Добірка наукової літератури з теми "UCI MACHINE LEARNING"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "UCI MACHINE LEARNING".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Дисертації з теми "UCI MACHINE LEARNING"

1

Modi, Navikkumar. "Machine Learning and Statistical Decision Making for Green Radio." Thesis, CentraleSupélec, 2017. http://www.theses.fr/2017SUPL0002/document.

Повний текст джерела
Анотація:
Cette thèse étudie les techniques de gestion intelligente du spectre et de topologie des réseaux via une approche radio intelligente dans le but d’améliorer leur capacité, leur qualité de service (QoS – Quality of Service) et leur consommation énergétique. Les techniques d’apprentissage par renforcement y sont utilisées dans le but d’améliorer les performances d’un système radio intelligent. Dans ce manuscrit, nous traitons du problème d’accès opportuniste au spectre dans le cas de réseaux intelligents sans infrastructure. Nous nous plaçons dans le cas où aucune information n’est échangée entre les utilisateurs secondaires (pour éviter les surcoûts en transmissions). Ce problème particulier est modélisé par une approche dite de bandits manchots « restless » markoviens multi-utilisateurs (multi-user restless Markov MAB -multi¬armed bandit). La contribution principale de cette thèse propose une stratégie d’apprentissage multi-joueurs qui prend en compte non seulement le critère de disponibilité des canaux (comme déjà étudié dans la littérature et une thèse précédente au laboratoire), mais aussi une métrique de qualité, comme par exemple le niveau d’interférence mesuré (sensing) dans un canal (perturbations issues des canaux adjacents ou de signaux distants). Nous prouvons que notre stratégie, RQoS-UCB distribuée (distributed restless QoS-UCB – Upper Confidence Bound), est quasi optimale car on obtient des performances au moins d’ordre logarithmique sur son regret. En outre, nous montrons par des simulations que les performances du système intelligent proposé sont améliorées significativement par l’utilisation de la solution d’apprentissage proposée permettant à l’utilisateur secondaire d’identifier plus efficacement les ressources fréquentielles les plus disponibles et de meilleure qualité. Cette thèse propose également un nouveau modèle d’apprentissage par renforcement combiné à un transfert de connaissance afin d’améliorer l’efficacité énergétique (EE) des réseaux cellulaires hétérogènes. Nous formulons et résolvons un problème de maximisation de l’EE pour le cas de stations de base (BS – Base Stations) dynamiquement éteintes et allumées (ON-OFF). Ce problème d’optimisation combinatoire peut aussi être modélisé par des bandits manchots « restless » markoviens. Par ailleurs, une gestion dynamique de la topologie des réseaux hétérogènes, utilisant l’algorithme RQoS-UCB, est proposée pour contrôler intelligemment le mode de fonctionnement ON-OFF des BS, dans un contexte de trafic et d’étude de capacité multi-cellulaires. Enfin une méthode incluant le transfert de connaissance « transfer RQoS-UCB » est proposée et validée par des simulations, pour pallier les pertes de récompense initiales et accélérer le processus d’apprentissage, grâce à la connaissance acquise à d’autres périodes temporelles correspondantes à la période courante (même heure de la journée la veille, ou même jour de la semaine par exemple). La solution proposée de gestion dynamique du mode ON-OFF des BS permet de diminuer le nombre de BS actives tout en garantissant une QoS adéquate en atténuant les fluctuations de la QoS lors des variations du trafic et en améliorant les conditions au démarrage de l’apprentissage. Ainsi, l’efficacité énergétique est grandement améliorée. Enfin des démonstrateurs en conditions radio réelles ont été développés pour valider les solutions d’apprentissage étudiées. Les algorithmes ont également été confrontés à des bases de données de mesures effectuées par un partenaire dans la gamme de fréquence HF, pour des liaisons transhorizon. Les résultats confirment la pertinence des solutions d’apprentissage proposées, aussi bien en termes d’optimisation de l’utilisation du spectre fréquentiel, qu’en termes d’efficacité énergétique<br>Future cellular network technologies are targeted at delivering self-organizable and ultra-high capacity networks, while reducing their energy consumption. This thesis studies intelligent spectrum and topology management through cognitive radio techniques to improve the capacity density and Quality of Service (QoS) as well as to reduce the cooperation overhead and energy consumption. This thesis investigates how reinforcement learning can be used to improve the performance of a cognitive radio system. In this dissertation, we deal with the problem of opportunistic spectrum access in infrastructureless cognitive networks. We assume that there is no information exchange between users, and they have no knowledge of channel statistics and other user's actions. This particular problem is designed as multi-user restless Markov multi-armed bandit framework, in which multiple users collect a priori unknown reward by selecting a channel. The main contribution of the dissertation is to propose a learning policy for distributed users, that takes into account not only the availability criterion of a band but also a quality metric linked to the interference power from the neighboring cells experienced on the sensed band. We also prove that the policy, named distributed restless QoS-UCB (RQoS-UCB), achieves at most logarithmic order regret. Moreover, numerical studies show that the performance of the cognitive radio system can be significantly enhanced by utilizing proposed learning policies since the cognitive devices are able to identify the appropriate resources more efficiently. This dissertation also introduces a reinforcement learning and transfer learning frameworks to improve the energy efficiency (EE) of the heterogeneous cellular network. Specifically, we formulate and solve an energy efficiency maximization problem pertaining to dynamic base stations (BS) switching operation, which is identified as a combinatorial learning problem, with restless Markov multi-armed bandit framework. Furthermore, a dynamic topology management using the previously defined algorithm, RQoS-UCB, is introduced to intelligently control the working modes of BSs, based on traffic load and capacity in multiple cells. Moreover, to cope with initial reward loss and to speed up the learning process, a transfer RQoS-UCB policy, which benefits from the transferred knowledge observed in historical periods, is proposed and provably converges. Then, proposed dynamic BS switching operation is demonstrated to reduce the number of activated BSs while maintaining an adequate QoS. Extensive numerical simulations demonstrate that the transfer learning significantly reduces the QoS fluctuation during traffic variation, and it also contributes to a performance jump-start and presents significant EE improvement under various practical traffic load profiles. Finally, a proof-of-concept is developed to verify the performance of proposed learning policies on a real radio environment and real measurement database of HF band. Results show that proposed multi-armed bandit learning policies using dual criterion (e.g. availability and quality) optimization for opportunistic spectrum access is not only superior in terms of spectrum utilization but also energy efficient
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Duncan, Andrew Paul. "The analysis and application of artificial neural networks for early warning systems in hydrology and the environment." Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/17569.

Повний текст джерела
Анотація:
Artificial Neural Networks (ANNs) have been comprehensively researched, both from a computer scientific perspective and with regard to their use for predictive modelling in a wide variety of applications including hydrology and the environment. Yet their adoption for live, real-time systems remains on the whole sporadic and experimental. A plausible hypothesis is that this may be at least in part due to their treatment heretofore as “black boxes” that implicitly contain something that is unknown, or even unknowable. It is understandable that many of those responsible for delivering Early Warning Systems (EWS) might not wish to take the risk of implementing solutions perceived as containing unknown elements, despite the computational advantages that ANNs offer. This thesis therefore builds on existing efforts to open the box and develop tools and techniques that visualise, analyse and use ANN weights and biases especially from the viewpoint of neural pathways from inputs to outputs of feedforward networks. In so doing, it aims to demonstrate novel approaches to self-improving predictive model construction for both regression and classification problems. This includes Neural Pathway Strength Feature Selection (NPSFS), which uses ensembles of ANNs trained on differing subsets of data and analysis of the learnt weights to infer degrees of relevance of the input features and so build simplified models with reduced input feature sets. Case studies are carried out for prediction of flooding at multiple nodes in urban drainage networks located in three urban catchments in the UK, which demonstrate rapid, accurate prediction of flooding both for regression and classification. Predictive skill is shown to reduce beyond the time of concentration of each sewer node, when actual rainfall is used as input to the models. Further case studies model and predict statutory bacteria count exceedances for bathing water quality compliance at 5 beaches in Southwest England. An illustrative case study using a forest fires dataset from the UCI machine learning repository is also included. Results from these model ensembles generally exhibit improved performance, when compared with single ANN models. Also ensembles with reduced input feature sets, using NPSFS, demonstrate as good or improved performance when compared with the full feature set models. Conclusions are drawn about a new set of tools and techniques, including NPSFS and visualisation techniques for inspection of ANN weights, the adoption of which it is hoped may lead to improved confidence in the use of ANN for live real-time EWS applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bouneffouf, Djallel. "DRARS, A Dynamic Risk-Aware Recommender System." Phd thesis, Institut National des Télécommunications, 2013. http://tel.archives-ouvertes.fr/tel-01026136.

Повний текст джерела
Анотація:
L'immense quantité d'information générée et gérée au quotidien par les systèmes d'information et leurs utilisateurs conduit inéluctablement ?a la problématique de surcharge d'information. Dans ce contexte, les systèmes de recommandation traditionnels fournissent des informations pertinentes aux utilisateurs. Néanmoins, avec la propagation récente des dispositifs mobiles (Smartphones et tablettes), nous constatons une migration progressive des utilisateurs vers la manipulation d'environnements pérvasifs. Le problème avec les approches traditionnelles de recommandation est qu'elles n'utilisent pas toute l'information disponible pour produire des recommandations. Davantage d'informations contextuelles pourraient être utilisées dans le processus de recommandation pour aboutir à des recommandations plus précises. Les systèmes de recommandations sensibles au contexte (CARS) combinent les caractéristiques des systèmes sensibles au contexte et des systèmes de recommandation an de fournir des informations personnalisées aux utilisateurs dans des environnements ubiquitaires. Dans cette perspective ou tout ce qui concerne l'utilisateur est dynamique, les contenus qu'il manipule et son environnement, deux questions principales doivent être adressées : i) Comment prendre en compte la dynamicité des contenus de l'utilisateur ? et ii ) Comment éviter d'être intrusif en particulier dans des situations critiques ?. En réponse ?a ces questions, nous avons développé un système de recommandation dynamique et sensible au risque appelé DRARS (Dynamic Risk-Aware Recommender System), qui modélise la recommandation sensible au contexte comme un problème de bandit. Ce système combine une technique de filtrage basée sur le contenu et un algorithme de bandit contextuel. Nous avons montré que DRARS améliore la stratégie de l'algorithme UCB (Upper Con dence Bound), le meilleur algorithme actuellement disponible, en calculant la valeur d'exploration la plus optimale pour maintenir un compromis entre exploration et exploitation basé sur le niveau de risque de la situation courante de l'utilisateur. Nous avons mené des expériences dans un contexte industriel avec des données réelles et des utilisateurs réels et nous avons montré que la prise en compte du niveau de risque de la situation de l'utilisateur augmentait significativement la performance du système de recommandation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fanciulli, Matteo. "Forecast sull'impatto della crescita esponenziale della tecnologia nel mondo del lavoro e nella società." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.

Знайти повний текст джерела
Анотація:
In questa tesi esaminerò alcuni aspetti fondamentali della tecnologia moderna tra cui alcune leggi chiave che spiegheranno come mai la crescente disoccupazione in Europa, e in occidente in generale, non è causata solamente da crisi finanziarie o politiche, ma dall'intrinseca natura della tecnologia stessa. Ci troveremo nella situazione nella quale una persona non sia in grado di trovare un'occupazione non a causa di demeriti propri, ma poiché il sistema è diventato talmente ottimizzato da tagliare completamente la necessità di alcuni ruoli chiave nel sistema di lavoro. Spiegherò quali sono le strategie da attuare per evitare di trovarsi in questo nuovo sistema di occupazione senza un ruolo al suo interno, quali sono le politiche che un governo debba attuare per garantire i necessari bisogni primari dei propri cittadini, le strutture che ogni azienda deve creare per rimanere all'interno del proprio settore di investimento.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

van, Merriënboer Bart. "Sequence-to-sequence learning for machine translation and automatic differentiation for machine learning software tools." Thèse, 2018. http://hdl.handle.net/1866/21743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Askari, Hemmat Reyhane. "SLA violation prediction : a machine learning perspective." Thèse, 2016. http://hdl.handle.net/1866/18754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mokaddem, Mouna. "Learning a graph made of boolean function nodes : a new approach in machine learning." Thèse, 2016. http://hdl.handle.net/1866/18763.

Повний текст джерела
Анотація:
Dans ce document, nous présentons une nouvelle approche en apprentissage machine pour la classification. Le cadre que nous proposons est basé sur des circuits booléens, plus précisément le classifieur produit par notre algorithme a cette forme. L’utilisation des bits et des portes logiques permet à l’algorithme d’apprentissage et au classifieur d’utiliser des opérations vectorielles binaires très efficaces. La qualité du classifieur, produit par notre approche, se compare très favorablement à ceux qui sont produits par des techniques classiques, à la fois en termes d’efficacité et de précision. En outre, notre approche peut être utilisée dans un contexte où la confidentialité est une nécessité, par exemple, nous pouvons classer des données privées. Ceci est possible car le calcul ne peut être effectué que par des circuits booléens et les données chiffrées sont quantifiées en bits. De plus, en supposant que le classifieur a été déjà entraîné, il peut être alors facilement implémenté sur un FPGA car ces circuits sont également basés sur des portes logiques et des opérations binaires. Par conséquent, notre modèle peut être facilement intégré dans des systèmes de classification en temps réel.<br>In this document we present a novel approach in machine learning for classification. The framework we propose is based on boolean circuits, more specifically the classifier produced by our algorithm has that form. Using bits and boolean gates enable the learning algorithm and the classifier to use very efficient boolean vector operations. The accuracy of the classifier we obtain with our framework compares very favourably with those produced by conventional techniques, both in terms of efficiency and accuracy. Furthermore, the framework can be used in a context where information privacy is a necessity, for example we can classify private data. This can be done because computation can be performed only through boolean circuits as encrypted data is quantized in bits. Moreover, assuming that the classifier was trained, it can then be easily implemented on FPGAs (i.e., Field-programmable gate array) as those circuits are also based on logic gates and bitwise operations. Therefore, our model can be easily integrated in real-time classification systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chapados, Nicolas. "Sequential Machine learning Approaches for Portfolio Management." Thèse, 2009. http://hdl.handle.net/1866/3578.

Повний текст джерела
Анотація:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.<br>This thesis considers a number of approaches to make machine learning algorithms better suited to the sequential nature of financial portfolio management tasks. We start by considering the problem of the general composition of learning algorithms that must handle temporal learning tasks, in particular that of creating and efficiently updating the training sets in a sequential simulation framework. We enumerate the desiderata that composition primitives should satisfy, and underscore the difficulty of rigorously and efficiently reaching them. We follow by introducing a set of algorithms that accomplish the desired objectives, presenting a case-study of a real-world complex learning system for financial decision-making that uses those techniques. We then describe a general method to transform a non-Markovian sequential decision problem into a supervised learning problem using a K-best paths search algorithm. We consider an application in financial portfolio management where we train a learning algorithm to directly optimize a Sharpe Ratio (or other risk-averse non-additive) utility function. We illustrate the approach by demonstrating extensive experimental results using a neural network architecture specialized for portfolio management and compare against well-known alternatives. Finally, we introduce a functional representation of time series which allows forecasts to be performed over an unspecified horizon with progressively-revealed information sets. By virtue of using Gaussian processes, a complete covariance matrix between forecasts at several time-steps is available. This information is put to use in an application to actively trade price spreads between commodity futures contracts. The approach delivers impressive out-of-sample risk-adjusted returns after transaction costs on a portfolio of 30 spreads.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gidel, Gauthier. "Multi-player games in the era of machine learning." Thesis, 2020. http://hdl.handle.net/1866/24800.

Повний текст джерела
Анотація:
Parmi tous les jeux de société joués par les humains au cours de l’histoire, le jeu de go était considéré comme l’un des plus difficiles à maîtriser par un programme informatique [Van Den Herik et al., 2002]; Jusqu’à ce que ce ne soit plus le cas [Silveret al., 2016]. Cette percée révolutionnaire [Müller, 2002, Van Den Herik et al., 2002] fût le fruit d’une combinaison sophistiquée de Recherche arborescente Monte-Carlo et de techniques d’apprentissage automatique pour évaluer les positions du jeu, mettant en lumière le grand potentiel de l’apprentissage automatique pour résoudre des jeux. L’apprentissage antagoniste, un cas particulier de l’optimisation multiobjective, est un outil de plus en plus utile dans l’apprentissage automatique. Par exemple, les jeux à deux joueurs et à somme nulle sont importants dans le domain des réseaux génératifs antagonistes [Goodfellow et al., 2014] ainsi que pour maîtriser des jeux comme le Go ou le Poker en s’entraînant contre lui-même [Silver et al., 2017, Brown andSandholm, 2017]. Un résultat classique de la théorie des jeux indique que les jeux convexes-concaves ont toujours un équilibre [Neumann, 1928]. Étonnamment, les praticiens en apprentissage automatique entrainent avec succès une seule paire de réseaux de neurones dont l’objectif est un problème de minimax non-convexe et non-concave alors que pour une telle fonction de gain, l’existence d’un équilibre de Nash n’est pas garantie en général. Ce travail est une tentative d'établir une solide base théorique pour l’apprentissage dans les jeux. La première contribution explore le théorème minimax pour une classe particulière de jeux non-convexes et non-concaves qui englobe les réseaux génératifs antagonistes. Cette classe correspond à un ensemble de jeux à deux joueurs et a somme nulle joués avec des réseaux de neurones. Les deuxième et troisième contributions étudient l’optimisation des problèmes minimax, et plus généralement, les inégalités variationnelles dans le cadre de l’apprentissage automatique. Bien que la méthode standard de descente de gradient ne parvienne pas à converger vers l’équilibre de Nash de jeux convexes-concaves simples, il existe des moyens d’utiliser des gradients pour obtenir des méthodes qui convergent. Nous étudierons plusieurs techniques telles que l’extrapolation, la moyenne et la quantité de mouvement à paramètre négatif. La quatrième contribution fournit une étude empirique du comportement pratique des réseaux génératifs antagonistes. Dans les deuxième et troisième contributions, nous diagnostiquons que la méthode du gradient échoue lorsque le champ de vecteur du jeu est fortement rotatif. Cependant, une telle situation peut décrire un pire des cas qui ne se produit pas dans la pratique. Nous fournissons de nouveaux outils de visualisation afin d’évaluer si nous pouvons détecter des rotations dans comportement pratique des réseaux génératifs antagonistes.<br>Among all the historical board games played by humans, the game of go was considered one of the most difficult to master by a computer program [Van Den Heriket al., 2002]; Until it was not [Silver et al., 2016]. This odds-breaking break-through [Müller, 2002, Van Den Herik et al., 2002] came from a sophisticated combination of Monte Carlo tree search and machine learning techniques to evaluate positions, shedding light upon the high potential of machine learning to solve games. Adversarial training, a special case of multiobjective optimization, is an increasingly useful tool in machine learning. For example, two-player zero-sum games are important for generative modeling (GANs) [Goodfellow et al., 2014] and mastering games like Go or Poker via self-play [Silver et al., 2017, Brown and Sandholm,2017]. A classic result in Game Theory states that convex-concave games always have an equilibrium [Neumann, 1928]. Surprisingly, machine learning practitioners successfully train a single pair of neural networks whose objective is a nonconvex-nonconcave minimax problem while for such a payoff function, the existence of a Nash equilibrium is not guaranteed in general. This work is an attempt to put learning in games on a firm theoretical foundation. The first contribution explores minimax theorems for a particular class of nonconvex-nonconcave games that encompasses generative adversarial networks. The proposed result is an approximate minimax theorem for two-player zero-sum games played with neural networks, including WGAN, StarCrat II, and Blotto game. Our findings rely on the fact that despite being nonconcave-nonconvex with respect to the neural networks parameters, the payoff of these games are concave-convex with respect to the actual functions (or distributions) parametrized by these neural networks. The second and third contributions study the optimization of minimax problems, and more generally, variational inequalities in the context of machine learning. While the standard gradient descent-ascent method fails to converge to the Nash equilibrium of simple convex-concave games, there exist ways to use gradients to obtain methods that converge. We investigate several techniques such as extrapolation, averaging and negative momentum. We explore these techniques experimentally by proposing a state-of-the-art (at the time of publication) optimizer for GANs called ExtraAdam. We also prove new convergence results for Extrapolation from the past, originally proposed by Popov [1980], as well as for gradient method with negative momentum. The fourth contribution provides an empirical study of the practical landscape of GANs. In the second and third contributions, we diagnose that the gradient method breaks when the game’s vector field is highly rotational. However, such a situation may describe a worst-case that does not occur in practice. We provide new visualization tools in order to exhibit rotations in practical GAN landscapes. In this contribution, we show empirically that the training of GANs exhibits significant rotations around Local Stable Stationary Points (LSSP), and we provide empirical evidence that GAN training converges to a stable stationary point, which is a saddle point for the generator loss, not a minimum, while still achieving excellent performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dauphin, Yann. "Advances in scaling deep learning algorithms." Thèse, 2015. http://hdl.handle.net/1866/13710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії