Добірка наукової літератури з теми "Uncertain imputation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Uncertain imputation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Uncertain imputation"
G.V., Suresh, and Srinivasa Reddy E.V. "Uncertain Data Analysis with Regularized XGBoost." Webology 19, no. 1 (January 20, 2022): 3722–40. http://dx.doi.org/10.14704/web/v19i1/web19245.
Повний текст джерелаWang, Jianwei, Ying Zhang, Kai Wang, Xuemin Lin, and Wenjie Zhang. "Missing Data Imputation with Uncertainty-Driven Network." Proceedings of the ACM on Management of Data 2, no. 3 (May 29, 2024): 1–25. http://dx.doi.org/10.1145/3654920.
Повний текст джерелаElimam, Rayane, Nicolas Sutton-Charani, Stéphane Perrey, and Jacky Montmain. "Uncertain imputation for time-series forecasting: Application to COVID-19 daily mortality prediction." PLOS Digital Health 1, no. 10 (October 25, 2022): e0000115. http://dx.doi.org/10.1371/journal.pdig.0000115.
Повний текст джерелаLiang, Pei, Junhua Hu, Yongmei Liu, and Xiaohong Chen. "Public resources allocation using an uncertain cooperative game among vulnerable groups." Kybernetes 48, no. 8 (September 2, 2019): 1606–25. http://dx.doi.org/10.1108/k-03-2018-0146.
Повний текст джерелаBleidorn, Michel Trarbach, Wanderson de Paula Pinto, Isamara Maria Schmidt, Antonio Sergio Ferreira Mendonça, and José Antonio Tosta dos Reis. "Methodological approaches for imputing missing data into monthly flows series." Ambiente e Agua - An Interdisciplinary Journal of Applied Science 17, no. 2 (April 5, 2022): 1–27. http://dx.doi.org/10.4136/ambi-agua.2795.
Повний текст джерелаGromova, Ekaterina, Anastasiya Malakhova, and Arsen Palestini. "Payoff Distribution in a Multi-Company Extraction Game with Uncertain Duration." Mathematics 6, no. 9 (September 11, 2018): 165. http://dx.doi.org/10.3390/math6090165.
Повний текст джерелаLee, Jung Yeon, Myeong-Kyu Kim, and Wonkuk Kim. "Robust Linear Trend Test for Low-Coverage Next-Generation Sequence Data Controlling for Covariates." Mathematics 8, no. 2 (February 8, 2020): 217. http://dx.doi.org/10.3390/math8020217.
Повний текст джерелаGriffin, James M., Jino Mathew, Antal Gasparics, Gábor Vértesy, Inge Uytdenhouwen, Rachid Chaouadi, and Michael E. Fitzpatrick. "Machine-Learning Approach to Determine Surface Quality on a Reactor Pressure Vessel (RPV) Steel." Applied Sciences 12, no. 8 (April 7, 2022): 3721. http://dx.doi.org/10.3390/app12083721.
Повний текст джерелаFLÅM, S. D., and Y. M. ERMOLIEV. "Investment, uncertainty, and production games." Environment and Development Economics 14, no. 1 (February 2009): 51–66. http://dx.doi.org/10.1017/s1355770x08004579.
Повний текст джерелаLe, H., S. Batterman, K. Dombrowski, R. Wahl, J. Wirth, E. Wasilevich, and M. Depa. "A Comparison of Multiple Imputation and Optimal Estimation for Missing and Uncertain Urban Air Toxics Data." Epidemiology 17, Suppl (November 2006): S242. http://dx.doi.org/10.1097/00001648-200611001-00624.
Повний текст джерелаДисертації з теми "Uncertain imputation"
Elimam, Rayane. "Apprentissage automatique pour la prédiction de performances : du sport à la santé." Electronic Thesis or Diss., IMT Mines Alès, 2024. https://theses.hal.science/tel-04805708.
Повний текст джерелаNumerous performance indicators exist in sport and health (recovery, rehabilitation, etc.), allowing us to characterize different sporting and therapeutic criteria.These different types of performance generally depend on the workload (or rehabilitation) undergone by athletes or patients.In recent years, many applications of machine learning to sport and health have been proposed.Predicting or even explaining performance based on workload data could help optimize training or therapy.In this context, the management of missing data and the articulation between load types and the various performance indicators considered represent the 2 issues addressed in this manuscript through 4 applications. The first 2 concern the management of missing data through uncertain modeling performed on (i) highly incomplete professional soccer data and (ii) artificially noisy COVID-19 data. For these 2 contributions, we have combined credibilistic uncertainty models, based on the theory of belief functions, with various imputation methods adapted to the chronological context of training/matches and therapies.Once the missing data had been imputed in the form of belief functions, the credibilistic $k$ nearest-neighbor model adapted to regression was used to take advantage of the uncertain uncertainty patterns associated with the missing data. In the context of predicting performance in handball matches as a function of past workloads, multi-output regression models are used to simultaneously predict 7 athletic and technical performance indicators. The final application concerns the rehabilitation of post-stroke patients who have partially lost the use of one arm. In order to detect patients not responding to therapy, the problem of predicting different rehabilitation criteria has enabled the various contributions of this manuscript (credibilistic imputation of missing data and multiscore regression for the simultaneous prediction of different performance indicators
Bodine, Andrew James. "The Effect of Item Parameter Uncertainty on Test Reliability." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343316705.
Повний текст джерелаHuang, Shiping. "Exploratory visualization of data with variable quality." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-01115-225546/.
Повний текст джерелаКниги з теми "Uncertain imputation"
Analysis of Integrated Data. Taylor & Francis Group, 2019.
Знайти повний текст джерелаChambers, Raymond L., and Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Знайти повний текст джерелаChambers, Raymond L., and Lichun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2021.
Знайти повний текст джерелаChambers, Raymond L., and Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Знайти повний текст джерелаЧастини книг з теми "Uncertain imputation"
Little, Roderick J. A., and Donald B. Rubin. "Estimation of Imputation Uncertainty." In Statistical Analysis with Missing Data, 75–93. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119013563.ch5.
Повний текст джерелаRanvier, Thomas, Haytham Elghazel, Emmanuel Coquery, and Khalid Benabdeslem. "Accounting for Imputation Uncertainty During Neural Network Training." In Big Data Analytics and Knowledge Discovery, 265–80. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39831-5_24.
Повний текст джерелаShi, Xingjie, Can Yang, and Jin Liu. "Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies." In Methods in Molecular Biology, 93–103. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0947-7_7.
Повний текст джерелаErdogan Erten, Gamze, Camilla Zacche da Silva, and Jeff Boisvert. "Decorrelation and Imputation Methods for Multivariate Modeling." In Applied Spatiotemporal Data Analytics and Machine Learning [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.115069.
Повний текст джерелаLajeunesse, Marc J. "Recovering Missing or Partial Data from Studies: a Survey of Conversions and Imputations for Meta-analysis." In Handbook of Meta-analysis in Ecology and Evolution. Princeton University Press, 2013. http://dx.doi.org/10.23943/princeton/9780691137285.003.0013.
Повний текст джерелаТези доповідей конференцій з теми "Uncertain imputation"
Mai, Lihao, Haoran Li, and Yang Weng. "Data Imputation with Uncertainty Using Stochastic Physics-Informed Learning." In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688419.
Повний текст джерелаZhang, Shunyang, Senzhang Wang, Xianzhen Tan, Renzhi Wang, Ruochen Liu, Jian Zhang, and Jianxin Wang. "SaSDim:Self-Adaptive Noise Scaling Diffusion Model for Spatial Time Series Imputation." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/283.
Повний текст джерелаAzarkhail, M., and P. Woytowitz. "Uncertainty management in model-based imputation for missing data." In 2013 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2013. http://dx.doi.org/10.1109/rams.2013.6517697.
Повний текст джерелаZhao, Qilong, Yifei Zhang, Mengdan Zhu, Siyi Gu, Yuyang Gao, Xiaofeng Yang, and Liang Zhao. "DUE: Dynamic Uncertainty-Aware Explanation Supervision via 3D Imputation." In KDD '24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 6335–43. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3637528.3671641.
Повний текст джерелаJun, Eunji, Ahmad Wisnu Mulyadi, and Heung-Il Suk. "Stochastic Imputation and Uncertainty-Aware Attention to EHR for Mortality Prediction." In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852132.
Повний текст джерелаSaeidi, Rahim, and Paavo Alku. "Accounting for uncertainty of i-vectors in speaker recognition using uncertainty propagation and modified imputation." In Interspeech 2015. ISCA: ISCA, 2015. http://dx.doi.org/10.21437/interspeech.2015-703.
Повний текст джерелаHwang, Sunghyun, and Dong-Kyu Chae. "An Uncertainty-Aware Imputation Framework for Alleviating the Sparsity Problem in Collaborative Filtering." In CIKM '22: The 31st ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3511808.3557236.
Повний текст джерелаAndrews, Mark, Gavin Jones, Brian Leyde, Lie Xiong, Max Xu, and Peter Chien. "A Statistical Imputation Method for Handling Missing Values in Generalized Polynomial Chaos Expansions." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91035.
Повний текст джерелаMoreira, Rafael Peralta, Thiago da Silva Piedade, and Marcelo Victor Tomaz De Matos. "Credibility Assessment of Annular Casing Cement for P&A Campaigns: A Case Study in Campos Basin Offshore Brazil." In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32625-ms.
Повний текст джерелаWang, Zepu, Dingyi Zhuang, Yankai Li, Jinhua Zhao, Peng Sun, Shenhao Wang, and Yulin Hu. "ST-GIN: An Uncertainty Quantification Approach in Traffic Data Imputation with Spatio-Temporal Graph Attention and Bidirectional Recurrent United Neural Networks." In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2023. http://dx.doi.org/10.1109/itsc57777.2023.10422526.
Повний текст джерела