for transit stations, but which also allows easy extension to other navigation scenarios. The thesis' system requires no extra hardware installation in the indoor environment or on the phone and few assumptions are made about the indoor space and the path tile user is taking, unlike previous approaches. A Bayesian feature-based particle filter localization model is developed to estimate the user's location. A motion model with step detection and heading inference is developed from phone sensor readings, which serves as the motion input to the particle filter. The thesis develops several human activity pattern recognition models that extract activity features from phone sensors as the observation model in the feature-based particle filter model. A grid-based map representation is developed to model the topology and semantic information of an indoor environment, which requires lower computational cost in real-time particle propagation than 2D geometric maps. The thesis develops a modified shortest path algorithm that is able to accommodate user-specific routing requirements and constraints, such as handicap accessibility and a sequence of locations to be visited. A routing graph that is able to model different types of locations and connections in the indoor environment is also developed to work with the modified shortest path algorithm. A new data model and standardized data collection process are proposed to improve data quality and the user experience in future indoor path planning applications. Last, an integrated indoor navigation system is developed to provide the user with step-by-step instructions and route display. Empirical studies of system performance are performed for several transit stations in Boston and London, and a set of buildings at MIT.
by Yin Wang.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dragt, Bruce James. "Modelling and control of an autonomous underground mine vehicle." Diss., Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-08282007-101213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kohlmeyer, Rolf Reimar. "Modelling and control of an articulated underground mining vehicle." Diss., 2012. http://hdl.handle.net/2263/26245.

Повний текст джерела
Анотація:
The automation of the tramming or load, haul and dump (LHD) procedure, performed by a LHD vehicle, holds the potential to improve productivity, efficiency and safety in the mining environment. Productivity is mainly increased by longer working hours; efficiency is improved by repetitive, faultless and predictable work; and safety is improved by removing the human operator from the harsh environment. However, before the automation of the process can be addressed, a thorough understanding of the process and its duty in the overall mining method is required. Therefore, the current applicable mining methods and their areas of potential automation are given. Since the automation of the LHD vehicle is at the core of this project, its implementation in the tramming process is also justified. Also, the current underground navigation methods are given and their shortcomings are named. It is concluded that infrastructure-free navigation is the only viable solution in the ever-changing mining environment. With that in mind, the feasibility of various navigation sensors is discussed and conclusions are drawn. Both kinematic and dynamic modelling of LHD vehicles are introduced. Various forms of kinematic models are given and their underlying modelling assumptions are named. The most prominent assumptions concern the vehicle’s half-length and the inclusion of a wheel-slip factor. Dynamic modelling techniques, with a strong emphasis on tyre modelling, are also stated. In order to evaluate the modelling techniques, field tests are performed on the articulated vehicles, namely the Wright 365 LHD and the Bell 1706C loader. The test on the Wright 365 LHD gives a good impression of the harsh ergonomics under which the operator has to work. A more thorough test is performed on the Bell 1706C articulated loader. The test results are then compared to simulation results obtained from the kinematic models. Also, the above-named assumptions are tested, evaluated and discussed. A dynamic model is also simulated and discussed. Lastly, two localization and control methods are given and evaluated. The first method is an open-loop nonlinear optimal control strategy with periodic position resetting and the second method is a pathtracking controller. AFRIKAANS : Automatisering van die laai-, vervoer- en dompel- (LVD) prosedure het die potensiaal om die produktiwiteit, effektiwiteit en veiligheid van die mynbedryf te verbeter. Produktiwiteit word hoofsaaklik deur langer werksure verhoog, effektiwiteit word deur herhalende, foutlose en voorspelbare werk verbeter en veiligheid word verbeter omdat menslike operateurs uit die gevaarlike ondergrondse omgewing verwyder word. Voordat aandag aan die automatisering van die prosedure geskenk kan word, moet die prosedure en die algemene mynbedrywighede rakende die prosedure deeglik bestudeer en verstaan word. As gevolg hiervan word die huidige, toepaslike mynboumetodes hier gedokumenteer. Die implementering van ʼn gekoppelde LVD-voertuig in die LVD-prosesword ook geregverdig. Verder word die huidige metodes van ondergrondse navigasie genoem en hulle tekortkominge aangedui. Die gevolgtrekking dat infrastruktuur-vrye navigasie die enigste lewensvatbare navigasiemetode in die immer veranderende ondergrondsemynbouomgewing is, word ook gemaak. In die lig daarvan word ʼn verskeidenheid sensors genoem en bespreek. Kinematiese en dinamiese modellering van ʼn LVD-voertuig word bekendgestel. Verskeie kinematiese modelle en hulle onderliggende aannames word genoem. Die mees prominente aannames is die lengte van die gekoppelde voertuig se hoofdele en die insluiting van ʼn wielglipfaktor. Die tegnieke van dinamiese modellering, met die klem op bandmodellering, word ook gegee. Praktyktoetse op gekoppelde voertuie is ook gedoen om die verskillende modelle te evalueer. Die toets op die Wright 365-LVD bied goeie insig in die strawwe ergonomiese toestande waaronder die operateurs moet werk. ʼn Deeglike toets is op ʼn BELL 1706C- gekoppelde laaier, wat kinematies identies aan ʼn LVD-voertuig is, uitgevoer. Die bevindinge van die toets word met bogenoemde modelsimulasies vergelyk en gevolgtrekkings word gemaak. Laastens word lokalisiering en beheer van ʼn LVDvoertuig behandel. Twee beheermetodes, opelus- nie-lineêre optimale beheer met periodieke herstel en padvolgingbeheer word geëvalueer en bespreek. Copyright
Dissertation (MEng)--University of Pretoria, 2012.
Electrical, Electronic and Computer Engineering
unrestricted
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Ching-I., and 陳靜儀. "Designing Optimized Smartphone Indoor Navigation Applied to Emergency Evacuation in Underground Spaces – Taipei Main Station, as a Case Study." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/uq4476.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
工業設計系創新設計碩士班(碩士在職專班)
105
With the continuous progression of urban development, people increasingly rely on the convenience of underground public transportation. Lacking an advanced systematic program of safety measures and evacuation guidance provisions within such areas, such as the Taipei subway and its extensive underground mall, inevitably will result in significant casualties in an emergency disaster situation. In disaster emergency situations, it is vital to guarantee swift movement and evacuation routes, and as such, this is an important issue for public design. The Internet of Things technology developments is ever-changing that there are some new technologies which can make up the problem that the GPS signal cannot be received smooth. The indoor navigation system provides evacuation guidance for the location of the evacuees when evacuating underground space. The purpose of this study is to optimize the mobile navigation interface design for emergency evacuation situations under special consideration of psychological pressure and provide for a most efficient route of escape.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Underground navigation"

1

Anderson, Donna L. Underground test results of a laser-based tram control system for a continuous miner. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hart, Malcolm. Memoirs of an Underground Filmmaker: Navigating the Stormy Sixties and Seventies. Independently Published, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Underground navigation"

1

Larsson, Johan, Mathias Broxvall, and Alessandro Saffiotti. "A Navigation System for Automated Loaders in Underground Mines." In Springer Tracts in Advanced Robotics, 129–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33453-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mansouri, Sina Sharif, Miguel Castaño, Christoforos Kanellakis, and George Nikolakopoulos. "Autonomous MAV Navigation in Underground Mines Using Darkness Contours Detection." In Lecture Notes in Computer Science, 164–74. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34995-0_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yu, Ying, Jinpeng Wang, Xinpeng Xue, and Nianyu Zou. "Route Navigation System with A-Star Algorithm in Underground Garage Based on Visible Light Communication." In Lecture Notes in Electrical Engineering, 1100–1110. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6504-1_131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Siricharoen, Waralak Vongdoiwang. "Experiencing User-Centered Design (UCD) Practice (Case Study: Interactive Route Navigation Map of Bangkok Underground and Sky Train)." In IFIP Advances in Information and Communication Technology, 70–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15231-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Frkovich, Ann, and Tameka Carter-Richardson. "Vignettes From the Underground." In Navigating Precarity in Educational Contexts, 120–35. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003258223-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kriegsch, Pascal, Fabian Uth, Amir Ehsan Kianfar, M. Junga, R. Baltes, and E. Clausen. "Optimization of an Underground Localization System Based on Ultra-Wideband Radio and Inertial Navigation Through Determination and Evaluation of Influencing Factors." In Yearbook of Sustainable Smart Mining and Energy 2021, 147–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84315-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Localization in Underground Tunnels." In Indoor Wayfinding and Navigation, 96–121. CRC Press, 2015. http://dx.doi.org/10.1201/b18220-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Traxler, C., G. Hesina, and K. Chmelina. "Immersive tunnel monitoring by data driven navigation in 3D." In Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art, 3254–61. CRC Press, 2020. http://dx.doi.org/10.4324/9781003031635-74.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Traxler, C., G. Hesina, and K. Chmelina. "Immersive tunnel monitoring by data driven navigation in 3D." In Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art, 3254–61. CRC Press, 2019. http://dx.doi.org/10.1201/9780429424441-344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Traxler, C., G. Hesina, and K. Chmelina. "Immersive tunnel monitoring by data driven navigation in 3D." In Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art, 3254–61. CRC Press, 2020. http://dx.doi.org/10.1201/9781003031635-74.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Underground navigation"

1

Davis, Clay. "GPS-like navigation underground." In 2010 IEEE/ION Position, Location and Navigation Symposium - PLANS 2010. IEEE, 2010. http://dx.doi.org/10.1109/plans.2010.5507196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Oliveira, Victor Adriel de J., Eduardo Marques, Rodrigo De Lemos Peroni, and Anderson Maciel. "Tactile Interface for Navigation in Underground Mines." In 2014 XVI Symposium on Virtual and Augmented Reality (SVR). IEEE, 2014. http://dx.doi.org/10.1109/svr.2014.16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schneider, Oliver. "Requirements for positioning and navigation in underground constructions." In 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2010. http://dx.doi.org/10.1109/ipin.2010.5646747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Capozzi, Ryan, Markus Wilde, and Brian Kish. "Daisy Chain Navigation and Communication in Underground Environments." In 2021 IEEE Aerospace Conference. IEEE, 2021. http://dx.doi.org/10.1109/aero50100.2021.9438304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Estrada, Emanuel, Luan Silveira, Eder Gonccalves, Nelson Duarte Filho, Vinicius de Oliveira, and Silvia Botelho. "Autonomous navigation for underground energy line inspection robot." In 2010 1st International Conference on Applied Robotics for the Power Industry (CARPI 2010). IEEE, 2010. http://dx.doi.org/10.1109/carpi.2010.5624410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dunn, Mark T., Jeremy P. Thompson, Peter B. Reid, and David C. Reid. "High accuracy inertial navigation for underground mining machinery." In 2012 IEEE International Conference on Automation Science and Engineering (CASE 2012). IEEE, 2012. http://dx.doi.org/10.1109/coase.2012.6386402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wu, Yifan, Zhengtao Li, Xin Qu, and Tianxu Zhang. "Combined infrared simulation and pix2pix model for underground target detection." In Automatic Target Recognition and Navigation, edited by Hanyu Hong, Jianguo Liu, and Xia Hua. SPIE, 2020. http://dx.doi.org/10.1117/12.2538212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Larsson, Johan, Mathias Broxvall, and Alessandro Saffiotti. "Flexible infrastructure free navigation for vehicles in underground mines." In 2008 4th International IEEE Conference "Intelligent Systems" (IS). IEEE, 2008. http://dx.doi.org/10.1109/is.2008.4670406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mansouri, Sina Sharif, Christoforos Kanellakis, George Georgoulas, and George Nikolakopoulos. "Towards MAV Navigation in Underground Mine Using Deep Learning." In 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2018. http://dx.doi.org/10.1109/robio.2018.8665290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cypriani, Matteo, Gilles Delisle, and Nadir Hakem. "Wi-Fi-based positioning in underground mine tunnels." In 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2013. http://dx.doi.org/10.1109/ipin.2013.6817894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії