Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Ultrasonic system.

Статті в журналах з теми "Ultrasonic system"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Ultrasonic system".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kudoh, Yoshimitsu, and Hiroyuki Karasawa. "ULTRASONIC PROBE AND ULTRASONIC PROBE SYSTEM." Journal of the Acoustical Society of America 135, no. 1 (2014): 574. http://dx.doi.org/10.1121/1.4861515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhu, Yong Wei, Xing Lei Miao, and Chao Feng Zhang. "Precise-Micro PECM System and its Applications Combining Synchronizing Ultrasonical Vibration." Advanced Materials Research 295-297 (July 2011): 834–39. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.834.

Повний текст джерела
Анотація:
The micro-PECM (Pulse Electrochemical Machining) combining synchronous ultrasonic vibration is proposed as a new technology for to solve the difficulty machining problems of conductive hard and tough materials. The feasibility of micro-PECM combining synchronous ultrasonic vibration is studied. The synchronous way is analyzed; the synchronous electrical circuit is designed and made. The synchronous electrochemical micro-machining system combining ultrasonical vibration are built and improved,which machining parameters can be adjusted in a wide ranges, and the synchronous target of the ultrasonical vibration with the voltage of micro-PECM can be realized. The micro-machining electrodes are manufactured in different sections and sizes by combined electrical discharge machining. The mechanism tests of micro-PECM are carried, which kentaniums (YBD151、YG8)and stainless steel are machined and the results are analyzed and discussed. Contrast with the single micro-USM, the micro-PECM combining ultrasonic vibration has high productivity, good machining accuracy and surface quality; furthermore, its cathode wastage is low. The micro-PECM combining synchronous ultrasonic vibration has the best machining precision and surface quality.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hashimoto, Shinichi. "Ultrasonic probe and ultrasonic diagnosing system using ultrasonic probe." Journal of the Acoustical Society of America 97, no. 2 (February 1995): 1370. http://dx.doi.org/10.1121/1.412118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jackson, John I. "Ultrasonic Imaging System." Journal of the Acoustical Society of America 130, no. 4 (2011): 2315. http://dx.doi.org/10.1121/1.3650361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shirai, Takeshi. "Ultrasonic diagnostic system." Journal of the Acoustical Society of America 102, no. 1 (July 1997): 26. http://dx.doi.org/10.1121/1.419834.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Seo, Yasutsugu. "Ultrasonic diagnosing system." Journal of the Acoustical Society of America 89, no. 6 (June 1991): 3028. http://dx.doi.org/10.1121/1.400779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Takeuchi, Yasuhito. "Ultrasonic diagnostic system." Journal of the Acoustical Society of America 89, no. 6 (June 1991): 3028. http://dx.doi.org/10.1121/1.400780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dorr, John A. "Ultrasonic measuring system." Journal of the Acoustical Society of America 90, no. 1 (July 1991): 622. http://dx.doi.org/10.1121/1.401218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Yan. "Ultrasonic transducer system." Journal of the Acoustical Society of America 100, no. 5 (1996): 2896. http://dx.doi.org/10.1121/1.417176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Muller, Lon J., Austin Franklin, and Robert W. George. "Ultrasonic ranging system." Journal of the Acoustical Society of America 83, no. 6 (June 1988): 2469. http://dx.doi.org/10.1121/1.396339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dorr, John A. "Ultrasonic sensor system." Journal of the Acoustical Society of America 85, no. 5 (May 1989): 2244. http://dx.doi.org/10.1121/1.397795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Dorr, John A. "Ultrasonic sensor system." Journal of the Acoustical Society of America 86, no. 5 (November 1989): 2045. http://dx.doi.org/10.1121/1.398551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mochizuki, Takashi. "Ultrasonic medical system." Journal of the Acoustical Society of America 117, no. 4 (2005): 1706. http://dx.doi.org/10.1121/1.1920049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ueda, Masaaki. "Ultrasonic observation system." Journal of the Acoustical Society of America 123, no. 3 (2008): 1235. http://dx.doi.org/10.1121/1.2901371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Nakamura, Yasuhiro. "Ultrasonic imaging system." Journal of the Acoustical Society of America 97, no. 2 (February 1995): 1369. http://dx.doi.org/10.1121/1.412116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Shinomura, Ryuuichi. "Ultrasonic diagnostic system." Journal of the Acoustical Society of America 97, no. 2 (February 1995): 1367. http://dx.doi.org/10.1121/1.412166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lerch, Reinhard. "Ultrasonic transducer system." Journal of the Acoustical Society of America 82, no. 4 (October 1987): 1472. http://dx.doi.org/10.1121/1.395208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Kluk, Piotr. "MULTIFUNCTION ULTRASONIC SYSTEM." ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA 1, no. 12 (December 31, 2019): 6–10. http://dx.doi.org/10.15199/13.2019.12.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Escoffier, I. C. "Ultrasonic system launched." NDT International 21, no. 3 (June 1988): 178. http://dx.doi.org/10.1016/0308-9126(88)90463-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Escoffier, I. "Ultrasonic system launched." NDT & E International 21, no. 3 (June 1988): 178. http://dx.doi.org/10.1016/0963-8695(88)90275-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Sonomatic Ltd. "Ultrasonic imaging system." NDT & E International 24, no. 6 (December 1991): 332. http://dx.doi.org/10.1016/0963-8695(91)90123-k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Rolls-Royce MatEval Limited. "Ultrasonic inspection system." NDT & E International 25, no. 1 (January 1992): 49. http://dx.doi.org/10.1016/0963-8695(92)90141-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ritec Incorporated. "Ultrasonic measurement system." NDT & E International 27, no. 1 (February 1994): 59. http://dx.doi.org/10.1016/0963-8695(94)90118-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Tamura, Tadashi. "Ultrasonic imaging system." Journal of the Acoustical Society of America 113, no. 2 (2003): 697. http://dx.doi.org/10.1121/1.1560309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Kawata, Satoshi. "Ultrasonic angioscope system." Journal of the Acoustical Society of America 118, no. 1 (2005): 31. http://dx.doi.org/10.1121/1.1999448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Shibata, Norikiyo. "Ultrasonic operation system." Journal of the Acoustical Society of America 116, no. 6 (2004): 3261. http://dx.doi.org/10.1121/1.1853007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Hopko, Sandra N., I. Charles Ume, and Dathan S. Erdahl. "Development of a Flexible Laser Ultrasonic Probe." Journal of Manufacturing Science and Engineering 124, no. 2 (April 29, 2002): 351–57. http://dx.doi.org/10.1115/1.1379369.

Повний текст джерела
Анотація:
Ultrasonics is a widely used nondestructive testing technique, which is often applied off-line for weld quality inspection. Laser ultrasonic (LU) inspection systems have the potential for on-line application, providing the means to identify unacceptable welds as they are formed. Because LU systems are non-contacting, they can be used for testing moving specimens or for operation in hazardous and/or high temperature environments. A highly versatile system can be created when an optical fiber delivery system is incorporated into the design. Introduction of a focusing objective increases the allowable working distance and permits stronger generation using material ablation as the generating mechanism. This paper describes the development of a laser ultrasonic probe using an optical fiber delivery system with a distal end, focusing objective. The optical fiber delivery system can be configured as a single fiber source, a linear array (fiber bundle) or a phased array. Results include experimentally obtained directivity patterns demonstrating ultrasonic generation using ablation sources. Thermoelastic source results are also included. This paper demonstrates the potential of the fiber tool and presents an overview of the weld control scheme.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zheng, Jiandong, and Xiaoguang Ren. "The effect of ultrasonic on the heat transfer of CaCO3 scaled water." Anti-Corrosion Methods and Materials 61, no. 2 (February 25, 2014): 93–95. http://dx.doi.org/10.1108/acmm-04-2013-1251.

Повний текст джерела
Анотація:
Purpose – CaCO3 solution was chosen as the research environment in boiling pool heat transfer system using an automatic data collection system and scaling experiments. In this experiment, different concentrations of solution were made and ultrasonic excitation was applied under differing conditions of salt concentration and heat flux, such that the ultrasonics could reduce scale accumulation on the metal surface. The effectiveness of ultrasonics in inhabiting CaCO3 scale formation was evaluated. The paper aims to discuss these issues. Design/methodology/approach – Different concentration solution was made. Under the condition of different concentration and heat flux, the ultrasonic was introduced, so that it can reduce the scale accumulation on the metal surface. Ultrasonic function in inhabiting CaCO3 scale can be evaluated. Findings – The results showed that the ultrasonic not only enhanced the heat transfer rate under boiling conditions but also prevented the accumulation of the scale on the metal surface. Originality/value – The ultrasonic can enhance the heat transfer on the heater surface both in distilled water and scaled solution. In the earlier period, the heat transfer coefficient increases with the heat flux increases.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wang, Xufeng, Xuanlin Wang, Jiyao Wang, and Zhongxi Tian. "Feasibility Study and Prospects of Rock Fragmentation Using Ultrasonic Vibration Excitation." Applied Sciences 10, no. 17 (August 25, 2020): 5868. http://dx.doi.org/10.3390/app10175868.

Повний текст джерела
Анотація:
This paper systematically examines the feasibility of using ultrasonic vibration excitation for rock breakage and fragmentation; it focuses on the failure mechanisms of rock mass under the impact of ultrasonic waves, and the development of ultrasonic technology. Laboratory testing using a self-designed system was conducted in this paper to further validate the efficiency and reliability of rock breakage using ultrasonics. The results show that: (i) under the effects of both the high speed impact of ultrasonic vibration excitation and induced rock vibration excitation, a fracture is initiated and propagates rapidly within and outside of the rock. Under ultrasonic vibration excitation for 140 s, the compressive strength decreased by 45.6%; (ii) under the excitation of ultrasonics, the rock specimens failed completely in a short time from inside to outside, and there are distinct fissures in the internal nucleation of the rock. It is suggested that ultrasonic excitation provides a novel and promising option for rock fragmentation and breakage, which optimises the efficiency of underground hard rock engineering.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Karwur, Satoro Disney, Hesky S. Kolibu, and Verna A. Suoth. "OBJECT DETECTOR PROTOTYPE USING ULTRASONIC SENSOR FOR INDOOR SECURITY MONITORING SYSTEM." JURNAL ILMIAH SAINS 14, no. 2 (October 15, 2014): 100. http://dx.doi.org/10.35799/jis.14.2.2014.6064.

Повний текст джерела
Анотація:
ABSTRACT A research has been conducted to make an object detector prototype using ultrasonic sensor for indoor security monitoring system. The testing object placed in front of the sensor and the measurement conducted in distance and angle variations. For indoor implementation, graphical display of object detection on computer screen given by blue-to-yellow transition to indicate the nearing object and its reverse to indicate the fading object. The trend of accuracy of the object distance measurement has a declining linear pattern, it means that the accuracy of object detection will decrease if the distance and or angle from the object to the detector are increase. Keywords: object detector, ultrasonic sensor, indoor security monitoring PURWARUPA DETEKTOR OBJEK MENGGUNAKAN SENSOR ULTRASONIK UNTUK SISTEM PEMANTAUAN KEAMANAN DALAM RUANGAN ABSTRAK Sebuah penelitian telah dilakukan untuk membuat purwarupa detektor objek menggunakan sensor ultrasonik untuk sistem pemantauan keamanan dalam ruangan. Objek pengujian diletakkan di depan sensor dan pengukuran dilakukan pada variasi jarak dan sudut. Untuk implementasi dalam ruangan, tampilan grafis pendeteksian objek pada layar komputer diberikan oleh transisi warna biru ke kuning untuk menunjukkan objek yang mendekat dan kebalikannya untuk menunjukkan objek yang menjauh. Tren akurasi pendeteksian objek memiliki pola menurun secara linear, itu berarti bahwa akurasi pendeteksian objek akan berkurang jika jarak dan atau sudut dari objek ke detektor bertambah besar. Kata kunci: detektor objek, sensor ultrasonik, pemantauan keamanan dalam ruangan
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Nur Syahril Sidiq, Taufiq, Abdul Rouf, and Tri Wahyu Supardi. "Sistem Deteksi Bentuk Kecacatan Benda Padat Menggunakan Teknik Variasi Sudut Ultrasonik." IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) 6, no. 1 (April 30, 2016): 69. http://dx.doi.org/10.22146/ijeis.10773.

Повний текст джерела
Анотація:
Abstrak Proses pembuatan material benda padat sering terjadi masalah berupa kecacatan yang timbul di dalam benda padat tersebut. Penelitian ini bertujuan untuk membuat suatu sistem untuk mendeteksi bentuk kecacatan di dalam benda padat menggunakan gelombang ultrasonik. Komponen yang digunakan pada sistem adalah generator fungsi, penguat, sensor ultrasonik, oscilloscope dan benda padat uji berbentuk silinder. Metode yang digunakan adalah metode pantul gelombang ultrasonik. Gelombang ultrasonik dari transmitter dipancarkan ke benda padat dan receiver akan membaca gelombang hasil pantulan yang terjadi karena perbedaan medium benda. Oscilloscope akan membaca gelombang ultrasonik hasil pantulan. Pembacaan ini dilakukan untuk dapat menentukan bentuk dari kecacatan benda padat berbentuk silinder. Uji coba sistem dengan cara unit transmitter memancarkan gelombang ultrasonik ke benda padat. Benda padat diputar atau digerakkan setiap kelipatan 20˚ dari 0-180˚ untuk mendapatkan variasi sudut pantul. Hasil yang didapat bahwa gelombang ultrasonik sebesar 40 KHz dapat mendeteksi bentuk kecacatan benda padat. Setiap bentuk kecacatan pada benda padat tersebut mempunyai pola gelombang yang berbeda. Pola gelombang konstan dengan amplitudo kecil merupakan benda padat berbentuk silinder tanpa kecacatan, pola gelombang konstan dengan amplitudo lebih besar merupakan benda padat silinder dengan kecacatan yang juga berbentuk silinder dan pola gelombang maupun amplitudo berbeda pada setiap variasi sudut merupakan benda padat silinder dengan kecacatan berbentuk kubus. Kata kunci— ultrasonik, generator fungsi, oscilloscope, transmitter, receiver, kecacatan benda padatAbstractMaking solid material frequent problems of internal defect. This research intends to make a system to detect the form of defect in solid materials using ultrasonic waves. Components that was used in the system is a generator function, an op-amp, ultrasonic sensor, oscilloscope and cylindrical solid material The method that used is reflected method of ultrasonic. Ultrasonic waves emitted from the transmitter to a solid material and the receiver will read a results of the reflection that occurs due to differences in medium objects. Oscilloscope will read of ultrasonic. Recitation will be done to determine the form of any cylindrical solid object.The trial system by a unit transmitter emits ultrasonic waves on the side solid material. A solid body rotated every multiple 20˚ of 0-180˚ to get an angle variations. The result obtained that waves as 40 khz can detect the form of solid material defect. The form of defect in a solid material has different wave pattern. Constant wave patterns with small amplitudo is a cylindrical material without defect, constant wave patterns with more much amplitudo is cylindrical material with cylindrical defect also and wave patterns whose amplitudo is different in any variation angle is cylindrical solid with cubicaly defect. Keywords— ultrasonic, generator function, oscilloscope, transmitter, receiver, defect of solid materials
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Isakov, S. M., O. S. Isakov, and S. I. Marusenko. "Tribological system of ultrasonic welding. Subsystem ultrasonic tool." Bulletin of the National Technical University «KhPI» Series: Dynamics and Strength of Machines, no. 26 (October 13, 2016): 54–56. http://dx.doi.org/10.20998/2078-9130.2016.26.79928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Bae, Moo-Ho, and Mok-Kun Jeong. "Ultrasonic signal focusing method for ultrasonic imaging system." Journal of the Acoustical Society of America 111, no. 5 (2002): 1973. http://dx.doi.org/10.1121/1.1486380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Adachi, Hideo, and Katsuhiro Wakabayashi. "Ultrasonic wave transducer system and ultrasonic wave transducer." Journal of the Acoustical Society of America 113, no. 3 (2003): 1206. http://dx.doi.org/10.1121/1.1566387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Parsons, Natan E. "Ultrasonic motion detection system." Journal of the Acoustical Society of America 82, no. 5 (November 1987): 1855. http://dx.doi.org/10.1121/1.395772.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Hansen, Per K. "Ultrasonic position detecting system." Journal of the Acoustical Society of America 78, no. 4 (October 1985): 1449. http://dx.doi.org/10.1121/1.392881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Yang, Yanming, Fang Lin, Bo Yuan, and Zheng Li. "Ultrasonic gait analysis system." Computer Standards & Interfaces 21, no. 2 (June 1999): 120. http://dx.doi.org/10.1016/s0920-5489(99)92007-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Du Pont (UK) Ltd. "Upgradable ultrasonic imaging system." NDT International 23, no. 3 (June 1990): 181. http://dx.doi.org/10.1016/0308-9126(90)90256-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Sonomatic Ltd. "Ultrasonic rail inspection system." NDT & E International 24, no. 2 (April 1991): 110. http://dx.doi.org/10.1016/0963-8695(91)90952-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Mak, Fuk Tat, and Yong Ping Zheng. "Portable ultrasonic palpation system." Journal of the Acoustical Society of America 113, no. 6 (2003): 2967. http://dx.doi.org/10.1121/1.1588855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Umeagukwu, C. I., W. H. Peters, J. R. Dickerson, and W. F. Ranson. "AUTOMATED ULTRASONIC MEASURING SYSTEM." Experimental Techniques 11, no. 1 (January 1987): 16–19. http://dx.doi.org/10.1111/j.1747-1567.1987.tb00383.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Gao, Tao, and Zhenjing Yao. "Sensors Network for Ultrasonic Ranging System." International Journal of Advanced Pervasive and Ubiquitous Computing 5, no. 3 (July 2013): 47–59. http://dx.doi.org/10.4018/ijapuc.2013070105.

Повний текст джерела
Анотація:
The spectrum matching and correlation characteristic are both important in the multiple-user ultrasonic ranging system. As people know, an ultrasonic ranging system, which has a bell-shaped magnitude spectrum, acts like a band-pass filter. If the spectrum of the excitation signal does not match that of the ultrasonic ranging system, some of energy cannot be transmitted by the ultrasonic system. In other words, it does not make full use of the bandwidth of the ultrasonic ranging system. The good correlation characteristics can eliminate cross-talk among multichannel ultrasonic sensors firing simultaneously. To the authors’ knowledge, not many researchers considered how to make the spectrum of the excitation sequence match to that of the ultrasonic ranging system as well as improve the correlation characteristics. In this paper, the chaotic frequency modulation (CFM) excitation sequences are proposed for multiple-user ultrasonic ranging system. To obtain the excitation sequences which are spectrally matched to the ultrasonic ranging system as well as have the best correlation characteristic, the NSGA-II is applied to optimize the CFM excitation sequences.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Missa, Ivan Kavenius, Laura A. S. Lapono, and Abdul Wahid. "RANCANG BANGUN ALAT PASANG SURUT AIR LAUT BERBASIS ARDUINO UNO DENGAN MENGGUNAKAN SENSOR ULTRASONIK HC-SR04." Jurnal Fisika : Fisika Sains dan Aplikasinya 3, no. 2 (December 17, 2018): 102–5. http://dx.doi.org/10.35508/fisa.v3i2.609.

Повний текст джерела
Анотація:
Abstrak Telah dirancang sistem pasang surut air laut berbasis Arduino Uno dengan menggunakan sensor ultrasonik HC-SR04. Sensor ultrasonik berfungsi mengukur ketinggian air laut. Tampilan dari sistem ini berupa ketinggian air laut sesaat yang ditampilkan pada LCD. Selain itu hasil dari sistem ini juga berupa grafik pasang surut yang dirancang menggunakan software Delphi 7. Sistem ini telah diuji untuk melihat ketinggian air laut serta untuk menampilkan grafik pasang surut. Proses pengujian alat berlangsung di Dermaga DIT POL AIR NTT. Hasil pengujian menunjukkan bahwa sistem berjalan dengan baik. Dimana diperoleh data bahwa dalam satu hari pengukuran terjadi dua kali pasang dan dua kali surut yang merupakan tipe pasang surut harian ganda dengan puncak pasang tertinggi adalah 164 cm dan surut terendah dengan ketinggian 68 cm. Kata kunci: pasang surut; sensor ultrasonik HC-SR04; Arduino; Delphi Abstract [Title: Design of Sea Water Level Measurement Based on Arduino UNO and Using an Ultrasonic Sensor HC-SR04]. Arduino Uno tidal system has been designed using ultrasonic sensors HC-SR04. Ultrasonic sensors function to shave the sea water level. The display of this system is a momentary sea level displayed on the LCD. In addition the results of the system is also a tidal graph designed using Delphi 7 software. This system has been tested for viewing sea levels as well as for displaying tide charts. The tool testing process takes place at DIT POL AIR NTT Pier. The test results show that the system is running quite well. The data shows that two high and low tides occur daily. This is called semi-diurnal tide with the highest peak tide is 164 cm and the lowest tide is 68 cm. Keywords: tidal; ultrasonic sensor HC-SR04; Arduino; Delphi
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Pa, Pai Shan. "Design of Finish System Using Rotational Magnetic-Assistance in Ultrasonic Electrochemical Finishing of Freeform-Surfaces." Advanced Materials Research 47-50 (June 2008): 45–48. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.45.

Повний текст джерела
Анотація:
A new finish process that uses a rotational magnetic-assistance with high efficiency to assist discharging dregs out of the electrodes’ gap during the ultrasonic electrochemical finishing on the freeform-surfaces is investigated in the current study. The factors affecting the effects of the magnetic-assistance in ultrasonic electrochemical finishing are primarily discussed. The mainly experimental parameters are rotational speed of the magnetic-assistance mechanism, magnetic strength, distance between the two magnets, current density, and frequency and power level of ultrasonics. A large rotational speed of the magnetic-assistance mechanism produces a better finish. Providing large magnetic field intensity or using a small distance between the two magnets produces a larger magnetic force and discharge ability, and a better finish. A higher current density with magnetic-assistance reduces the finish time and avoids the difficulty of dreg discharge. The rotational magnetic-assistance during the ultrasonic electrochemical finishing process makes a great contribution in a short time by making the freeform-surfaces of workpiece smooth and bright.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zhou, Huilin, Jianfu Zhang, Dingwen Yu, Pingfa Feng, Zhijun Wu, and Wanchong Cai. "Advances in rotary ultrasonic machining system for hard and brittle materials." Advances in Mechanical Engineering 11, no. 12 (December 2019): 168781401989592. http://dx.doi.org/10.1177/1687814019895929.

Повний текст джерела
Анотація:
Rotary ultrasonic machining has been widely used for machining of hard and brittle materials due to the advantages of low cutting force, high machining accuracy, and high surface integrity. Focusing on the development of specialized rotary ultrasonic machining systems, this article summarizes the advances in the functional components and key technologies of rotary ultrasonic machining systems for hard and brittle materials, including the ultrasonic generator, power transfer structure, transducer, ultrasonic horn, and cutting tool. Developments on the automatic frequency tracking method, the establishment of an electrical compensation model for power transfer, the energy conversion characteristics of piezoelectric materials and giant magnetostrictive materials, and the design methods for the ultrasonic horn and cutting tool were elaborated. The principle of magnetostrictive energy conversion, output amplitude characteristics of a giant magnetostrictive transducer, and high-power giant magnetostrictive rotary ultrasonic machining systems were also presented. Future research and developments of rotary ultrasonic machining systems regarding the ultrasonic generator, amplitude stability, energy conversion efficiency, vibration mode, and system integration were finally discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Gao, Xiao Ming. "The Implement of B-Ultrasonic Image Acquisition Based on Camera Interface." Applied Mechanics and Materials 513-517 (February 2014): 3801–4. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3801.

Повний текст джерела
Анотація:
B-ultrasonic is widely used in medical diagnostics and other fields, because of its non-invasive, no radiation, etc. Early B-ultrasonic with analog imaging system cant achieve B-ultrasonic image processing, data storage and other operations. With the development of computer technology and electronic technology, Digital B-ultrasonic systems are increasingly used in actual diagnosis, the paper through the use of digital imaging system to achieve B-ultrasonic front ultrasound imaging, reuse embedded microcontrollers Camera interface for B-ultrasonic acquisition of image data, and on this platform to achieve a B-ultrasonic application software development. System testing show that the system data acquisition is stability, and easy to operate, reliable, also can be widely used in medical and industrial ultrasonic fields. Key words: B-ultrasonic; Data Acquisition; Camera; Digitizing
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Henning, B., R. Lucklum, B. Kupfernagel, and P. Hauptmanna. "Ultrasonic sensor system for characterization of liquid systems." Sensors and Actuators A: Physical 42, no. 1-3 (April 1994): 476–80. http://dx.doi.org/10.1016/0924-4247(94)80037-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Jiang, Yu, Rui Song, and Mingting Yuan. "Improvement of Ultrasonic Distance Measuring System." ITM Web of Conferences 17 (2018): 02008. http://dx.doi.org/10.1051/itmconf/20181702008.

Повний текст джерела
Анотація:
This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Ye, Hong-xian, Xu-yi Yang, Xiao-ping Hu, Bao-hua Yu, and Xi Kang. "Research on correlation model between transducer temperature and acoustic performance parameters of ultrasonic machining system." AIP Advances 12, no. 11 (November 1, 2022): 115303. http://dx.doi.org/10.1063/5.0124897.

Повний текст джерела
Анотація:
In the process of ultrasonic vibration cutting (UVC), the acoustic performance parameters of ultrasonic machining system change because of systems heating up and cutting loads. The changes of acoustic performance parameters will affect resonant frequency, impedance, and power match of the ultrasonic machining system, and stability of the amplitude of UVC system. It is hard to monitor the acoustic performance parameters online. Based on the analysis of the correlation mechanism between transducer temperature and acoustic performance parameters, the correlation models between transducer temperature and resonance frequency, static capacitance, and dynamic resistance of ultrasonic vibration machining system are established by curve regression analysis modeling method. The acoustic performance parameters of an ultrasonic vibration machining system are determined by transducer temperature using the correlation models. The effectiveness of the model is verified by experiments. It gives the information for the stability evaluation of the ultrasonic vibration machining process, the dynamic impedance matching of the ultrasonic machining system, and the power matching adjustment of the ultrasonic power supply.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kuai, Ji Cai. "Established and Experimental Study of ELID-Ultrasonic Honing System." Applied Mechanics and Materials 120 (October 2011): 381–84. http://dx.doi.org/10.4028/www.scientific.net/amm.120.381.

Повний текст джерела
Анотація:
The electrolytic in-process dressing (ELID) technology was combined with ultrasonic honing technology and ELID-ultrasonic honing system was proposed. And the electrolysis parameters, ultrasound parameters, honing parameters reasonable were matched for ELID- ultrasonic honing system and the honing processing experiments were carried out. Studies have shown that parameters in ELID-ultrasonic honing system are independent without disturbing each other. Compared to traditional honing and ultrasonic honing, ELID-ultrasonic honing system has a significant advantage in machining accuracy, surface roughness, processing efficiency and so on. The feasibility of ELID- ultrasonic honing system is validated, which provided a new compound method of honing for ultra-precision honing machining.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії