Зміст
Добірка наукової літератури з теми "Underdamped Langevin diffusion"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Underdamped Langevin diffusion".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Underdamped Langevin diffusion"
Chen, Yao, and Xudong Wang. "Novel anomalous diffusion phenomena of underdamped Langevin equation with random parameters." New Journal of Physics 23, no. 12 (December 1, 2021): 123024. http://dx.doi.org/10.1088/1367-2630/ac3db9.
Повний текст джерелаFutami, Futoshi, Tomoharu Iwata, Naonori Ueda, and Issei Sato. "Accelerated Diffusion-Based Sampling by the Non-Reversible Dynamics with Skew-Symmetric Matrices." Entropy 23, no. 8 (July 30, 2021): 993. http://dx.doi.org/10.3390/e23080993.
Повний текст джерелаRegev, Shaked, and Oded Farago. "Application of underdamped Langevin dynamics simulations for the study of diffusion from a drug-eluting stent." Physica A: Statistical Mechanics and its Applications 507 (October 2018): 231–39. http://dx.doi.org/10.1016/j.physa.2018.05.082.
Повний текст джерелаNüske, Feliks, Péter Koltai, Lorenzo Boninsegna, and Cecilia Clementi. "Spectral Properties of Effective Dynamics from Conditional Expectations." Entropy 23, no. 2 (January 21, 2021): 134. http://dx.doi.org/10.3390/e23020134.
Повний текст джерелаMonmarché, Pierre. "High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion." Electronic Journal of Statistics 15, no. 2 (January 1, 2021). http://dx.doi.org/10.1214/21-ejs1888.
Повний текст джерелаДисертації з теми "Underdamped Langevin diffusion"
Enfroy, Aurélien. "Contributions à la conception, l'étude et la mise en œuvre de méthodes de Monte Carlo par chaîne de Markov appliquées à l'inférence bayésienne." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAS012.
Повний текст джерелаThis thesis focuses on the analysis and design of Markov chain Monte Carlo (MCMC) methods used in high-dimensional sampling. It consists of three parts.The first part introduces a new class of Markov chains and MCMC methods. These methods allow to improve MCMC methods by using samples targeting a restriction of the original target distribution on a domain chosen by the user. This procedure gives rise to a new chain that takes advantage of the convergence properties of the two underlying processes. In addition to showing that this chain always targets the original target measure, we also establish ergodicity properties under weak assumptions on the Markov kernels involved.The second part of this thesis focuses on discretizations of the underdamped Langevin diffusion. As this diffusion cannot be computed explicitly in general, it is classical to consider discretizations. This thesis establishes for a large class of discretizations a condition of uniform minimization in the time step. With additional assumptions on the potential, it shows that these discretizations converge geometrically to their unique V-invariant probability measure.The last part studies the unadjusted Langevin algorithm in the case where the gradient of the potential is known to within a uniformly bounded error. This part provides bounds in V-norm and in Wasserstein distance between the iterations of the algorithm with the exact gradient and the one with the approximated gradient. To do this, an auxiliary Markov chain is introduced that bounds the difference. It is established that this auxiliary chain converges in distribution to sticky process already studied in the literature for the continuous version of this problem