Добірка наукової літератури з теми "Ultrafast spintronics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ultrafast spintronics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ultrafast spintronics":

1

Polley, Debanjan, Akshay Pattabi, Jyotirmoy Chatterjee, Sucheta Mondal, Kaushalya Jhuria, Hanuman Singh, Jon Gorchon, and Jeffrey Bokor. "Progress toward picosecond on-chip magnetic memory." Applied Physics Letters 120, no. 14 (April 4, 2022): 140501. http://dx.doi.org/10.1063/5.0083897.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We offer a perspective on the prospects of ultrafast spintronics and opto-magnetism as a pathway to high-performance, energy-efficient, and non-volatile embedded memory in digital integrated circuit applications. Conventional spintronic devices, such as spin-transfer-torque magnetic-resistive random-access memory (STT-MRAM) and spin–orbit torque MRAM, are promising due to their non-volatility, energy-efficiency, and high endurance. STT-MRAMs are now entering into the commercial market; however, they are limited in write speed to the nanosecond timescale. Improvement in the write speed of spintronic devices can significantly increase their usefulness as viable alternatives to the existing CMOS-based devices. In this article, we discuss recent studies that advance the field of ultrafast spintronics and opto-magnetism. An optimized ferromagnet–ferrimagnet exchange-coupled magnetic stack, which can serve as the free layer of a magnetic tunnel junction (MTJ), can be optically switched in as fast as ∼3 ps. Integration of ultrafast magnetic switching of a similar stack into an MTJ device has enabled electrical readout of the switched state using a relatively larger tunneling magnetoresistance ratio. Purely electronic ultrafast spin–orbit torque induced switching of a ferromagnet has been demonstrated using ∼6 ps long charge current pulses. We conclude our Perspective by discussing some of the challenges that remain to be addressed to accelerate ultrafast spintronics technologies toward practical implementation in high-performance digital information processing systems.
2

Seifert, Tom S., Liang Cheng, Zhengxing Wei, Tobias Kampfrath, and Jingbo Qi. "Spintronic sources of ultrashort terahertz electromagnetic pulses." Applied Physics Letters 120, no. 18 (May 2, 2022): 180401. http://dx.doi.org/10.1063/5.0080357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spintronic terahertz emitters are broadband and efficient sources of terahertz radiation, which emerged at the intersection of ultrafast spintronics and terahertz photonics. They are based on efficient spin-current generation, spin-to-charge-current conversion, and current-to-field conversion at terahertz rates. In this Editorial, we review the recent developments and applications, the current understanding of the physical processes, and the future challenges and perspectives of broadband spintronic terahertz emitters.
3

El-Ghazaly, Amal, Jon Gorchon, Richard B. Wilson, Akshay Pattabi, and Jeffrey Bokor. "Progress towards ultrafast spintronics applications." Journal of Magnetism and Magnetic Materials 502 (May 2020): 166478. http://dx.doi.org/10.1016/j.jmmm.2020.166478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Afanasiev, Dmytro, and Alexey V. Kimel. "Ultrafast push for counterintuitive spintronics." Nature Materials 22, no. 6 (June 2023): 673–74. http://dx.doi.org/10.1038/s41563-023-01554-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Walowski, Jakob, and Markus Münzenberg. "Perspective: Ultrafast magnetism and THz spintronics." Journal of Applied Physics 120, no. 14 (October 14, 2016): 140901. http://dx.doi.org/10.1063/1.4958846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ivanov, B. A. "Spin Dynamics for Antiferromagnets and Ultrafast Spintronics." Journal of Experimental and Theoretical Physics 131, no. 1 (July 2020): 95–112. http://dx.doi.org/10.1134/s1063776120070079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Yue, Xueqiang Feng, Zhenyi Zheng, Zhizhong Zhang, Kelian Lin, Xiaohan Sun, Guanda Wang, et al. "Ferrimagnets for spintronic devices: From materials to applications." Applied Physics Reviews 10, no. 1 (March 2023): 011301. http://dx.doi.org/10.1063/5.0104618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spintronic devices use spin instead of charge to process information and are widely considered as promising candidates for next-generation electronic devices. In past decades, the main motivation in spintronics has been to discover new mechanisms and novel material systems to improve both device performance and the application prospects of spintronics. Recently, researchers have found that ferrimagnetic materials—in which sublattices are coupled antiferromagnetically—offer an emerging platform for realizing high-density, high-speed, and low-power-consumption memory and logic functions. Within such a ferrimagnetic class, vanishing magnetization and ultrafast magnetic dynamics can be achieved by adjusting chemical composition and temperature, among other parameters. Meanwhile, unlike for antiferromagnets, conventional electrical read–write methods remain suitable for ferrimagnets, which is beneficial for applications. In this review, an abundant class of ferrimagnets including oxides and alloys is surveyed, and unique magnetic dynamics and effective methods for manipulating the magnetic states of ferrimagnets are discussed. Finally, novel storage and computing devices based on ferrimagnets are considered, as there are some challenges to be addressed in future applications of ferrimagnets.
8

Matsubara, Masakazu. "Ultrafast Optical Control of Magnetic Interactions in Carrier-Density-Controlled Ferromagnetic Semiconductors." Applied Sciences 9, no. 5 (March 6, 2019): 948. http://dx.doi.org/10.3390/app9050948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Investigation of the interaction of ultrashort laser pulses with magnetically ordered materials has become a fascinating research topic in modern magnetism. Especially, the control of magnetic order by sub-ps laser pulses has become a fundamentally important topic with a high potential for future spintronics applications. This paper will review the recent success in optically controlling the magnetic interactions in carrier-density-controlled ferromagnetic semiconductor EuO doped with Gd ions. When the Gd concentration is low, the magnitude of the magnetic interaction is enhanced by the irradiation of ultrashort laser pulses, whereas it is attenuated when the Gd concentration is high. In ferromagnetic Eu1−xGdxO, we thereby demonstrate the strengthening as well as the weakening of the magnetic interaction by 10% and within 3 ps by optically controlling the magnetic exchange interaction. This principle—ultrafast optical control of magnetic interaction—can be applied to future ultrafast opto-spintronics.
9

Telegin, Andrei, and Yurii Sukhorukov. "Magnetic Semiconductors as Materials for Spintronics." Magnetochemistry 8, no. 12 (November 29, 2022): 173. http://dx.doi.org/10.3390/magnetochemistry8120173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
From the various aspects of spintronics the review highlights the area devoted to the creation of new functional materials based on magnetic semiconductors and demonstrates both the main physical phenomena involved and the technical possibilities of creating various devices: maser, p-n diode with colossal magnetoresistance, spin valve, magnetic lens, optical modulators, spin wave amplifier, etc. Particular attention is paid to promising research directions such as ultrafast spin transport and THz spectroscopy of magnetic semiconductors. Special care has been taken to include a brief theoretical background and experimental results for the new spintronics approach employing magnetostrictive semiconductors—strain-magnetooptics. Finally, it presents top-down approaches for magnetic semiconductors. The mechano-physical methods of obtaining and features of the physical properties of high-density nanoceramics based on complex magnetic oxides are considered. The potential possibility of using these nanoceramics as an absorber of solar energy, as well as in modulators of electromagnetic radiation, is shown.
10

Mashkovich, Evgeny A., Kirill A. Grishunin, Roman M. Dubrovin, Anatoly K. Zvezdin, Roman V. Pisarev, and Alexey V. Kimel. "Terahertz light–driven coupling of antiferromagnetic spins to lattice." Science 374, no. 6575 (December 24, 2021): 1608–11. http://dx.doi.org/10.1126/science.abk1121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Coupling up of spins and lattice The development of spintronics and magnetic data storage relies on understanding and controlling the dynamics of magnetic excitations within a material. Of crucial importance for practical applications is how fast the magnetization can be switched. Mashkovich et al . report the use of ultrafast terahertz radiation to create magnon excitations in the antiferromagnet cobalt difluoride that can then be coupled with phonon excitations (see the Perspective by Juraschek and Narang). Using light to control coupling between the spins and the lattice provides a route to manipulate magnetization in antiferromagnetic materials on ultrafast time scales. —ISO

Дисертації з теми "Ultrafast spintronics":

1

Battiato, Marco. "Superdiffusive Spin Transport and Ultrafast Magnetization Dynamics : Femtosecond spin transport as the route to ultrafast spintronics." Doctoral thesis, Uppsala universitet, Materialteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The debate over the origin of the ultrafast demagnetization has been intensively active for the past 16 years. Several microscopic mechanisms have been proposed but none has managed so far to provide direct and incontrovertible evidences of their validity. In this context I have proposed an approach based on spin dependent electron superdiffusion as the driver of the ultrafast demagnetization. Excited electrons and holes in the ferromagnetic metal start diffusing after the absorption of the laser photons. Being the material ferromagnetic, the majority and minority spin channels occupy very different bands. It is then not surprising that transport properties are strongly spin dependent. In most of the ferromagnetic metals, majority spin excited electrons have better transport properties than minority ones. The effect is that majority carriers are more efficient in leaving the area irradiated by the laser, triggering a net spin transport. Recent experimental findings are revolutionising the field by being incompatible with previously proposed models and showing uncontrovertibly the sign of spin superdiffusion. We have shown that spin diffusing away from a layer undergoing ultrafast demagnetization can be used to create an ultrafast increase of magnetization in a neighboring magnetic layer. We have also shown that optical excitation is not a prerequisite for the ultrafast demagnetization and that excited electrons superdiffusing from a non-magnetic substrate can trigger the demagnetization. Finally we have shown that it is possible to control the time shape of the spin currents created and developed a technique to detect directly spin currents in a contact-less way.  The impact of these new discoveries goes beyond the solution of the mystery of ultrafast demagnetization. It shows how spin information can be, not only manipulated, as shown 16 years ago, but most importantly transferred at unprecedented speeds. This new discovery lays the basis for a full femtosecond spintronics.
2

Guillemard, Charles. "Half-metal magnets Heusler compounds for spintronics." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'amélioration des techniques de dépôts et l’évolution de la compréhension de la physique de la matière condensée a conduit à la découverte de phénomènes nouveaux en électronique de spin (spintronique). En particulier, le retournement de l’aimantation par couple de transfert de spin et couple spin-orbite, ainsi que le développement de dispositifs basés sur la propagation d’ondes de spin ont fait de l’amortissement magnétique de Gilbert un paramètre central pour les futures technologies de stockage et de traitement de l’information. Dans cette étude, la prédiction de valeurs très faibles d’amortissement dans les alliages d’Heusler demi métaux magnétiques Co2MnZ est expérimentalement observée et directement corrélée à la structure électronique sous-jacente. En effet, en substituant l’élément Z dans des couches minces monocristallines de haute qualité de Co2MnZ (Z= Al, Si, Ga, Ge, Sn, Sb) faites par épitaxie par jet moléculaire, les propriétés électroniques telles que le gap de spin minoritaire, la position du niveau de Fermi et la polarisation en spin peuvent être accordées et leurs conséquences sur la dynamique de l’aimantation sont analysées. Les résultats expérimentaux nous permettent de comprendre la relation existante entre la structure électronique mesurée et la valeur d’amortissement magnétique, ainsi que de les comparer aux calculs ab initio. Les valeurs d’amortissement entre 4.1 x10-4 et 9 x10-4 pour Co2MnSi, Co2MnGe, Co2MnSn et Co2MnSb sont les plus petites valeurs jamais reportées pour des couches conductrices et constituent une preuve expérimentale qui confirme les prédictions théoriques sur ces alliages d’Heusler demi métaux magnétiques. Ensuite, la relation entre l’amortissement magnétique de Gilbert et le temps de désaimantation ultra-rapide induit par pulse laser dans la série d’alliages quaternaires Co2MnSixAl1-x à polarisation en spin variable est étudiée. Cette partie vise à vérifier des modèles théoriques qui essaient d’unifier ces deux quantités vivant sur des échelles de temps différentes. Finalement, les propriétés structurales et magnétiques de super réseaux Mn3Ga/Co2YZ sont étudiées dans le but de combiner un amortissement de Gilbert très faible, un gap de spin minoritaire ainsi que l’aimantation perpendiculaire aux plans des couches, une caractéristique indispensable pour des dispositifs à faible consommation d’énergie
Improvements in thin film elaboration methods and a deeper understanding of condensed matter physics have led to new exciting phenomena in spin electronics (spintronics). In particular, magnetization reversal by spin-orbit and spin-transfer torque as well as the development of spin waves based devices have placed the Gilbert magnetic damping coefficient as a key parameter for future data storage and information processing technologies. The prediction of ultralow magnetic damping in Co2MnZ Heusler half-metal magnets is explored in this study and the damping response is shown to be linked to the underlying electronic structure. By substitution of the Z element in high quality Co2MnZ (Z=Al, Si, Ga, Ge, Sn and Sb) epitaxial thin films grown by molecular beam epitaxy, electronic properties such as the minority-spin band gap, Fermi energy position in the band gap, and spin polarization can be tuned and the consequences for magnetization dynamics analyzed. Experimental results allow us to directly explore the interplay of spin polarization, spin gap and Fermi energy position, with the magnetic damping obtained in these films (together with predictions from ab initio calculations). The ultralow magnetic damping coefficients measured in the range from 4.1 x10-4 to 9 x10-4 for Co2MnSi, Co2MnGe, Co2MnSn and Co2MnSb are the lowest values ever reported in conductive layers and offer a clear experimental demonstration of theoretical predictions on half metal magnetic Heusler compounds. Then, the relation between the Gilbert damping and the ultrafast demagnetization time in quaternary Co2MnSixAl1-x compounds with a tunable spin polarization is analyzed. This way, it is possible to confront theoretical models unifying those two quantities that live in different timescales. Finally, structural and magnetic properties of Mn3Ga/Co2YZ Heusler superlattices are investigated in order to combine ultralow Gilbert damping coefficient, minority spin band gap and perpendicularly magnetized heterostructures, another requirement for low energy consumption devices. Through the present work, we aim to prove that Heusler compounds provide an excellent playground to study fundamental magnetism and offer a pathway for future materials design
3

Mohamad, Haidar Jawad. "Ultrafast optical measurements of spin-polarized electron dynamics in nanostructured magnetic materials." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
At present, electronic devices depend upon electric charge to transfer and record information. However, such devices are approaching a scaling limit due to Joule heating. Spintronics offers a solution by exploiting the spin rather than the charge of the electron, since the propagation of spin current can in principle occur without dissipation. Immediate applications lie in magnetic random access memory and novel media for hard disk recording. Within this thesis, the Magneto-optical Kerr effect (MOKE) has been used to measure the static and dynamic magnetic properties of a number of different thin film samples that are of interest for spintronic applications. A femtosecond laser has been used to perform time-resolved MOKE (TRMOKE) and time resolved reflectivity (TRR) measurements simultaneously, which probe the spin and charge dynamics respectively. Measurements have been performed upon a continuous thin film of CrO2 that is known to be half-metallic in bulk form, and a series of YIG/Cu/Ni81Fe19 based structures that are expected to exhibit the spin Seebeck effect (SSE). Chemical vapour deposition (CVD) was used to fabricate the continuous CrO2 thin film on a (100)-oriented TiO2 substrate. Precessional magnetisation dynamics were studied by means of the TRMOKE technique. The dependence of the precession frequency and the effective damping parameter upon the static applied magnetic field were investigated. The precession frequency exhibited a minimum at the hard axis saturation field as expected. However precession was also observed for fields greater than the hard axis saturation value, perhaps suggesting the presence of a twisted magnetic state within the film. TRMOKE and TRR measurements were performed upon the YIG/Cu/Ni81Fe19 based structures for different values of the pump fluence and applied magnetic field. For fixed pump fluence and varying applied field, the frequency of precession is well described by a numerical solution of the Landau-Lifshitz equation for the Ni81Fe19 (permalloy, Py) layer. The frequency, amplitude, damping, phase and chirp of the precessional oscillations was extracted from measurements made with a field of 3 kOe applied at 2.8° from the normal to the sample plane, in a configuration designed to maximise any spin transfer torque (STT) generated by the SSE. The oscillation parameters extracted for trilayer samples and a Py reference sample were found to be very similar. Features indicative of STT predicted by simulations were not observed. This suggests that either the YIG/Cu interface was unable to efficiently transmit spin current within the samples studied here, or else that the STT generated by means of the SSE is too small to be of practical use.
4

Guillemard, Charles. "Half-metal magnets Heusler compounds for spintronics." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'amélioration des techniques de dépôts et l’évolution de la compréhension de la physique de la matière condensée a conduit à la découverte de phénomènes nouveaux en électronique de spin (spintronique). En particulier, le retournement de l’aimantation par couple de transfert de spin et couple spin-orbite, ainsi que le développement de dispositifs basés sur la propagation d’ondes de spin ont fait de l’amortissement magnétique de Gilbert un paramètre central pour les futures technologies de stockage et de traitement de l’information. Dans cette étude, la prédiction de valeurs très faibles d’amortissement dans les alliages d’Heusler demi métaux magnétiques Co2MnZ est expérimentalement observée et directement corrélée à la structure électronique sous-jacente. En effet, en substituant l’élément Z dans des couches minces monocristallines de haute qualité de Co2MnZ (Z= Al, Si, Ga, Ge, Sn, Sb) faites par épitaxie par jet moléculaire, les propriétés électroniques telles que le gap de spin minoritaire, la position du niveau de Fermi et la polarisation en spin peuvent être accordées et leurs conséquences sur la dynamique de l’aimantation sont analysées. Les résultats expérimentaux nous permettent de comprendre la relation existante entre la structure électronique mesurée et la valeur d’amortissement magnétique, ainsi que de les comparer aux calculs ab initio. Les valeurs d’amortissement entre 4.1 x10-4 et 9 x10-4 pour Co2MnSi, Co2MnGe, Co2MnSn et Co2MnSb sont les plus petites valeurs jamais reportées pour des couches conductrices et constituent une preuve expérimentale qui confirme les prédictions théoriques sur ces alliages d’Heusler demi métaux magnétiques. Ensuite, la relation entre l’amortissement magnétique de Gilbert et le temps de désaimantation ultra-rapide induit par pulse laser dans la série d’alliages quaternaires Co2MnSixAl1-x à polarisation en spin variable est étudiée. Cette partie vise à vérifier des modèles théoriques qui essaient d’unifier ces deux quantités vivant sur des échelles de temps différentes. Finalement, les propriétés structurales et magnétiques de super réseaux Mn3Ga/Co2YZ sont étudiées dans le but de combiner un amortissement de Gilbert très faible, un gap de spin minoritaire ainsi que l’aimantation perpendiculaire aux plans des couches, une caractéristique indispensable pour des dispositifs à faible consommation d’énergie
Improvements in thin film elaboration methods and a deeper understanding of condensed matter physics have led to new exciting phenomena in spin electronics (spintronics). In particular, magnetization reversal by spin-orbit and spin-transfer torque as well as the development of spin waves based devices have placed the Gilbert magnetic damping coefficient as a key parameter for future data storage and information processing technologies. The prediction of ultralow magnetic damping in Co2MnZ Heusler half-metal magnets is explored in this study and the damping response is shown to be linked to the underlying electronic structure. By substitution of the Z element in high quality Co2MnZ (Z=Al, Si, Ga, Ge, Sn and Sb) epitaxial thin films grown by molecular beam epitaxy, electronic properties such as the minority-spin band gap, Fermi energy position in the band gap, and spin polarization can be tuned and the consequences for magnetization dynamics analyzed. Experimental results allow us to directly explore the interplay of spin polarization, spin gap and Fermi energy position, with the magnetic damping obtained in these films (together with predictions from ab initio calculations). The ultralow magnetic damping coefficients measured in the range from 4.1 x10-4 to 9 x10-4 for Co2MnSi, Co2MnGe, Co2MnSn and Co2MnSb are the lowest values ever reported in conductive layers and offer a clear experimental demonstration of theoretical predictions on half metal magnetic Heusler compounds. Then, the relation between the Gilbert damping and the ultrafast demagnetization time in quaternary Co2MnSixAl1-x compounds with a tunable spin polarization is analyzed. This way, it is possible to confront theoretical models unifying those two quantities that live in different timescales. Finally, structural and magnetic properties of Mn3Ga/Co2YZ Heusler superlattices are investigated in order to combine ultralow Gilbert damping coefficient, minority spin band gap and perpendicularly magnetized heterostructures, another requirement for low energy consumption devices. Through the present work, we aim to prove that Heusler compounds provide an excellent playground to study fundamental magnetism and offer a pathway for future materials design
5

Kaushalya. "Ultrafast manipulation of magnetization using on-chip THz." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le besoin de dispositifs de stockage de mémoire a explosé au cours des dernières décennies, en particulier après le développement d'Internet. Ce besoin a atteint des sommets énormes au cours des deux dernières années, peu après la pandémie due au COVID-19. Les disques durs (HDD) sont connus pour avoir le potentiel de répondre aux demandes de stockage de données haute densité. Cette thèse traite de l'un des défis majeurs rencontrés au sein de la communauté spintronique pour améliorer la vitesse et la consommation d'énergie des dispositifs de mémoire. La vitesse de fonctionnement lors de l'écriture d'un bit magnétique dépend du mécanisme de commutation de magnétisation utilisé. Le mécanisme de commutation est lui-même dépendant des propriétés magnétiques intrinsèques de l'échantillon et de l'excitation induite de l'extérieur qui entraîne l'inversion du trépan magnétique 1. Dans cette thèse, nous nous concentrerons sur l'utilisation des excitations du couple spin-orbite (SOT) pour entraîner l'inversion, qui sont une approche relativement nouvelle mais rapide et économe en énergie par rapport à d'autres méthodes de pointe. La vitesse typique d'inversion de magnétisation à l'aide des SOT est de l'ordre de quelques nanosecondes, bien plus lente que la commutation longue de la picoseconde qui est possible avec les dispositifs de mémoire basés sur la charge 2. En fait, une vitesse d'inversion record avec des impulsions électriques aussi courtes que ~ 200 ps a été signalée par Garello et. al., 3 en 2011 en utilisant des SOT. Cette thèse rapporte des efforts supplémentaires pour accélérer l'inversion de l'aimantation de près de 2 ordres de grandeur en exploitant de tels SOT. Dans ce but, des impulsions électriques THz ont été générées via l'utilisation de commutateurs photoconducteurs Auston. Nous démontrons qu'une seule impulsion électrique de 6ps de large peut induire un SOT sur une couche ferromagnétique de Co d'une épaisseur de 1 nm et entraîner une inversion complète de l'aimantation. Une étude systématique pour comprendre les SOT dans le régime temporel picoseconde est également entreprise via l'utilisation de différentes nanostructures magnétiques. Dans les dispositifs à mémoire magnétique, une "tête de lecture" est utilisée pour lire les informations stockées dans le dispositif. Typiquement, dans les dispositifs spintroniques, des têtes de lecture à magnétorésistance géante (GMR) ou à magnétorésistance tunnel (TMR) sont utilisées pour de telles opérations. Dans cette thèse, nous rapportons également les tentatives de développement d'un capteur GMR fonctionnant en régime THz. Pour entreprendre les études susmentionnées, un montage expérimental optique et optoélectrique pompe-sonde a également été construit et un rapport détaillé de celui-ci est également fourni dans la thèse
The need for memory storage devices has skyrocketed over the last few decades especially after the development of the internet. This need has reached enormous heights in the past two years, soon after the pandemic due to COVID-19. Hard disk drives (HDDs) are known to have the potential to meet up with the high-density data storage demands. This thesis deals with one of the major challenges faced within the spintronic community to improve the speed and the energy consumption of memory devices.The speed of operation during the writing of a magnetic bit depends on the magnetization switching mechanism employed. The switching mechanism is itself dependent on the intrinsic magnetic properties of the sample and the externally induced excitation that drives the reversal of the magnetic bit 1. In this thesis, we will focus on the use of spin-orbit torque (SOT) excitations to drive the reversal, which is a relatively new but fast and energy-efficient approach in comparison with other state-of-the-art methods.The typical speed of magnetization reversal using SOTs is in the range of few nanoseconds, far slower than the picosecond-long switching that is possible with charge-based memory devices2. In fact, a record reversal speed with electrical pulses as short as ~200ps was reported by Garello et. al., 3 in 2011 using SOTs. This thesis reports further efforts to speed up the magnetization reversal by almost 2 orders of magnitude by exploiting such SOTs. To this aim, THz electrical pulses were generated via the use Auston photoconductive switches. We demonstrate that a single 6ps wide electrical pulse can induce a SOT to a 1nm thin Co ferromagnetic layer and result in a full magnetization reversal. A systematic study to understand SOTs in the picosecond time regime is also undertaken via using different magnetic nanostructures.In magnetic memory devices, a “read-head” is used to read the stored information in the device. Typically, in spintronic devices, giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) based read heads are used for such operations. In this thesis, we also report on the attempts of developing a GMR sensor working in the THz regime.To undertake the aforementioned studies, a pump-probe optical and optoelectrical experimental setup has also been built and a detailed report of the same is also provided in the thesis
6

Chirac, Théophile. "New spintronic components based on antiferromagnetic materials." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les mémoires magnétiques actuelles commencent à atteindre leurs limites physiques en terme de stabilité, vitesse et consommation énergétique, alors que la course à la miniaturisation s'intensifie. Le champ émergeant de la spintronique étudie le comportement collectif des spins dans la matière ainsi que leurs interactions aux interfaces, afin de trouver une solution en termes de matériaux, architectures et sources excitatrices. En particulier, les matériaux antiferromagnétiques sont particulièrement prometteurs. Ces matériaux ordonnées sont abondants, naturellement stables, robustes, ultra rapides et compatibles avec l'électronique des isolants. En effet, la plupart des oxydes à base de métaux de transition sont des isolants antiferromagnétiques ayant leur fréquence de résonance dans le terahertz et un champ de flop de quelques dizaines de teslas. Ils peuvent aussi être semi-métalliques, métalliques, semiconducteurs, supraconducteurs ou multiferroïques. Cette thèse s'intéresse aux deux antiferromagnétiques: oxyde de nickel (NiO) et ferrite de bismuth (BiFeO₃). NiO est un antiferromagnétique type à température ambiante, avec une structure cristalline simple. Une étude basée sur des simulations dynamiques atomiques montre que des courants de spin atteignables peuvent réaliser une mémoire à trois états avec ce composé, avec un temps de réponse de l'ordre de la picoseconde. La simulation explique aussi la formation de structures chirales dans BiFeO₃, un antiferromagnétique également ferroélectrique, présentant un couplage magnétoélectrique entre ses deux ordres. Dans une deuxième partie, les domaines antiferromagnétiques dans BiFeO₃ sont observés expérimentalement par génération de seconde harmonique optique, avec une résolution spatiale de un micron. Les domaines antiferromagnétiques de BiFeO₃ sont ensuite excités par une impulsion laser intense, et la dynamique des deux ordres couplés (antiferromagnétisme et ferroélectricité) est étudiée dans le régime picoseconde. Enfin, l'injection d'impulsions de spins dans dans un antiferromagnétique, tel que BiFeO₃ ou NiO est envisagée en utilisant la génération de courant de spin induite par la désaimantation ultrarapide de couches adjacentes magnétiques par des impulsions laser
Current magnetic memory devices are reaching their physical limits in terms of stability, speed and power consumption as the race to miniaturization intensifies. The emergent research field of spintronics studies the collective behavior of spins in matter and their interplay at interfaces, to find new avenues in terms of materials, architectures and stimulation sources. A particularly promising group of materials are the antiferromagnets. These abundant magnetically ordered materials are naturally stable, robust, ultra-fast and compatible with insulator electronics. Indeed, most transition metal oxide compounds are antiferromagnetic insulators, have resonance in the terahertz range and flop fields of tens of teslas. They can also be semi-metals, metals, semiconductors, superconductors or multiferroics. This thesis focuses on two antiferromagnets: nickel oxide (NiO) and bismuth ferrite (BiFeO₃). NiO is the archetypical antiferromagnet at ambient temperature with a simple crystalline structure. Using dynamical atomistic simulations, I show that this compound can be the elemental brick of a three state memory device controlled by currently available pulses of spin currents, with a picosecond response time. The simulations also explain the formation of chiral structures in BiFeO₃, a ferroelectric antiferromagnet with magnetoelectric coupling between the two orders. In a second part, antiferromagnetic domains in BiFeO₃ are experimentally observed using second harmonic generation of light, with a sub-micron spatial resolution. Antiferromagnetic domains of BiFeO₃ are then excited by an intense femtosecond laser pulse, and the dynamics of the two coupled orders (antiferromagnetism and ferroelectricity) is studied with a sub-picosecond time resolution. Finally, the injection of spin current in an antiferromagnet such as BiFeO₃ or NiO is envisioned by characterizing the spin bursts generated by ultrafast laser-induced demagnetization of adjacent ferromagnetic layers
7

Peng, Yi. "Single laser pulse switching in RE-based multilayers without Gd." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le domaine émergent de l'électronique à spin ultra-rapide intègre les idées et les concepts de la magnéto-optique et de l'opto-magnétisme avec les phénomènes de transport de spin, complétés par les possibilités offertes par la photonique pour une manipulation ultra-rapide à faible dissipation et le transport de l'information. La découverte de la commutation de magnétisation déterministe ultra-rapide entièrement optique a ouvert de nouvelles possibilités pour la manipulation de la magnétisationdans les dispositifs à l'aide d'impulsions laser femtosecondes. Le HI-AOS est principalement observé dans des alliages ou des multicouches ferrimagnétiques à base de terres rares (RE) à base de gadolinium ou de métaux de transition (TM). Il a récemment été observé dans des matériaux sans gadolinium, tels que le ferrimagnétique Mn2RuxGa et la multicouche ferrimagnétique [Tb/Co]N. Dans ce travail, nous avons cherché à trouver de nouveaux matériaux capables de présenter une commutation optique entièrement optique (HI-AOS) indépendante de l'hélicité en un seul tir, et à comprendre le comportement de commutation, le mécanisme fondamental et le processus de commutation dans différents matériaux et structures. Par conséquent, trois principales parties de travail ont été réalisées dans cette thèse:• Étude de l'alliage CoLu, où Lu a les mêmes propriétés que Gd avec un faible couplage spin-orbite (L=0). Une anisotropie magnétique perpendiculaire peut être obtenue dans 3 nm d'alliage Co100-xLux avec x variant entre 22% et 42%. De plus, des mesures de commutation en un seul tir dans un film complet et un réseau de points de 3 m montrent qu'aucune commutation déterministe de la magnétisation ne peut être observée. Les résultats peuvent être attribués à la faible magnétisation et, par conséquent, à la faible quantité de moment angulaire transportée par l'élément Lu selon des simulations atomistiques. • Commutation en un seul tir dans des multicouches [RE/TM]N, où la couche RE peut être un métal des terres rares avec un couplage spin-orbite plus important, comme Tb et Dy, et leur alliage avec des métaux de transition. À partir de multicouches [Tb/Co]5 and [Tb/Fe]4, la commutation en un seul tira été étendueà diverses multicouches, bicouches et tricouches, en faisant un phénomène général dans les multicouches à base de Tb et de Dy, qui ont des propriétés sperimagnétiques couplées à des métaux transitoires. De manière intéressante, une structure complexe de cercles de directions de magnétisation opposées a été observée à haute énergie. Selon les mesures de pompage-sonde, nous avons essayé d'expliquer le mécanisme de commutation et les structures annulaires, qui pourraient être un mécanisme de précession de réorientation dans le plan. • Commutation en un seul tir dans des multicouches [Co/Ho]N, qui est un nouveau système de matériaux avec une attente de couplage spin-orbite plus élevé par rapport à Tb et Dy. Étonnamment, même si le couplage spin-orbite dans Ho (comme c'est le cas dans Tb et Dy) est plus important que celui de Gd, ce qui devrait augmenter la dissipation du moment angulaire dans la structure cristalline, le diagramme état de durée/fluence des impulsions est proche de celui du système à base de Gd. L'étude de ce nouveau système pourrait contribuer à combler les processus de retournement en un seul tir observés, d'une part, dans les hétérostructures à base de Gd, d'autre part, dans celles à base de Tb ou de Dy
The emerging field of ultrafast spin electronics integrates the ideas and concepts of magneto-optics and opto-magnetism with spin transport phenomena, supplemented with the possibilities offered by photonics for ultrafast low-dissipative manipulation and transport of information. The discovery of all-optical ultra-fast deterministic magnetization switching has opened up new possibilities for manipulating magnetization in devices using femtosecond laser pulses. HI-AOS is predominantly observed in Gadolinium-based Rare Earth (RE) / Transition Metals (TM) ferrimagnetic alloys or multilayers. Notably, it has recently been witnessed in materials without Gadolinium, such as the ferrimagnet Mn2RuxGa and the ferrimagnetic multilayer [Tb/Co]N. In this work, we tried to find new materials that can show single-shot helicity-independent all-optical switching (HI-AOS) and to understand the switching behavior, fundamental mechanism, and switching process in different materials and structures. Therefore, three main parts of work have been done in this thesis:• Study the CoLu alloy, where Lu has the same properties as Gd with small spin-orbit coupling (L=0). Perpendicular magnetic anisotropy can be obtained in 3 nm of Co100-xLux alloy with x varies between 22% and 42%. Besides, single-shot switching measurements in full film and 3 μm dots array show that nodeterministic switching of the magnetization can be observed. The results can be attributed to the low magnetization and, consequently, too-small angular momentum carried by the Lu element by atomistic simulations. • Single-shot switching in [RE/TM]N multilayers, where the RE layer could be rare-earth metal with larger spin-orbit coupling such as Tb and Dy, and their alloy with transition metals. Starting with [Tb/Co]5 and [Tb/Fe]4 multilayers, the single-shot switching has been extended to various multilayers, bilayers, and trilayers, making it a general phenomenon in Tb- and Dy-based multilayers, which have sperimagnetic properties coupled with transient metals. Interestingly, a complex structure of rings of opposite magnetization directions has been observed at high fluence. According to the pump-probe measurements,We tried to explain the switching mechanism and ring structures, which could be an in-plane reorientation precession mechanism. • Single-shot switching in [Co/Ho]N multilayers, which is a novel material system with the expectation of higher spin-orbit coupling compared to Tb and Dy. Surprisingly, even though the spin-orbit coupling in Ho ( as it is in Tb and Dy) is larger than that of in Gd, which should increase the dissipation of angular momentum to the lattice, the pulse duration/fluence state diagram is close to the Gd-based systems. Studying this new system could help bridge the single pulse reversal processes observed, on the one hand, in Gd-based, on the other hand, in the Tb or Dy-based heterostructures
8

Huang, Tianxun. "A study about the behavior and mechanism of all-optical switching." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Afin de répondre aux besoins des futures technologies de stockage magnétique à haute densité, à faible consommation d’énergie et à haut débit, le développement d’une nouvelle méthode de manipulation de l’aimantation avec des temps d’inversion d’aimantation plus courts et une consommation d’énergie plus faible est l’une des tâches urgentes dans le domaine de la spintronique. La technologie laser à impulsions ultracourtes offre une nouvelle façon de manipuler le spin sur une échelle de temps femtoseconde, suscitant un grand intérêt de recherche dans les universités et l’industrie. Deux méthodes de contrôle de l’aimantation par laser, l’interrupteur à corrélation d’hélicoïdalité totale (AO-HDS) et l’interrupteur à corrélation d’hélicoïdalité totale (AO-HIS), ont récemment été découvertes et leurs mécanismes, comportements et applications ont fait l’objet de nombreuses discussions. Cependant, l’origine de ces deux phénomènes reste très controversée et ce sera la tâche principale de cet article. Le mécanisme de l’AO-HDS a été étudié à l’aide d’un empilement multicouche Co/Pt présentant le phénomène AO-HDS. La membrane a été réalisée sur un barreau de Hall en un carré magnétique de 10x10 um^2 et son comportement de commutation a été observé à différentes échelles de temps. La commutation de cette cellule magnétique peut être démontrée par dix impulsions laser successives polarisées circulairement. La dynamique de spin de AO-HDS peut être comprise par thermonucléation de domaine magnétique induite par Gradient thermique et propagation de paroi de domaine. Au cours des dernières années, l’AO-HIS n’a jamais été observé dans d’autres alliages de métaux de transition de terres rares, à l’exception du fait que la terre rare est Gd. Pour étudier les caractéristiques de GD, on a cultivé et étudié une série d’alliages GdRCo (R pour Tb, Dy ou Ho), l’AO-HIS peut être observé lorsque la composition de R est aussi faible que 1,5% au voisinage du point de compensation du ferromagnétique. Les diagrammes d’état décrivant les paramètres clés qui dépendent de la concentration de l’élément et de la dynamique de spin dans divers échantillons ont été étudiés, ce qui donne quelques suggestions sur l’origine de l’AO-HIS et ses applications futures en ingénierie
To meet the future needs of high density, low power consumption, and fast rate of magnetic storage technology, it is one of the urgent tasks in the field of spintronics to develop a new method of magnetization manipulation with shorter magnetization reversal time and lower energy consumption. Ultrashort pulsed laser technology offers a new way to manipulate spins in femtosecond timescale, sparking great research interest in both academia and industry. Two methods of controlling magnetization by laser, all-optical helicity-dependent switching (AO-HDS) and all-optical helicity-independent switching (AO-HIS), are discovered recently and raise numerous discussion on their mechanisms, behaviors and applications. However, the origin of two phenomena is still largely debated, which will be the main task of this thesis. A Co/Pt multilayered stack exhibiting AO-HDS phenomenon is employed to study the mechanism of AO-HDS. The film is fabricated to a 10x10 um^2 magnetic square on a Hall bar and its switching behavior is observed optically and electrically at different timescale. The switching of this magnetic unit can be demonstrated with ten consecutive circularly polarized laser pulses. The spin dynamics of AO-HDS can be understood in terms of the magnetic domain thermal nucleation and domain wall propagation driven bythermal gradient. For the past years, AO-HIS has never been observed in other rare-earth transition-metal alloys except when the rare-earth is Gd. To study the speciality of Gd, a complete series of GdRCo (R represents Tb, Dy or Ho) alloys is grown and investigated, it is demonstrated that AO-HIS can be observed when the composition of R is as low as 1.5% near the compensation point of ferrimagnet. State diagrams describing the key parameters depending on the element concentrations and spin dynamics in various samples are studied, providing some suggestion on the origin of AO-HIS and its engineering application in the future
9

Saidl, Vít. "Studium magneticky uspořádaných materiálů pomocí optické spektroskopie." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-328256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work we study thin epilayers of new antiferromagnetic semimetal CuMnAs by time- resolved magneto-optical experiments. In 10 nm layers of CuMnAs, we observed a harmonic dependence of the dynamical magneto-optical signal on the orientation of probe pulse linear polarization. This shows that in this 10 nm layer there is an in-plane uniaxial magnetic anisotropy which can be detected due to a quadratic magneto-optical effect - magnetic linear dichroism. From the measured data we also estimated the Néel temperature and the spectral variation of the magneto-optical coefficient describing the magnitude of the magnetic linear dichroism in this sample.
10

(9026657), Bradlee K. Beauchamp. "Synthetic Ferrimagnets and Magneto-Plasmonic Structures for Ultrafast Magnetization Switching." Thesis, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The response time of magnetization switching in current spintronic devices is limited to nanosecond timescales due to the precessional motion of the magnetization during reversal. To overcome this limit two routes of investigation leading to novel recording and logic devices are considered in this thesis: 1) Magnetic tunnel junction structures where the recording and reference layers are replaced by synthetic ferrimagnets and switching is induced by spin transfer torque and 2) Hybrid magneto-photonic devices where switching is induced by plasmon-enhanced all-optical switching. To circumvent limitations of the materials and magnetic properties of CoFeB, the most utilized alloy in spintronics, hcp-CoCrPt, a material that exhibits superior perpendicular anisotropy and thermal stability, is chosen as the ferromagnetic electrode in this work. Whereas actual devices based on the two schemes aforementioned are still in the process of being fabricated, through collaborative work with our international collaborators, this thesis describes fundamental magnetic and structural characterization needed for the realization of said ultrafast switching devices. The magnetic switching behavior of CoCrPt-Ru-CoCrPt synthetic ferrimagnets with perpendicular magnetic anisotropy have been studied in the temperature range from 2K to 300K. It was found that two sets of magnetic transitions occur in the CoCrPt-Ru-CoCrPt ferrimagnet systems studied. The first set exhibits three magnetization states in the 50K – 370K range, whereas the second involves only two states in the 2K and 50K range. The magnetic hysteresis curves of the synthetic ferrimagnet are assessed using an energy diagram technique which accurately describes the competition between interlayer exchange coupling energy, Zeeman energy, and anisotropy energy in the system. This energy diagram analysis is then used to predict the changes in the magnetic hysteresis curves of the synthetic ferrimagnet from 200K to 370K. This represents the potential operation temperature extrema that a synthetic ferrimagnet could be expected to operate at, were it to be utilized as a free layer in a memory or sensor spintronic device in the device configuration described in this dissertation.
Circularly polarized fs laser pulses generate large opto-magnetic fields in magnetic materials, through the inverse Faraday effect. These fields are attributed to be largely responsible for achieving ultrafast all-optical magnetization switching (AOS). All experimental demonstrations of AOS thus far have been realized on thin films over micron-sized irradiated regions. To achieve magnetization switching speeds in the ps and potentially fs time regimes, this work proposes the use of surface plasmon resonances at the interface of hybrid magneto-photonic heterostructures. In addition to the ability of plasmon resonances to confine light in the nm scale, the resonant excitation can largely enhance induced opto-magnetic fields in perpendicular magnetic anisotropy materials. This requires strong spin-photon coupling between the plasmonic and the magnetic materials, which thus requires the minimization of seed layers used for growth of the magnetic layer. This work reports on the development of ultrathin (1 nm thick) interlayers to control the growth orientation of hcp-Co alloys grown on the refractory plasmonic material, TiN, to align the magnetic axis out-of-plane. CoCrPtTa seed layers down to 1 nm were developed to seed the growth of CoCrPt, and the dependence of the quality of the CoCrPt is investigated as Ta composition is varied in the seed layer. Whereas bismuth iron garnet (BIG) meets the magneto-optical requirements for a hybrid magneto-photonic material, its magnetic and structural properties are highly sensitive to the Bi:Fe ratio and must be grown epitaxially on single crystalline substrates. Therefore, in this work we have investigated alternative materials that offer superior magnetic properties and are amenable to growth on inexpensive substrates. Opto-magnetic field enhancements up to 2.6x in Co-ferrite magneto-photonic heterostructures have been obtained via finite element analysis modelling. Alternative materials for plasmon-enhanced all-optical switching such as Co/Pd multilayers have also been investigated. Successful growth of Co/Pd multilayers on TiN using ultrathin Ti interlayers has been achieved.

Частини книг з теми "Ultrafast spintronics":

1

Tsukamoto, Arata, and Theo Rasing. "Ultrafast Light-Induced Spin Reversal in Amorphous Rare Earth-Transition Metal Alloy Films." In Spintronics for Next Generation Innovative Devices, 237–48. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118751886.ch13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Suemasu, Takashi. "Ultrafast CIDWM in Mn4N strips." In Rare-earth-free Ferrimagnetic Mn4N Spintronics, 4–1. IOP Publishing, 2024. http://dx.doi.org/10.1088/978-0-7503-5477-6ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Suemasu, Takashi. "Ultrafast CIDWM in compensated Mn4N strips." In Rare-earth-free Ferrimagnetic Mn4N Spintronics, 7–1. IOP Publishing, 2024. http://dx.doi.org/10.1088/978-0-7503-5477-6ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pal, Debarati, and Swapnil Patil. "Advancement of Topological Nanostructures for Various Applications." In Advanced Materials and Nano Systems: Theory and Experiment (Part-1), 190–212. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050745122010013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Topological materials are characterized by a unique band topology that is prominently distinct from ordinary metals and insulators. This new type of quantum material exhibits insulating bulk and conducting surface states that are robust against time-reversal invariant perturbations. In 2009, Bi2Se3 , Sb2Te3 and Bi2Te3 were predicted as 3D Topological insulators (TIs) with a single Dirac cone at the surface state. For application purposes, however, bulk conductivity due to Se vacancy in Bi2Se3 or anti site defects in Bi2Te3 has been a challenging issue. In order to achieve an enhanced surface conductivity over the bulk, nanomaterials are irreplaceable. Nanostructures' high surface to volume ratio provides a good platform for investigating the topological existence of surface states. By tuning the position of Fermi level through field effect gating, it is also possible to terminate the bulk residual carriers. Moreover, the synthesis of nanomaterials allows for morphological, electronic, and chemical regulation, resulting in the ability to design structures with desired TI properties at the nanoscale. In this article, we review various technological applications of nanostructured topological insulators. We also survey the implementation of topological nanomaterials in the field of optoelectronic devices, p-n junction, superconducting materials, field effect transistor, memory device and spintronics, ultrafast photodetection, and quantum computations.

Тези доповідей конференцій з теми "Ultrafast spintronics":

1

Turchinovich, Dmitry. "Ultrafast terahertz spintronics (Conference Presentation)." In Spintronics X, edited by Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2274758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Seifert, Tom Sebastian. "Exploiting ultrafast spintronics for terahertz photonics." In Spintronics XIV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2021. http://dx.doi.org/10.1117/12.2596230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bratschitsch, Rudolf. "Ultrafast spintronic THz emitters (Conference Presentation)." In Spintronics XV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2022. http://dx.doi.org/10.1117/12.2633298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jung, Natalie, Markus Lindemann, Tobias Pusch, Rainer Michalzik, Martin R. Hofmann, and Nils C. Gerhardt. "Integrated spin-lasers for ultrafast polarization modulation." In Spintronics XIV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2021. http://dx.doi.org/10.1117/12.2594560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Manfredi, Giovanni, Paul-Antoine Hervieux, and Jerome Hurst. "Ultrafast spin current generation in ferromagnetic thin films." In Spintronics XI, edited by Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2319953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wilson, Richard, Yang Yang, Jon Gorchon, Charles-Henri Lambert, Sayeef Salahuddin, and Jeffrey Bokor. "Ultrafast electrical switching of ferrimagnetic metals (Conference Presentation)." In Spintronics X, edited by Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2272454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lindemann, Markus, Natalie Jung, Markus Burghard, Tobias Pusch, Gaofeng Xu, Igor Zutic, Dan Birkedal, Rainer Michalzik, Martin R. Hofmann, and Nils C. Gerhardt. "Intensity and polarization dynamics in ultrafast birefringent spin-VCSELs." In Spintronics XIII, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2020. http://dx.doi.org/10.1117/12.2567628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Razdolski, Ilya, Alexandr Alekhin, Nikita Ilin, Jan P. Meyburg, Vladimir Roddatis, Detlef Diesing, Uwe Bovensiepen, and Alexey Melnikov. "Non-equilibrium magnetic effects at interfaces for ultrafast dynamics (Conference Presentation)." In Spintronics X, edited by Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2274750.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bratschitsch, Rudolf. "Ultrafast valley dynamics in atomically thin transition metal dichalcogenides (Conference Presentation)." In Spintronics IX, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2239329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dürr, Hermann A. "Tracking the ultrafast spin-lattice motion in FePt nanoparticles (Conference Presentation)." In Spintronics IX, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2239423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії