Статті в журналах з теми "Ultrathin oxides"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Ultrathin oxides.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Ultrathin oxides".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bec, Romulad B., Andrzej Jakubowsk, Lidia Łukasiak, and Michał Korwin-Pawłowski. "Challenges in ultrathin oxide layers formation." Journal of Telecommunications and Information Technology, no. 1 (March 30, 2001): 27–34. http://dx.doi.org/10.26636/jtit.2001.1.46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In near future silicon technology cannot do without ultrathin oxides, as it becomes clear from the Roadmap 2000. Formation, however, of such layers creates a lot of technical and technological problems. The aim of this paper is to present the technological methods that potentially can be used for formation of ultrathin oxide layers for next generations ICs. The methods are brie y described and their pros and cons are discussed.
2

Taylor, Seth T., John Mardinly, and Michael A. O'Keefe. "HRTEM Image Simulations for the Study of Ultrathin Gate Oxides." Microscopy and Microanalysis 8, no. 5 (October 2002): 412–21. http://dx.doi.org/10.1017/s1431927602020123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have performed high resolution transmission electron microscope (HRTEM) image simulations to qualitatively assess the visibility of various structural defects in ultrathin gate oxides of MOSFET devices, and to quantitatively examine the accuracy of HRTEM in performing gate oxide metrology. Structural models contained crystalline defects embedded in an amorphous 16-Å-thick gate oxide. Simulated images were calculated for structures viewed in cross section. Defect visibility was assessed as a function of specimen thickness and defect morphology, composition, size, and orientation. Defect morphologies included asperities lying on the substrate surface, as well as “bridging” defects connecting the substrate to the gate electrode. Measurements of gate oxide thickness extracted from simulated images were compared to actual dimensions in the model structure to assess TEM accuracy for metrology. The effects of specimen tilt, specimen thickness, objective lens defocus, and coefficient of spherical aberration (Cs) on measurement accuracy were explored for nominal 10-Å gate oxide thickness. Results from this work suggest that accurate metrology of ultrathin gate oxides (i.e., limited to several percent error) is feasible on a consistent basis only by using a Cs-corrected microscope. However, fundamental limitations remain for characterizing defects in gate oxides using HRTEM, even with the new generation of Cs-corrected microscopes.
3

Morgen, P., A. Bahari, U. Robenhagen, J. F. Andersen, J. K. Hansen, K. Pedersen, M. G. Rao, and Z. S. Li. "Roads to ultrathin silicon oxides." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23, no. 1 (January 2005): 201–7. http://dx.doi.org/10.1116/1.1842113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huang, Feng, W. J. Liu, J. F. Sullivan, J. A. Barnard, and M. L. Weaver. "Room-temperature oxidation of ultrathin TiB2 films." Journal of Materials Research 17, no. 4 (April 2002): 805–13. http://dx.doi.org/10.1557/jmr.2002.0118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Titanium diboride has been claimed as a very promising candidate material for protective applications in the magnetic recording. Its oxidation resistance at room temperature is a critical criterion in assessing this application potential. In this paper, the oxidation characteristics of ultrathin TiB2 thin films, such as overcoat erosion and oxide thickness, are investigated via a combination of x-ray reflectivity, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy. It was found that a <2-h exposure to air at room temperature led to the formation of approximately 15-Å-thick, well-defined oxides at the expense of an approximately 9-Å erosion of the TiB2 overcoats, coupled with the existence of a sharp oxide/TiB2 interface. XPS studies confirmed the existence of the oxides. Considering the decreasing allowable thickness for such protective overcoats, oxidation and the resultant thickness gain negate such a potential of ultrathin TiB2 films. The results in our current report provide a new perspective on its potential as protective overcoats in magnetic recording.
5

Zhu, Jianhui, Jian Jiang, Wei Ai, Zhanxi Fan, Xintang Huang, Hua Zhang, and Ting Yu. "Encapsulation of nanoscale metal oxides into an ultra-thin Ni matrix for superior Li-ion batteries: a versatile strategy." Nanoscale 6, no. 21 (2014): 12990–3000. http://dx.doi.org/10.1039/c4nr03661a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A versatile strategy of encapsulating nanoscale metal oxides into ultrathin Ni “armors” is proposed for superior anodes of LIBs. The hybrids of metal oxide@Ni show drastic improvements in the capacity retention, long-term cyclic stability and rate performance.
6

Wang, Kai, Bolong Huang, Weiyu Zhang, Fan Lv, Yi Xing, Wenshu Zhang, Jinhui Zhou, et al. "Ultrathin RuRh@(RuRh)O2 core@shell nanosheets as stable oxygen evolution electrocatalysts." Journal of Materials Chemistry A 8, no. 31 (2020): 15746–51. http://dx.doi.org/10.1039/d0ta03213a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report a novel architecture of ultrathin RuRh@(RuRh)O2 core/shell nanosheets with a core of ultrathin metallic RuRh nanosheets and a shell of (RuRh)O2 oxides as a superb electrocatalyst toward the oxgen evolution reaction (OER), better than most of the state-of-the-art Ru-based or Ir-based electrocatalysts. Moreover, the RuRh@(RuRh)O2 core/shell nanosheets exhibit good durability because the (RuRh)O2 oxide shell protects the normally labile RuRh NS core against dissolution during the OER process.
7

Ting, D. Z. Y. "Tunneling characteristics of nonuniform ultrathin oxides." Applied Physics Letters 73, no. 19 (November 9, 1998): 2769–71. http://dx.doi.org/10.1063/1.122585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lobinsky, A. A., and V. I. Popkov. "Ultrathin 2D nanosheets of transition metal (hydro)oxides as prospective materials for energy storage devices: A short review." Electrochemical Materials and Technologies 1, no. 1 (2022): 20221008. http://dx.doi.org/10.15826/elmattech.2022.1.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The ultrathin two-dimensional (2D) transition metal oxides and hydroxides (TMO and TMH) nanosheets are attractive for creating high-performance energy storage devices due to a set of unique physical and chemical properties. Flat 2D structure of such materials provides a sufficient number of active adsorption centers, and the ultra-small thickness, on the order of several nanometers, provides fast charge transfer, which significantly improves electronic conductivity. This brief review summarizes recent progress in the synthesis of materials based on ultrathin 2D nanosheets for energy storage applications, including pseudocapacitors, lithium-ion batteries, and other rechargeable devices. The review also presents examples of representative work on the synthesis of ultrathin 2D nanomaterials based on TMO and TMH for various power sources. In conclusion, the article discusses possible prospects and directions for further development of methods and routes for the synthesis of ultrathin two-dimensional transition metal oxides and hydroxides.
9

Rotondaro, A. L. Pacheco, R. T. Laaksonen, and S. P. Singh. "Impact of the Nitrogen Concentration of Sub-1.3 nm Gate Oxides on 65 nm Technology Transistor Parameters." Journal of Integrated Circuits and Systems 2, no. 2 (November 17, 2007): 63–66. http://dx.doi.org/10.29292/jics.v2i2.265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The nitrogen concentration of ultrathin gate oxides (sub-1.3 nm) was varied in a wide range (from 13 % to 23 %). The threshold voltage and the channel carrier mobility of advanced 65 nm technology CMOSFET transistors fabricated with these oxides were analyzed. It was observed that increasing the nitrogen concentration in the gate oxide results in a negative shift of the threshold voltage for both NMOS and PMOS devices and a degradation of the hole mobility. It was also observed that pchannel transistors are more sensitive to the nitrogen concentration of the gate oxide than n-channel transistors.
10

Chari, K. S., and S. Kar. "Interface Characteristics of Metal‐Oxide‐Semiconductor Capacitors with Ultrathin Oxides." Journal of The Electrochemical Society 138, no. 7 (July 1, 1991): 2046–49. http://dx.doi.org/10.1149/1.2085921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ting, D. Z. Y., Erik S. Daniel, and T. C. Mcgill. "Interface Roughness Effects in Ultra-Thin Tunneling Oxides." VLSI Design 8, no. 1-4 (January 1, 1998): 47–51. http://dx.doi.org/10.1155/1998/23567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Advanced MOSFET for ULSI and novel silicon-based devices require the use of ultrathin tunneling oxides where non-uniformity is often present. We report on our theoretical study of how tunneling properties of ultra-thin oxides are affected by roughness at the silicon/oxide interface. The effect of rough interfacial topography is accounted for by using the Planar Supercell Stack Method (PSSM) which can accurately and efficiently compute scattering properties of 3D supercell structures. Our results indicate that while interface roughness effects can be substantial in the direct tunneling regime, they are less important in the Fowler-Nordheim regime.
12

Choi, B. D., and D. K. Schroder. "Degradation of ultrathin oxides by iron contamination." Applied Physics Letters 79, no. 16 (October 15, 2001): 2645–47. http://dx.doi.org/10.1063/1.1410363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Donggun Park and Chenming Hu. "Plasma charging damage on ultrathin gate oxides." IEEE Electron Device Letters 19, no. 1 (January 1998): 1–3. http://dx.doi.org/10.1109/55.650333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Wen, H. J., and R. Ludeke. "Localized degradation studies of ultrathin gate oxides." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, no. 3 (May 1998): 1735–40. http://dx.doi.org/10.1116/1.581293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Eng, J., R. L. Opila, J. M. Rosamilia, B. J. Sapjeta, Y. J. Chabal, T. Boone, R. Masaitis, Thomas Sorsch, and Martin L. Green. "The Evolution of Chemical Oxides Into Ultrathin Oxides: A Spectroscopic Characterization." Solid State Phenomena 76-77 (January 2001): 145–48. http://dx.doi.org/10.4028/www.scientific.net/ssp.76-77.145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Takeda, Mikako, Takeshi Ohwaki, Hideo Fujii, Eisuke Kusumoto, Yoshiyuki Kaihara, Yoshizo Takai, and Ryuichi Shimizu. "Influence of Native Oxides on the Reliability of Ultrathin Gate Oxide." Japanese Journal of Applied Physics 37, Part 1, No. 2 (February 15, 1998): 397–401. http://dx.doi.org/10.1143/jjap.37.397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Hamed, Mai Hussein, David N. Mueller та Martina Müller. "Thermal phase design of ultrathin magnetic iron oxide films: from Fe3O4 to γ-Fe2O3 and FeO". Journal of Materials Chemistry C 8, № 4 (2020): 1335–43. http://dx.doi.org/10.1039/c9tc05921k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thermodynamically “active” oxide interfaces alter the standard iron oxide phase diagram of complex heterostructures. By controlling the effective oxygen pressure, selected iron oxides phases can be designed through a thermal phase design.
18

Hardy, An, Sven Van Elshocht, Jan D’Haen, Olivier Douhéret, Stefan De Gendt, Christoph Adelmann, Matty Caymax, et al. "Aqueous chemical solution deposition of ultrathin lanthanide oxide dielectric films." Journal of Materials Research 22, no. 12 (December 2007): 3484–93. http://dx.doi.org/10.1557/jmr.2007.0433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ultrathin lanthanide (Nd, Pr, Eu, Sm) oxide films with functional dielectric properties down to 3.3 nm thickness were deposited by aqueous chemical solution deposition (CSD) onto hydrophilic SiO2/Si substrates. Precursor solutions were prepared from the oxides via an intermediate, solid Ln(III)citrate. A film heat treatment scheme was derived from thermogravimetric analysis of the precursor gels, showing complete decomposition by 600 °C. Crystalline phase formation in the films depended on the lanthanide, annealing temperature, and citric acid content in the precursor. Through variation of the precursor concentration and number of deposited layers, thickness series of uniform films were obtained down to ∼3 nm. The film uniformity was demonstrated both by atomic force microscopy and cross-section transmission electron microscopy. The lanthanide oxide films possessed good dielectric properties. It was concluded that aqueous CSD allows deposition of uniform ultrathin films and may be useful for the evaluation of new high-k candidate materials.
19

Liao, Zhaoliang, and Jiandi Zhang. "Metal-to-Insulator Transition in Ultrathin Manganite Heterostructures." Applied Sciences 9, no. 1 (January 3, 2019): 144. http://dx.doi.org/10.3390/app9010144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thickness-driven phase transitions have been widely observed in many correlated transition metal oxides materials. One of the important topics is the thickness-driven metal to insulator transition in half-metal La2/3Sr1/3MnO3 (LSMO) thin films, which has attracted great attention in the past few decades. In this article, we review research on the nature of the metal-to-insulator (MIT) transition in LSMO ultrathin films. We discuss in detail the proposed mechanisms, the progress made up to date, and the key issues existing in understanding the related MIT. We also discuss MIT in other correlated oxide materials as a comparison that also has some implications for understanding the origin of MIT.
20

Chen, Zongkun, Minghua Huang, and Helmut Cölfen. "Synthesis of ultrathin metal oxide and hydroxide nanosheets using formamide in water at room temperature." CrystEngComm 23, no. 21 (2021): 3794–801. http://dx.doi.org/10.1039/d1ce00277e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Fukuda, Masatoshi, Wataru Mizubayashi, Atsushi Kohno, Seiichi Miyazaki, and Masataka Hirose. "Analysis of Tunnel Current through Ultrathin Gate Oxides." Japanese Journal of Applied Physics 37, Part 2, No. 12B (December 15, 1998): L1534—L1536. http://dx.doi.org/10.1143/jjap.37.l1534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Chen, C. C., C. Y. Chang, C. H. Chien, T. Y. Huang, H. C. Lin, and M. S. Liang. "Temperature-accelerated dielectric breakdown in ultrathin gate oxides." Applied Physics Letters 74, no. 24 (June 14, 1999): 3708–10. http://dx.doi.org/10.1063/1.123228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Hori, Takashi, Hiroshi Iwasaki, Takuichi Ohmura, Atsuko Samizo, Minoru Sato, and Yoshiaki Yoshioka. "Compositional study of ultrathin rapidly reoxidized nitrided oxides." Journal of Applied Physics 65, no. 2 (January 15, 1989): 629–35. http://dx.doi.org/10.1063/1.343095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hattori, Takeo, Hiroshi Nohira, and Kensuke Takahashi. "The initial growth steps of ultrathin gate oxides." Microelectronic Engineering 48, no. 1-4 (September 1999): 17–24. http://dx.doi.org/10.1016/s0167-9317(99)00329-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Contaret, T., G. Ghibaudo, A. Ferron, and F. Bœuf. "Excess drain noise simulation in ultrathin oxides MOSFETs." Journal of Computational Electronics 5, no. 2-3 (July 2006): 187–92. http://dx.doi.org/10.1007/s10825-006-8842-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zander, D., F. Saigne, C. Petit, and A. Meinertzhagen. "Electrical stress effects on ultrathin (2.3 nm) oxides." Journal of Non-Crystalline Solids 280, no. 1-3 (February 2001): 86–91. http://dx.doi.org/10.1016/s0022-3093(00)00393-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Chang, Chun-Yen, Chi-Chun Chen, Horng-Chih Lin, Mong-Song Liang, Chao-Hsin Chien, and Tiao-Yuan Huang. "Reliability of ultrathin gate oxides for ULSI devices." Microelectronics Reliability 39, no. 5 (May 1999): 553–66. http://dx.doi.org/10.1016/s0026-2714(99)00037-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Giustino, Feliciano, and Alfredo Pasquarello. "Infrared properties of ultrathin oxides on Si(100)." Microelectronic Engineering 80 (June 2005): 420–23. http://dx.doi.org/10.1016/j.mee.2005.04.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Zhang, Xinyu, Yongwei Wang, Fenghua Cheng, Zhiping Zheng, and Yaping Du. "Ultrathin lanthanide oxides nanomaterials: synthesis, properties and applications." Science Bulletin 61, no. 18 (September 2016): 1422–34. http://dx.doi.org/10.1007/s11434-016-1155-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Vereecke, G., E. Röhr, R. J. Carter, T. Conard, H. De Witte, and M. M. Heyns. "Investigation of fluorine in dry ultrathin silicon oxides." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19, no. 6 (2001): 2108. http://dx.doi.org/10.1116/1.1414050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Cellere, G., L. Larcher, M. G. Valentini, and A. Paccagnella. "Micro breakdown in small-area ultrathin gate oxides." IEEE Transactions on Electron Devices 49, no. 8 (August 2002): 1367–74. http://dx.doi.org/10.1109/ted.2002.801443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Lundgren, P., M. O. Andersson, K. R. Farmer, and O. Engström. "Electrical instability of ultrathin thermal oxides on silicon." Microelectronic Engineering 28, no. 1-4 (June 1995): 67–70. http://dx.doi.org/10.1016/0167-9317(95)00017-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Wu, E. Y., D. L. Harmon, and Liang-Kai Han. "Interrelationship of voltage and temperature dependence of oxide breakdown for ultrathin oxides." IEEE Electron Device Letters 21, no. 7 (July 2000): 362–64. http://dx.doi.org/10.1109/55.847381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Chen, Ming-Jer, Ting-Kuo Kang, Chuan-Hsi Liu, Yih J. Chang, and Kuan-Yu Fu. "Oxide thinning percolation statistical model for soft breakdown in ultrathin gate oxides." Applied Physics Letters 77, no. 4 (July 24, 2000): 555–57. http://dx.doi.org/10.1063/1.127042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bruyère, S., F. Guyader, W. De Coster, E. Vincent, M. Saadeddine, N. Revil, and G. Ghibaudo. "Wet or dry ultrathin oxides: impact on gate oxide and device reliability." Microelectronics Reliability 40, no. 4-5 (April 2000): 691–95. http://dx.doi.org/10.1016/s0026-2714(99)00273-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Lin, M.-T., R. J. Jaccodine, and T. J. Delph. "Planar oxidation of strained silicon substrates." Journal of Materials Research 16, no. 3 (March 2001): 728–33. http://dx.doi.org/10.1557/jmr.2001.0112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report here on a series of experiments in which relatively low levels of in-plane bending strain were applied to oxidizing silicon substrates. These were found to result in significant decreases in oxide thickness in the ultrathin oxide regime. Both tensile and compressive bending resulted in roughly the same degree of thickness retardation, although compressive bending typically led to somewhat thinner oxides than did tensile bending. An examination of the experimental data indicate that the principal effect seems to occur in the very early stages of oxidation, with only minor effects on subsequent oxide growth. We hypothesize that the observed oxide thickness retardation is related to straining of the underlying silicon lattice at the oxidation front.
37

von Bardeleben, Hans Jürgen, J. L. Cantin, I. Vickridge, Yong Wei Song, S. Dhar, Leonard C. Feldman, John R. Williams, et al. "Modification of the Oxide/Semiconductor Interface by High Temperature NO Treatments: A Combined EPR, NRA and XPS Study on Oxidized Porous and Bulk n-Type 4H-SiC." Materials Science Forum 483-485 (May 2005): 277–80. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The effect of thermal treatments in nitric oxide (NO) on the paramagnetic defects at the 4H-SiC/SiO2 interface are analyzed by EPR in oxidized porous samples. The results on ultrathin thermal oxides show that the NO treatment at 1000°C is insufficient for an efficient reduction of the two dominant paramagnetic interface defects: PbC centers and carbon clusters. From the NRA and XPS analysis of bulk samples treated under the same conditions we attribute the weak effect to the low nitrogen concentration of only 1% at the interface.
38

SUÑE, JORDI, DAVID JIMENEZ, and ENRIQUE MIRANDA. "BREAKDOWN MODES AND BREAKDOWN STATISTICS OF ULTRATHIN SiO2 GATE OXIDES." International Journal of High Speed Electronics and Systems 11, no. 03 (September 2001): 789–848. http://dx.doi.org/10.1142/s0129156401001003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The dielectric breakdown of ultra-thin silicon dioxide films used as gate insulator in MOSFETs is one of the most important reliability issues in CMOS technology. In this paper, two main aspects of oxide breakdown are considered: the modeling of the breakdown statistics and the properties of the two main breakdown modes, namely Soft Breakdown and Hard Breakdown. The most invoked models for the breakdown statistics that relate defect generation and breakdown are reviewed. Particular attention is paid to the percolation models and to a recent cell-based analytic picture. The scaling of the breakdown distribution with oxide thickness is considered and it is shown that both pictures are equivalent for ultra-thin oxides. It is shown that soft and hard breakdown show coincident statistics and this is used to conclude that both breakdown models are triggered by the formation of the same kind of defect-related conduction paths. The big differences in the post-breakdown conduction properties are attributed to phenomena occurring during the very fast breakdown current runaway that determine the area of the final breakdown spot. The properties of soft and hard breakdown are explained within the common framework of a model based on quantum-point-contact conduction. This mesoscopic approach to the post-breakdown conduction is shown to explain the main experimental results including conductance quantization after hard breakdown, the area and thickness independence of the soft-breakdown I(V) characteristics and the statistical correlation between current level and normalized conductance. Finally, we deal with some open questions and relevant issues that are now subject of intensive investigations. The fact that some breakdown events can be tolerated for some digital applications is considered. In this regard, the distinction between breakdown and device failure distributions is made and some implications for device reliability are discussed. It is argued that energy dissipation during the breakdown runaway can determine the breakdown efficiency, the prevalence ratio of soft to hard breakdown, and their variations with stress conditions, experimental setup (series impedance) and sample characteristics.
39

Gao, Xinlong, Wenhui Shi, Pengchao Ruan, Jinxiu Feng, Dong Zheng, Linhai Yu, Min Xue, et al. "Ultrathin carbon boosted sodium storage performance in aqueous electrolyte." Functional Materials Letters 13, no. 05 (July 2020): 2030002. http://dx.doi.org/10.1142/s1793604720300029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The sodium-based aqueous energy storage devices possess the advantages of low cost, high safety and wide application. However, the low energy density of traditional carbon-based sodium storage materials limits their large-scale application. Besides, other sodium storage materials, such as transition metal oxides, polyanionic compounds and Prussian blue analogues (PBAs), cannot achieve high capacity and stable energy storage performance due to their poor conductivity and instability. Ultrathin carbon with unique characteristics, such as high electrical conductivity, excellent chemical stability, can compensate for the shortcomings of these sodium storage materials. Besides, the arising synergistic effect among ultrathin carbon and active materials is capable of further boosting the performance to achieve robust microstructure, stable electrode/electrolyte interface, high reaction kinetics for obtained composite electrode. This paper summarizes the recently developed strategies to incorporate ultrathin carbon with electrode materials, followed by a discussion of the important role of ultrathin carbon in enhancing sodium storage properties, as well as the future research direction.
40

Istomin, A. V., and S. G. Kolyshev. "ELECTROSTATIC METHOD OF FORMING ULTRATHIN FIBERS OF REFRACTORY OXIDES." «Aviation Materials and Technologies», no. 2 (2019): 40–46. http://dx.doi.org/10.18577/2071-9140-2019-0-2-40-46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Vereecke, Guy, Erika Röhr, R. J. Carter, Thierry Conard, H. De Witte, and Marc M. Heyns. "The Origins of Fluorine in Dry Ultrathin Silicon Oxides." Solid State Phenomena 76-77 (January 2001): 153–56. http://dx.doi.org/10.4028/www.scientific.net/ssp.76-77.153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Arienzo, Maurizio, Leonello Dori, and Thomas N. Szabo. "Effect of post‐oxidation anneal on ultrathin SiO2gate oxides." Applied Physics Letters 49, no. 16 (October 20, 1986): 1040–42. http://dx.doi.org/10.1063/1.97465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Oellig, Eva M., E. G. Michel, M. C. Asensio, and R. Miranda. "Ultrathin gate oxides formed by catalytic oxidation of silicon." Applied Physics Letters 50, no. 23 (June 8, 1987): 1660–62. http://dx.doi.org/10.1063/1.97760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Liao, Wei-Jian, Yi-Lin Yang, Shun-Cheng Chuang, and Jenn-Gwo Hwu. "Growth-Then-Anodization Technique for Reliable Ultrathin Gate Oxides." Journal of The Electrochemical Society 151, no. 9 (2004): G549. http://dx.doi.org/10.1149/1.1783907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Fair, Richard B. "Physical Models of Boron Diffusion in Ultrathin Gate Oxides." Journal of The Electrochemical Society 144, no. 2 (February 1, 1997): 708–17. http://dx.doi.org/10.1149/1.1837473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Thompson, W. Howard, Zain Yamani, Laila AbuHassan, Osman Gurdal, and Munir Nayfeh. "The effect of ultrathin oxides on luminescent silicon nanocrystallites." Applied Physics Letters 73, no. 6 (August 10, 1998): 841–43. http://dx.doi.org/10.1063/1.122019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Madsen, Jon M., Zhenjiang Cui, and Christos G. Takoudis. "Low temperature oxidation of SiGe in ozone: Ultrathin oxides." Journal of Applied Physics 87, no. 4 (February 15, 2000): 2046–51. http://dx.doi.org/10.1063/1.372134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Mukhopadhyay, M., S. K. Ray, D. K. Nayak, and C. K. Maiti. "Ultrathin oxides using N2O on strained Si1−xGex layers." Applied Physics Letters 68, no. 9 (February 26, 1996): 1262–64. http://dx.doi.org/10.1063/1.115946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Pennetta, C., L. Reggiani, and Gy Trefán. "A percolative model of soft breakdown in ultrathin oxides." Physica B: Condensed Matter 314, no. 1-4 (March 2002): 400–403. http://dx.doi.org/10.1016/s0921-4526(01)01408-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Beck, Romuald B. "Formation of ultrathin silicon oxides—modeling and technological constraints." Materials Science in Semiconductor Processing 6, no. 1-3 (February 2003): 49–57. http://dx.doi.org/10.1016/s1369-8001(03)00071-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії